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Preface

The ISIPTA (International Symposium on Imprecise Probability: Theories and Application) meet-
ings are the primary forum for research on imprecise probability. They are organized once every two
years by SIPTA, the Society for Imprecise Probability: Theories and Applications. The first meet-
ing was held in Ghent in 1999. It was followed by meetings in Ithaca, Lugano, Pittsburgh, Prague,
Durham, Innsbruck, Compiègne and Pescara. The 2017 edition was held in Lugano (Switzerland)
on July 10–14, 2017.

The proceedings of this edition are published for the first time within the Proceedings of Ma-
chine Learning Research (PMLR) series. This is by itself an acknowledgment of the scientific
quality of the symposium.

Each submitted paper has been assigned to three program committee members. Eventually we
accepted 32 papers. We would like to thank the 49 members of the program committee for their
outstanding job during the reviewing process.

This edition of ISIPTA has been, for the first time, co-located with ECSQARU 2017, the Four-
teenth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncer-
tainty. ECSQARU and ISIPTA are both biennial events with a significant overlap in their scopes.
The co-location should be regarded as a first attempt to promote a cross-fertilization of work from
researchers of these two communities.

Besides the technical program, keynote lectures were given by five distinguished invited speak-
ers, namely: Leila Amgoud (IRIT, France), Alessio Benavoli (IDSIA, Switzerland), Jim Berger
(Duke University, USA), Didier Dubois (IRIT, France), and Eyke Hüllermeier (Paderborn Univer-
sity, Germany).

Alessandro Antonucci,
Giorgio Corani,
Inés Couso,
Sébastien Destercke.

Lugano, July 2017.
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Abstract
This paper considers the resolution of ambiguity according to the scientific ideal of direct obser-
vation when there is a practical necessity for social learning. An agent faces ambiguity when she
directly observes low-quality data yielding set-identified signals. I suppose the agent’s objective
is to choose the single belief replicating what would occur with high-quality data yielding point-
identified signals. I allow the agent to solve this missing data problem using signals observed
through her network in combination with a model of social learning. In some cases the agent’s
belief formation reduces to DeGroot updating and beliefs in a network reach a consensus. In other
cases the agent’s updating can generate polarization and sustain clustered disagreement, even on a
connected network where everyone observes the same data and processes that data with the same
model.
Keywords: Belief Formation; Subjective Probability; Social Learning; Partial Identification;
Causal Inference; Network; DeGroot Learning Rule; Bounded Confidence.

1. Introduction

We all hold beliefs based on limited personal experience. This is often due to logistical, and not
philosophical, limitations. The scientific ideal of “seeing for one’s self” is subject to time and
resource constraints that make it infeasible to personally verify all claims. How do we form beliefs
based on evidence beyond our personal experience?

This paper studies scenarios of partial identification in which personal experience offers no
guidance for belief formation beyond a range of possibilities. Consider the example of a high school
guidance counselor advising minority students on whether to attend a selective or non-selective
college. What is the probability that an advisee will graduate from the selective college? The
counselor would face partial identification if the high school had not tracked the experiences of
recent graduates, or had sent few students to selective colleges.

When facing partial identification, the counselor could provide his students with a range of
probabilities. Alternatively, the counselor could provide a single probability based on information
beyond his directly-observed data. The choice of a single probability would use the counselor’s
judgment to combine his own experience; his discussions with others like counselors or teachers;
and the conflicting estimates in the literature (Arcidiacono and Lovenheim, 2016; Alon and Tienda,
2005). This paper models the counselor’s choice of a single probability.

The general setting begins with an agent who must form beliefs about a set of propositions.
The agent can use a model to translate data into signals about the truth of each proposition. Under
frequentist inference she may form beliefs as the mean of her signals observed over discrete time.1

There are many situations in which the available data might only allow the agent to partially
identify a signal. An obvious scenario pertains to causal propositions when one cannot easily ob-

1. For independent and identically distributed (iid) signals, the Law of Large Numbers ensures such beliefs will converge
to the mean of the signal distribution.
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ALIPRANTIS

serve the Data Generating Process (DGP) under controlled intervention. This situation is widespread
in economics, with many important counterfactual outcomes waiting to be definitively quantified.2

Beliefs of an agent observing iid partially-identified signals will converge to a set when formed by
averaging signals observed over discrete time (Artstein and Vitale, 1975).

When the agent has a set of possible beliefs, or faces ambiguity, prominent decision rules in-
struct her to choose the single belief generating an extreme utility (Gilboa and Marinacci, 2013).
For example, the maxmin expected utility decision rule maximizes expected utility after choosing
the belief that would be set by a malevolent nature minimizing the agent’s utility for any decision
(Gilboa and Schmeidler, 1989). The minimax regret decision rule maximizes expected utility after
choosing the belief maximizing the agent’s lost utility from not knowing the true state of the world
(Manski, 2011).

This paper separates belief formation from preferences: When choosing one belief, the objective
is to accurately represent the DGP. While the scientific ideal is to attain this objective based on direct
observation, no single belief cannot satisfy this ideal when directly-observed data are only capable
of partial identification. However, a single belief can approximate the scientific ideal if data yielding
point-identification can be inferred from second-hand observations.

I specify the agent’s problem as an attempt to replicate the beliefs she would have formed had
she directly observed data yielding point-identified signals. The agent’s problem can be viewed as a
missing data problem to be solved with signals observed through her social network. I assume that
communication is imperfect, so that socially-observed signals are communicated alone, without the
data or model used in their construction.

I first show that if the agent uses linear opinion pooling of signals, a common method for com-
bining forecasts and estimates, she will follow the canonical DeGroot (1974) learning rule under a
special case of observed data. I then show that such DeGroot updating solves the agent’s problem
under additional assumptions on the homogeneity of data and models in the agent’s network.

Two issues argue for pushing beyond the assumptions necessary for DeGroot updating to solve
the agent’s problem. The first is that the assumptions justifying DeGroot updating are strong. For
example, individuals can be justified in using different models to interpret the same data (Al-Najjar,
2009), and the agent might observe new data over time (Jadbabaie et al., 2012).

Second, while DeGroot updating is the benchmark for non-Bayesian learning on social net-
works, a combination of theory and evidence motivates the desideratum of an alternative capable
of generating polarization (Golub and Sadler, 2016). DeGroot learning and many of its generaliza-
tions converge to a degenerate distribution for connected networks (Jackson, 2008; Dandekar et al.,
2013).3 However, an empirical analogue of a connected network - individuals exposed to sources
of information contradicting their beliefs - is often observed together with persistent disagreement.
Examples include scientific opinions when journals publish opposing research and public opinion
when individuals are exposed to diverse news sources (Gentzkow and Shapiro, 2011).4 The emer-
gence of “fake news” highlights this limitation of DeGroot updating.

2. In microeconomics alone it has proven difficult to ascertain outcomes under controlled interventions to neighbor-
hood characteristics (Ludwig et al., 2008; Aliprantis, 2017), teacher characteristics (Rothstein, 2010; Kinsler, 2012),
educational attainment (Angrist and Krueger, 1991; Aliprantis, 2012), minimum wages (Card and Krueger, 1994;
Neumark and Wascher, 2000), unemployment benefits (Hagedorn et al., 2013; Farber and Valletta, 2015), income
taxes (Manski, 2014), and right-to-carry laws (Manski and Pepper, 2015; Durlauf et al., 2016).

3. Time to consensus, though, is not invariant across all connected network structures (Golub and Jackson (2012)).
4. For example, there is persistent disagreement over propositions like Iraq had an active WMD program, President

Obama was born in the US, vaccines cause autism, and global warming is occurring despite public debate.
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I show that linear opinion pooling can still solve the agent’s problem after weakening the as-
sumptions justifying DeGroot updating. In contrast to DeGroot updating, though, this solution
requires a first stage in which signals are properly-transformed. I present the selection of a model
that properly interprets signals as a statistical learning problem, and show that this problem is not
well-posed. That is, frictions from communication generate a fundamental problem of inference,
in that signals do not convey the same information as directly-observed data, and the agent cannot
know whether she is properly interpreting signals without this information.

The agent might nevertheless choose a model for interpreting signals, just as methods for causal
inference attempt to overcome the fundamental problem of evaluation. I study how the agent might
use the model implied by a “reasonable” heuristic. The agent first interprets signals according to
the model. The agent then uses the relative entropy of disagreement over all propositions to assess
the credibility of applying the heuristic to each sender. The agent then combines interpreted signals,
giving more weight to the interpreted signals from senders deemed most credible.

Although the updating rule tends to reach a consensus, I show that the rule is also capable
of generating polarization and can sustain clustered disagreement, even on a connected network
where everyone directly-observes the same data and processes that data with the same model. A
key mechanism is generated by the use of relative entropy to assess the credibility of interpreted
signals. If a given agent tends to agree with those in a widely-distributed cluster (unbiased but
imprecise), but tends to disagree with those in a tightly-distributed cluster (biased but precise), that
agent will rely more on interpreted signals from the disagreeing cluster, and this can cause her to
overcompensate when they provide her with unbiased signals.

Polarization is possible because in contrast to updating in DeGroot or bounded confidence mod-
els, the agent can update her beliefs away from a signal if it comes from a sender with whom she
tends to disagree. In other words, the agent’s updating rule need not lead to constricting belief
updating (Mueller-Frank, 2015). Two keys for generating polarization are low-quality data and
perceptions about the distribution of models for interpreting directly-observed data.

The paper proceeds as follows: Section 2 sets the stage for the agent’s problem, describing how
she could arrive at a set of beliefs when directly observing data. Section 3 explores one way the
agent might try to resolve the ambiguity she faces, using the signals she receives from individuals
in her social network to form her beliefs. In the full paper I also show why finding a model of
social learning to solve the agent’s problem is an ill-posed problem, and describe the implications
of a heuristic the agent might use to specify a model of social learning. I further investigate the
implications of this heuristic in greater detail, studying belief dynamics under one specification of
the updating rule for several paramaterizations under various network and proposition structures.
Section 4 concludes.

2. Belief Formation via Directly-Observed Data

Suppose there is a finite set of propositions {p1, p2, . . . , pK} = K, none of which can be written as a
compound proposition using other propositions in the set.5 An agent must determine the truth value
of the statements, T (pk) ∈ {0, 1}, and agent i’s beliefs at time t are denoted by λkit = Pr(T (pk) =
1).6 The agent directly observes data Wit.

5. This greatly simplifies the analysis. See Paris and Vencovská (1990) and Wilmers (2010) for implications of propo-
sitional calculus when considering propositions formed as compound propositions.

6. A proposition is a statement that is either true (T (pk) = 1) or false (T (pk) = 0).
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Consider a classical (frequentist) setting. With high-quality dataW ∗it, the agent would be able to
use her model ϕk

i to translate her data into an independent and identically distributed (iid) sequence
of signals {σk∗it }Tt=1, where

σk∗it = ϕk
i (W ∗it) ∈ [0, 1].

The law of large numbers ensures convergence to the mean of the signal distribution, which I will
denote by µk∗i , for beliefs formed as

λk∗it+1 =
1

t

t∑

n=1

σk∗in

= βtσ
k∗
it + (1− βt)λk∗it where βt = 1/t. (1)

Now consider a setting in which the agent’s directly-observed data Wit only allows her to set
identify the true iid signal σk∗it . Inspired by the literature on partial identification (Manski, 2007;
Tamer, 2010), suppose the agent’s model and data allow her to determine a signal σkit and its quality
θkit,

(σkit, θ
k
it) = ϕk

i (Wit) ∈ [0, 1]2,

where the true signal is related to the observed signal by

σk∗it ∈ [ max{0, σkit − (1− θkit)} , min{σkit + (1− θkit), 1} ] ≡ [ σk∗it , σk∗it ]. (2)

The agent then knows from her signals of imperfect quality that the average

λk∗it+1 =
1

t

t∑

n=1

σk∗in ∈ Λk∗
it+1 =

[
1

t

t∑

n=1

σk∗in ,
1

t

t∑

n=1

σk∗in

]
,

where the sets [σk∗it , σ
k∗
it ] and Λk∗

it+1 are often referred to as “imprecise probabilities” (Coolen et al.,
2011). The set [σk∗it , σ

k∗
it ] is what can be learned about pk from the directly-observed data under the

most credible assumptions. While the agent can also determine σkit, doing so requires less credible
assumptions, so the agent cannot be sure that E[σkit] = µk∗i unless θkit = 1.

The canonical example of the proposition p1= “A given coin will land Heads.” helps to illustrate
the difference between these settings. Suppose that high-quality data maps into signals generated
by iid draws from a binomial distribution with probability 0.5 where σ = 1 if the coin lands Heads
and σ = 0 if the coin lands Tails. In the case of high-quality data where θ1it = 1 for all t, σkit = σk∗it ,
and so λk∗it+1 can be calculated from (1) as the relative frequency of Heads, and will converge to 0.5
as t→∞.

In contrast, an agent with low-quality data mapping into signals represented by θ1it = 0.2 for all
t will be subject to ambiguity in addition to risk.7 If the observed signal is Heads, then the agent
can bound the true signal to be within [0.2, 1]. If the observed signal is Tails, then the agent bounds
the true signal to be in [0, 0.8]. Thus as t→∞, the agent will infer that the mean of the true signals
is µk∗i ∈ Λk∗

i = [0.1, 0.9].8

7. In this context a point-valued belief λk
it ∈ (0, 1) represents risk, while a set-valued belief λk

it ∈ Λk
it ⊆ [0, 1]

represents Knightian uncertainty or ambiguity.
8. Confidence intervals for the identified set Λk∗

i are studied in Imbens and Manski (2004) and Stoye (2009), more
generally as confidence regions in Chernozhukov et al. (2007) and Romano and Shaikh (2010), and using Bayesian
methods in Moon and Schorfheide (2012) and Bollinger and van Hasselt (2008).

4



DIFFERENCES OF OPINION

In addition to describing signals, throughout the analysis I will use “high-quality” (relative to
the agent’s model) to describe data yielding point-identified signals (θkit = 1), and “low-quality”
to describe data yielding set-identified signals (θkit < 1). For causal propositions, the difficulty of
achieving identification is an obvious interpretation of signals having low quality. Examples abound
of counterfactual outcomes that are difficult to quantify in microeconomics, macroeconomics, and
finance because one cannot easily observe the Data Generating Process (DGP) under controlled
intervention.9

Non-causal propositions can also have low-quality signals for reasons like survey non-response
(Manski, 2015). Another interpretation of an extremely low-quality signal, θkit = 0, is that the agent
does not directly observe any data for a given proposition pk, so that ϕk

i (∅) = (σkit, 0) ⇒ σk∗it ∈
[0, 1]. It could also be the case that the agent’s model ϕk

i is not capable of extracting information
from data. For example, an agent ignorant of genetics and molecular biology would likely have
a model incapable of interpreting data on the human genome. In such cases, one could assign
ϕk
i (W ∗it) = ϕk

i (Wit) = (σkit, 0)⇒ σk∗it ∈ [0, 1] for any data set. For this analysis I will assume that
the agent’s model produces a point-identified signal given a high-quality data set.

3. Belief Formation via Social Learning

A criticism of Bayesian decision theory is that in some circumstances, it might not be possible for
the agent to express her beliefs using a distribution over the set Λk∗

it . Bayesian decision theory is
difficult to apply to these circumstances, since an imprecise probability cannot be used to make
decisions according to the standard Savage axioms (Gilboa and Marinacci, 2013).

When holding beliefs represented by an imprecise probability Λk∗
it , several approaches to deci-

sion making can be interpreted as picking one belief from the set Λk∗
it , and then using this probability

as a subjective belief with which to make decisions following the Savage axioms. The chosen prob-
ability is typically pessimistic, assuming the worst case in some sense of utility. For example, the
Γ-maxmin utility decision rule maximizes expected utility after choosing the belief that would be
set by a malevolent nature minimizing the agent’s utility for any decision (Gilboa and Schmeidler,
1989). Similarly, the Γ-minimax regret decision rule chooses the single belief that maximizes the
loss from making decisions with the chosen belief rather than the true probability when the agent
makes decisions to minimize this loss (Manski, 2011).

The subsequent model explores belief formation when the agent chooses one belief from Λk∗
it

using information from her social network.

3.1 The Agent’s Problem

Suppose the agent is a member of a network of J + 1 individuals from which she might gather
information. The agent directly-observes the information

Iit ≡
{

(λ1it, σ
1
it, θ

1
it) , . . . , (λKit , σ

K
it , θ

K
it )

}
.

To initialize the process we might let λki1 = σki1; assume that the agent observes point identified
signals from t = −T until t = 1 and then set identified signals for t > 1; or else assume that the
agent has just randomly reset t = 1 (as a random mutation in an evolutionary algorithm). The agent

9. See Footnote 2 for some examples from microeconomics.
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also observes information in her social network about the truth of propositions. We denote the set of
others in the agent’s network asJ . However, the agent does not directly observe the data individuals
in her network (j ∈ J ) directly observe. Instead, the agent observes individuals’ beliefs and their
interpreted data in the form of their signals. Thus, the socially-observed information available to
the agent is

IJt ≡
{
{λ1jt, σ1jt}j∈J 1 , . . . , {λKjt , σKjt }j∈JK

}
,

where the agent receives information about proposition pk from individuals in J k ⊆ J .
The agent might try Bayesian updating, or Bayesian social learning, according to Bayes’ rule:

Pr(T (pk) = 1|σkit, {σkjt}j∈J k) =
Pr(σkit, {σkjt}j∈J k |T (pk) = 1)Pr(T (pk) = 1)

Pr(σkit, {σkjt}j∈J k)

Using beliefs λkit as the agent’s prior, this would imply updating as

λkit+1 =
f(σkit, {σkjt}j∈J k |T (pk) = 1)λkit

f(σkit, {σkjt}j∈J k |T (pk) = 1)λkit + f(σkit, {σkjt}j∈J k |T (pk) = 0)(1− λkit)
.

Acemoglu et al. (2016) show in a related setting that strong restrictions would be required on the
conditional pdfs f(·|T (pk)) for there to be asymptotic agreement across agents. More fundamen-
tally, correctly specifying the likelihood function f(σkit, {σkjt}j∈J k |T (pk)) can require unrealistic
assumptions about the information and computation available to the agent (Acemoglu and Ozdaglar,
2011).10 Weakening these assumptions is a key motivation of the literature on non-Bayesian social
learning (Molavi et al., 2015).

Correctly specifying the likelihood function is the same as specifying f(ϕk
it(W

∗
it), {ϕk

j (Wjt)}j∈J k |T (pk)),
which would require not only that the agent know the sampling processes for W ∗it and W ∗jt condi-
tional on T (pk), but also the models {ϕk

j }j∈J k . I rule out Bayesian social learning by restricting
social information to beliefs and signals, assuming that the agent does not observe the additional
information required to specify the likelihood function:

(A1) Imperfect Communication: Agent i can only observe point estimates λkjt and σkjt. She cannot
observe measures of the sender’s ambiguity Λk∗

jt , θ
k
jt or their model ϕk

j ∀ j, t, k

The issue captured by A1 is that data must be transformed into information using a model, and it
is difficult for individuals to communicate this process. Therefore, valuable details are lost relative
to directly observing the data when information is obtained socially. Among other reasons, this
assumption is positively appealing because there is a well-documented tendency for researchers
and statistical agencies to focus on communicating their point estimates σkit without communicating
about their models ϕk

i or measures of uncertainty θkit (Manski, 2007, 2015).
With A1 ruling out Bayesian social learning, I assume that the agent uses signals in an effort to

replicate classical inference. Given a loss function L, the agent’s problem is to choose functions fk

10. Benoı̂t and Dubra (2015) and Andreoni and Mylovanov (2012) study polarization under private learning when agents
disagree about f(σk∗

it |T (pk)). Alternatively, in this context their analyses could be interpreted as agents having
different models for private learning ϕk

i , each proposition pk being a conjunction of simple propositions pk =

pk
′ ∧ pk′′

, and W ∗it being revealed at different subperiods of t for pk
′

and pk
′′

.
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from some set F to solve the problem

min
f1,...,fK∈F

K∑

k=1

L
(
E
[
µk∗i − lim

t→∞
λkit+1

])
(3)

s.t. (Iit, IJt)
σ̂kit = fk(Iit, IJt) for k = 1, . . . ,K

λkit+1 = βtσ̂
k
it + (1− βt)λkit for k = 1, . . . ,K

I will refer to the agent’s construction of her unobserved, high-quality signals σ̂kit as her inferred
signals. A natural restriction on F is to make inferred signals a weighted average of directly- and
socially-observed signals. In this case, fk can be written as

σ̂kit = θki︸︷︷︸
share of signal

directly-observed

σkit + (1− θkit)︸ ︷︷ ︸
share of signal

socially-observed

σkJt.

This restriction reframes the choice of fk as the choice of σkJt.
11 Posing the inferred signals as

weighted averages also gives an interpretation to θkit as the agent’s subjective judgment about the
credibility of her modeling assumptions and/or a measure of the quality of her data.

3.2 Some Solutions to the Agent’s Problem

When faced with problems like the agent’s problem, a popular set F is linear opinion pooling
(Ranjan and Gneiting, 2010). It turns out that using repeated linear opinion pooling to solve the
agent’s problem results in DeGroot updating if data are only observed in the first period, and signals
continue to be sent in later periods.

Proposition 1 (DeGroot) If data are only observed once at t = 1, the agent sets λki1 = σki1, θkit =
θki1 for all t > 1, and subsequent signals are interchangeable with beliefs (σkit = λkit and σkjt = λkjt
for j ≥ 2), then linear opinion pooling where the agent constructs her inferred signals for t ≥ 2 as

σ̂kit = θki σ
k
it + (1− θki )σkJt where (4)

σkJt =
∑

j∈J k

wk
j︸︷︷︸

share of social signal
from individual j

σkj with wk
j ≥ 0 ∀ j ∈ J k,

∑

j∈J k

wk
j = 1 (5)

is equivalent to DeGroot updating where λk
t+1 = Ωk

tλ
k
t and the entries of Ωk

t are

ωk
iit = βtθ

k
i + (1− βt)

ωk
ijt = βt(1− θki )wk

j .

11. Assuming that {Wit}∞t=1 and {ϕk
i }Kk=1 are exogenous, both {σk

it}∞t=1 and {θkit}K,∞
k=1,t=1 are given. Thus, in an abuse

of notation, I will refer to fk both as the function determining σ̂k
it and as the function determining σk

Jt.

7
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Proof As hypothesized, set λki1 = σki1. For t ≥ 2, the equality of beliefs and signals, together with
the updating equation in the agent’s problem (3) imply that

σkit+1 = βtσ̂
k
it + (1− βt)σkit

= βtθ
k
i σ

k
it + (1− βt)σkit + βt(1− θki )

∑

j∈J k

wk
j σ

k
jt.

Furthermore, when the data observed in t = 1 generate unbiased point-estimates of signals,
repeated linear opinion pooling/DeGroot updating solves the agent’s problem.

Proposition 2 (Unbiased Signals) Assume again, as we did in the case of private learning, that

(A2) Averaging Signals: βt = 1/t, so that βtσ̂kit + (1− βt)λkit = 1
t

∑t
n=1 σ̂

k
in

If the observed data yield unbiased signals

(A3) Private signals are iid with E[σk∗it ] ≡ µk∗i = µki ≡ E[σki ], and

(A4a) Social signals are iid for each j ∈ J k with E[σk∗it ] ≡ µk∗i = µkj ≡ E[σkjt] ∀j ∈ J k,

then repeated linear opinion pooling/DeGroot updating following Equations 4 and 5 solves the
agent’s problem.

Proof Proposition 6 in Golub and Sadler (2016) states that as long as Ωk is strongly connected and
primitive, then

lim
t→∞

σkit+1 =
J+1∑

n=1

πknσ
k
n1

where πkn is n’s left-hand eigenvector centrality in Ωk. Since
∑J+1

n=1 π
k
n = 1 and E[σkn1] = µk∗i for

all n, we know that

E[µk∗i − lim
t→∞

λkit+1] = E[µk∗i −
J+1∑

n=1

πnσ
k
n1] = µk∗i − µk∗i = 0.

We can imagine scenarios in which the agent observes data and signals in each period, but this
additional information is potentially biased. In this case, the agent can still solve her problem if she
has a model capable of accurately interpreting the social signals she receives.

Proposition 3 (Biased Social Signals) Now suppose that the agent receives biased signals in the
sense that E[σkjt] 6= µk∗it , but that the agent has successfully engaged in statistical learning in the
following sense:

(A4b) The agent has a model of social learning gk that interprets social signals as skjt = gk(Iit, IJt).
The skjt are iid for each j ∈ J k with E[σk∗it ] ≡ µk∗i = E[skjt] ∀ j ∈ J k.

8
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Then linear opinion pooling where the agent constructs unobserved high-quality signals with her
model as

σ̂kit = θkitσ
k
it + (1− θkit)σkJt where (6)

σkJt =
∑

j∈J k

wk
jts

k
jt with wk

jt ≥ 0 ∀ j ∈ J k,
∑

j∈J k

wk
jt = 1 (7)

skjt = gk(Iit, IJt) (8)

solves the agent’s problem.

Proof By A2 we know that limt→∞ λkit+1 = limt→∞ 1
t

∑t
n=1 σ̂

k
in. If the signals are iid, then

since the sum of iid random variables is itself an iid random variable, by the law of large numbers
we know that limt→∞ λkit+1 = E[σ̂kit]. After repeatedly applying the linearity of the expectations
operator, A3 and A4a imply that

lim
t→∞

λkit+1 = E[σ̂kit] = E[θ
k
i σ

k
it + (1− θki )σkJt] = θ

k
i E[σkit] + (1− θki )E[σkJt]

= θ
k
i E[σkit] + (1− θki )E[

∑

j∈J k

wk
jtσ

k
jt] = θ

k
i E[σkit] + (1− θki )

∑

j∈J k

wk
jtE[σkjt]

= θ
k
i µ

k
it + (1− θki )

∑

j∈J k

wk
jtµ

k
jt (9)

= µk∗i .

4. Conclusion

This paper presented a positive theory of belief formation. I proposed one way that an agent might
choose a single subjective probability from a set of possible probabilities. When the agent faces
ambiguity because her directly-observed data only allow her to partially identify a signal about the
truth of a proposition, she might seek to learn from individuals in her social network. Assuming
that communication is imperfect, so that individuals can only communicate a point estimate of their
signals and beliefs, the agent must determine how to combine the signals she observes. I showed
that when signals are unbiased, linear opinion pooling of signals generates DeGroot updating, and
is able to replicate classical inference with high-quality data yielding point-identified signals.
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Abstract
Kurt Weichselberger, one of the influential senior members of the imprecise probability community,
passed away on February 7, 2016. Almost throughout his entire academic life the major focus of
his research interest has been on the foundations of probability and statistics. The present article is
a first attempt to trace back chronologically the development of Weichselberger’s work on interval
probability and his symmetric theory of logical probability based on it. We also try to work out the
intellectual background of his different projects together with some close links between them.
Keywords: Weichselberger, Kurt; interval probability; imprecise probabilities; logical probability;
symmetric theory; history of probability and statistics.

1. Introduction

Kurt Weichselberger, who passed away last year, has been “a man of the first hour” of the ISIPTA
meetings, perceiving them as the natural place to discuss the foundations of probability. He en-
thusiastically participated in the first six ISIPTAs, from the 1999 Ghent symposium to the Durham
meeting in 2009, contributing several papers, a tutorial in 2005 and a special session in 2009. At
least from the mid sixties of the last century onwards, the foundations of statistics and probability
have always been Weichselberger’s great passion – although he had worked on a variety of different
topics1, and had been intensively engaged in academic self-administration and societies.

This paper is a first attempt to trace back fundamental aspects of Weichselberger’s ideas as
well as their links constituting his challenging research program. Our work is embedded into the
HiStaLMU project (History of Statistics at LMU Munich). Among other activities, its members
interview former leading personalities of the Department of Statistics as oral history and build up
an archive around Kurt Weichselberger’s office estate.2 The structure of presentation in this paper
is chosen mainly chronologically. After a brief biographic sketch (Section 2), we look at Weichsel-
berger’s foundational work and distinguish four main periods: the first intensive research on logical
probability (see Section 3), the work on probability intervals in the context of modelling uncertain
expert knowledge (Section 4), the axiomatic foundation of an interpretation independent theory of
interval probability (Section 5), and eventually the aim to synthesize the previous results towards
the symmetric theory of logical probability (Section 6). Section 7 concludes.

1. The work on applied statistics includes among others research on survey and census methodology (e.g. Weichsel-
berger (1962)), regional price indices (Weichselberger and Wulsten, 1978), quality control (Weichselberger, 1971),
and time series (Weichselberger, 1994).

2. See also the workshop in March 2016 (https://statsoz-neu.userweb.mwn.de/research/ws_
historystatistik_2016/index.html).
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2. A Short Biographic Sketch

In this section we quickly summarize the main stages of Weichselberger’s career.3 Kurt Weichsel-
berger was born on April 13, 1929, in Vienna. He studied mathematics there, and earned his PhD
(Dr. phil.) in 1953 for a thesis supervised by Johann Radon (Weichselberger, 1953). Weichselberger
started his academic career at the Department of Statistics in Vienna at Wilhelm Winkler’s chair,
worked at a social research institute in Dortmund, as well as at Johann Pfanzagl’s chair in Cologne,
where he received his Habilitation in 1962 with a thesis on controlling census results (Weichsel-
berger, 1962). From 1963 to 1969 Weichselberger held the chair in statistics at the Technische
Universität Berlin. In 1967 he was elected rector of this university and substantially contributed to
the then vivid public debate about the role of education and scientists in the modern society.

Figure 1: Kurt Weichselberger (photo kindly provided by Weichselberger’s family)

From 1969 on, for almost 50 years, Weichselberger has been a member of the Ludwig-Maxi-
milians-Universität München (LMU Munich). During this time he has played a leading role in the
sustainable development of statistics as a discipline of its own – far beyond LMU. In particular,
he co-founded the Department of Statistics and Philosophy of Science at LMU (see the end of the
next section), and substantially contributed, also as Chairman of the Education Committee of the
German Statistical Society for more than 10 years, to establishing first study programs for a major in
statistics in Germany. From 1997 on, Weichselberger continued his research activities as a professor
emeritus. On February 7, 2016, he passed away in his house in Grafing among close family.

3. Logical Probability I

Already at his inaugural speech (Weichselberger, 1968) as rector in Berlin, Weichselberger set out
for his great scientific mission and passion: the development of a new theory of statistical inference,
putting Fisher’s fiducial argument back on its feet and substantially extending it. This theory has
to be founded on what Weichselberger called logical probability: a non-subjective probability in
its literal sense,4 evaluating, as a two-place function, the reasoning from premises to conclusions
and, the other way round,5 finally allowing to describe the degree of support data give to statistical
models. In the last section of his inaugural speech he explicates:

3. For more details see in particular Rüger (1995) and Rüger’s obituary (Rüger, 2016). Many students and academic
companions until the mid nineties are assembled in the Festschrift edited by Rinne, Rüger, and Strecker (1995).

4. Note the etymological basis of the word probability: prove-ability, as well as the constituents of the corresponding
German word Wahr–schein–lich–keit, i.e. the extent to which something seems to be true.

5. That is the reason, why Weichselberger called his theory symmetric theory of probability.
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[... W]e are challenged with the task to reconceptualise the foundations of prob-
ability. The question is whether we can make progress towards a broader concept
designation without losing key benefits of the previous – objectivistic – concept. For
that matter we have to decide which properties of the objectivistic probability concept
we consider to be essential.

[...The] two essential properties of Kolmogorov’s probability concept that conse-
quently may not be waived [are the following]:

1. The embedding into modern mathematics.
This needs to remain ensured by determining the mathematical properties of the
concept with a consistent system of axioms.

2. The possibility of the frequency interpretation of probabilities because this pre-
sents to date the only known mindset that enables an explanation of the concept
and thus guarantees that the ideas of different persons on the meaning of prob-
ability can be adapted. Taking these issues into account we are challenged with
the task as follows:

We have to develop a system of axioms that

1. includes Kolmogorov’s system of axioms as a special case;

2. associates probabilities not with events but with inferences from premises to con-
clusions;

3. enables the frequency interpretation of the probability concept;

4. enables probability propositions in both directions in cases in which the Fisher
theory and the Neyman-Pearson theory yield the same results; for example in the
case of a sample from a population, it associates a probability with the inference
from the population to the sample as well as with the inference from the sample
to the population. (Weichselberger, 1968, p. 46-47) [translation by TA & RS]

Weichselberger is already very clear about the fact that such a theory has to go beyond the
restrictions precise probabilities imply, and therefore continues:

As in many cases in the history of science it is shown also here that — as a form
of compensation for desired benefits — we have to abandon a “habit of thinking”
(Denkgewohnheit). In the present case this is the habit of thinking that the proba-
bility is always a number. We must instead allow sets of numbers – say the interval
between 0.2 and 0.3 – to act as the probability of the inference from the proposition B
to the proposition A. However, we continue to demand that the set of numbers lies in
the interval between 0 and 1.

This extension of the probability concept from a number to a set of numbers is
encouraged as soon as we try to formalize Fisher’s fiducial probability. Therefore a
similar approach has already taken the American Henry Kyburg Jr. in his works in the
years 1961 to 1964. However, Kyburg’s concept is inconsistent at a decisive point, and,
to his own statements, it does not lead to useful results in detail. His view is mainly of
philosophical and not of mathematical nature.

In fact, the definition of probability as a set of numbers – normally an individ-
ual number or an interval – leads to mathematical problems. We need a system of
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calculation rules for algebraic operations with such sets. This prompts us to similar
considerations as the systematization of calculations with inexact or error-prone quan-
tities: one could call it a “theory of tolerance space“ (Spielraum-Theorie) because we
associate tolerance spaces instead of individual numbers. I think that it is possible that
this view may give rise to interesting inner mathematical questions. (Weichselberger,
1968, p. 47) [translation by TA & RS]

During this period Weichselberger had accepted an offer from LMU Munich on a newly in-
stalled chair for Special Topics in Statistics (Spezialgebiete der Statistik). In Munich he was strongly
engaged in changing the institutional alignment of statistics within the university. In 1974, the In-
stitute for Statistics and Philosophy of Science was founded, as a member of the new Faculty of
Philosophy, Philosophy of Science and Statistics. Weichselberger has stayed in intensive intellec-
tual contact with his colleagues from philosophy all the time. Clearly, there have been common
scientific interests in particular with Wolfgang Stegmüller, who held the Chair in Philosophy of
Science and did research among other topics also on subjective probability and Carnap’s concept of
logical probability.6 In the first Munich years Weichselberger worked intensively on a book on log-
ical probability. According to his former assistant Christina Schneider (personal communication), a
manuscript of several hundred pages evolved, but, unfortunately, never got published.7

4. Probability Intervals, Uncertainty in Knowledge-Based Systems

In the mid eighties Weichselberger’s research experienced a shift, which gave his interests in impre-
cise probabilities new impetus, where he had been in-depth engaged in the vivid discussion about
modelling uncertain expert knowledge in artificial intelligence. He has understood it as a question
of life and death for statistics as a discipline whether statistics can contribute here. Weichselberger
agreed with many other researchers mainly from computer science that the problem how to model
uncertain knowledge produces a big challenge, where statistics, in its traditional form, reaches its
limits. However, he also warned not to throw out the baby with the bath water and end up in a wild
arbitrariness of conclusions, by leaving the field to ad hoc calculi. Weichselberger stood for a very
clear position: there will be an important contribution of statistics and probability in this area, if,
but also radically only if, the concept of probability is ready to overcome the dogma of precision.

Therefore, the book A Methodology for Uncertainty in Knowledge-Based Systems (Weichsel-
berger and Pöhlmann, 1990), published by Weichselberger together with his post-doctoral researcher
Sigrid Pöhlmann, aims at reconciling probability theory with the objectives of flexible modern un-
certainty calculi. In their preface they argue:

First of all it must be stated that although the basic ideas prevailing in some con-
siderations about diagnostic systems sound convincing, they violate fundamental re-
quirements for reasonable handling of uncertainty. [. . . We] shall demonstrate that
negligence with respect to [... some basic principles] may result in the inclusion of
information into a diagnostic system which is equivalent to ruining it. (Weichselberger
and Pöhlmann, 1990, pp. 1-2)

6. To which extent a concrete co-operation in research has taken place between Weichselberger and Stegmüller is still
an open question, which shall be studied further within the HiStaLMU project.

7. Tragically, that manuscript is not part of Weichselberger’s office estate. Up to now it is unclear whether this
manuscript still exists.
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Indeed, after fundamentally critisising the Dempster-Shafer combination rule and the MYCIN
certainty factors, Weichselberger and Pöhlmann develop, in the context of a prototypical special
case8, a neat probabilistic alternative to handle different sources of information in diagnostic sys-
tems. It has consistently to be based on a generalisation of probability, synthesising the well-founded
concept of probability with the flexibility needed for modelling uncertain knowledge:

[...An] argument against a possible application of probability theory [, understood
in its traditional, precise form here,] in diagnostic systems is as follows: While prob-
ability theory affords statements, using real numbers as measures of uncertainty, the
informative background of diagnostic systems is often not strong enough to justify state-
ments of this type. [. . . ] However, it is possible to expand the framework of probability
theory in order to meet these requirements without violating its fundamental assump-
tions. [. . . W]e believe that the weakness of estimates for measures of uncertainty as
used in diagnostic systems represents a stimulus to enrich probability theory and the
methodological apparatus derived from it, rather than an excuse for avoiding its theo-
retical claims. (Weichselberger and Pöhlmann, 1990, p. 2)

Technically, Weichselberger & Pöhlmann do not yet use interval probability in its full generality,
but confine themselves to the case which they call probability intervals (PRI).9 There an interval-
valued probability is assigned to the singletons only, and natural extension is applied to calculate the
probabilities of the other events. Moreover, speaking often of “interval estimates of probabilities”
(italics by TA & RS), Weichselberger & Pöhlmann implicitly rely exclusively on the sensitivity
analysis (epistemic) point of view of imprecise probabilities. The book was published one year
before Peter Walley’s book (Walley, 1991) on general imprecise probability appeared. In Weichsel-
berger and Pöhlmann’s book the notions of R- and F-probability (“R” for reasonable, corresponding
to avoiding sure loss to use Walley’s terminology, and “F” for feasible, corresponding to coherent)
were developed for the first time. Having been perceived well, mainly in the artificial intelligence
community, the book was also criticized strongly as “a little too unfinished” and too example-based
in a review in the Journal of the American Statistical Association (Wasserman, 1991). Conve-
nient expressions to work with PRIs were extended in Weichselberger (2001a, Chapter 3.3 and
Appendix A.5). The construction of least favourable pairs for testing hypotheses described by PRIs
is considered in Martin Gümbel’s dissertation (Gümbel, 2009), supervised by Weichselberger.

5. Interval Probability: Elementare Grundbegriffe . . .

5.1 The Book and the ISIPTA ’99 Paper Including its IJAR Extension

Immediately after having finished the book with Pöhlmann, Weichselberger started to develop the
theory of interval probability as a “one-place assignment”, i.e. assigning probability to events, in
its generality.10 No later than 1992, a first version of a book was ready, which already contained
the core of the theory. The material grew and grew in its dimensions, and Weichselberger de-
cided to split the book project into three volumes. Finally, in 2001 the first volume, Elementare

8. The general case was later solved in Pöhlmann’s Habilitation thesis (Pöhlmann, 1995).
9. See de Campos, Huete, and Moral (1994) for an independent development of almost the same framework.

10. Weichselberger, however, always has been stressing the importance of the “two-place concept” (logical probability
with premises and conclusions as functional arguments, see Section 3 ) as the ideal, calling it still “[...] without
doubt the most challenging [...]” concept (Weichselberger, 2001a, p. 33) [translation by TA & RS]. Unless mentioned
differently, the term ‘probability’ is used throughout this section in its one-place meaning as probability of events.
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Grundbegriffe einer allgemeineren Wahrscheinlichkeitsrechnung I: Intervallwahrscheinlichkeit als
umfassendes Konzept (Elementary Fundamentals of a More General Calculus of Probability I: Inter-
val Probability as a Comprehensive Concept) (Weichselberger, 2001a), appeared.11 Soon this book
became Weichselberger’s most influential publication, together with the paper The theory of inter-
val probability as a unifying concept for uncertainty (Weichselberger, 2000), which arose from his
ISIPTA ’99 contribution and serves as an English language reference summarizing some of the main
concepts. The title of the book, an immediate allusion to Kolmogorov’s Grundbegriffe . . . (Kol-
mogorov, 1933), founding traditional probability theory, formulated the research program. Weich-
selberger develops thoroughly the theory of interval probability by generalizing the Kolmogorovian
concept to interval-valued assignments. The book consists of four main chapters:12

The first chapter elaborates the background of the theory. It starts with embedding the theory
into the historical development of the concept of probability, including other generalizations of prob-
ability. Then motives for the paradigmatic shift from traditional probability to interval probability
and major objectives of the theory are discussed in-depth.

The second chapter contains the axioms of R- and F-probability. Weichselberger characterises
interval-valued assignments P (·) = [L(·), U(·)] on a σ-field A by their relation to the set M of
classical probabilities (in the sense of Kolomogorov) p(·) they induce. If this set is not empty, then
P (·) is an R-probability, andM is its structure. An R-probability is F-probability if P (·) and the
structure uniquely correspond to each other by

L(A) = inf
p(·)∈M

p(A) and U(A) = sup
p(·)∈M

p(A) , ∀A ∈ A .

In the light of Walley’s lower envelope theorems, R-probability and F-probability technically cor-
respond, in essence, to lower and upper probabilities avoiding sure loss and being coherent, re-
spectively (Walley, 1991, Chapters 2 and 3), where, however, Weichselberger, in the spirit of Kol-
mogorov, demands σ-additivity. In conformity with Walley, Weichselberger stresses that there is no
need to require additional restrictive properties (like two- or total monotonicity of the lower bound),
but in contrast to him, Weichselberger focuses on interval-valued assignments of events, instead of
random variables/gambles. For Weichselberger, probability of events is the constitutive entity (of a
one-place probability assignment13); he sees expectations/previsions as derived entities, explicitly
needing an underlying metrical scale. The most important difference for Weichselberger to Walley
is that his axiomatisation ( is, just as the Kolmogorovian approach in traditional probability theory,
strictly independent of any interpretation of probability. By this, he emphasises, it provides a sound
mathematical basis for expressing all different interpretations of (one-place) generalized probabil-
ities, from subjective to frequentist, which eventually is the key to overcome the methodological
antagonisms in statistical inference. Chapter 2.6 reflects on decision criteria based on probabilis-
tic evaluations of events. There Weichselberger also argues that behaviour following Hurwicz-like

11. The book title has the rare addendum “unter Mitarbeit von (with the cooperation of) T. Augustin und (and) A.
Wallner”, which tributes to the special way the book was written: Augustin entered the project in 1993, Wallner in
1995, both as young PhD students and assistants. They were rather intensively engaged with the book, but rarely
as co-authors (Wallner, and to an even smaller extent Augustin, contributed some shorter, clearly marked parts of
the book only, listed in Weichselberger (2001a, p. x)), but as critical discussions partners. Weichselberger extended
and developed further the theory step by step, and in several meetings per week these steps were immediately and
intensively discussed.

12. See also the review by Coolen (2003).
13. See also Footnote 10.
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criteria (e.g. Huntley, Hable, and Troffaes (2014, p. 193)) challenges the betting interpretation of
imprecise probabilities, which he judges to rely solely on a Γ-maximin point of view.14

Chapter 3 generalizes the setting to situations where the limits of an interval probability firstly
are only specified on certain subsets of the σ-fieldA, and then natural extension is applied (partially
determinate probability). This gives rise to a list of interesting special cases, including PRIs (see
Section 4) and a kind of general p-boxes (cumulative R-/F-probability15). Supplementing natural
extension, which already appears in Weichselberger and Pöhlmann (1990) (derived F-PRI), Weich-
selberger also proposes a cautious standpoint to proceed from a given R-probability [L(·), U(·)] that
is not F-probability to a uniquely defined F-probability [L∗(·), U∗(·)], now such that the original
limits L(·) and U(·) are always respected, in the sense that L∗(·) ≤ L(·) and U∗(·) ≥ U(·).

Specific issues of interval probabilities on finite spaces are in the focus of Chapter 4, see also
Weichselberger (1996). In Chapter 4.1 algorithms are developed to check whether assignments
constitute R- and F-probability, as well as to calculate the natural extension and its counterpart from
the cautious standpoint. Interestingly, linear programming is here not only utilized powerfully for
calculations, but also, by duality results, as a mathematical tool for elegant proofs.

5.2 Preceding First Contributions to General Interval Probability; Strongly Related Work
and Co-operations

Figure 2: Participants of the Foundations of Statistics Workshop organized by Frank Hampel in
1994: From left to right: Walley, Goldstein, Smets, Coolen, Weichselberger, Morgentha-
ler, Hampel, Augustin (photo kindly provided by Frank Coolen)

In this section we collect some of Weichselberger’s activities when working on his book. His
axioms and further core elements of his theory were presented at several workshops, including a
workshop in June 1993 honouring Peter J. Huber (Weichselberger, 1996), the Second Gauss Sym-
posium in August 1993 (Weichselberger, 1995a), and a workshop on the foundations of statistics
in September 1994 in Zurich organized by Frank Hampel. By that workshop and an associated re-
search retreat to the mountains nearby, Hampel connected researchers interested in the foundations
of statistics (see also Figure 2), who only partially knew each other personally. The particpants’ ex-

14. See also Coolen (2003, p. 254).
15. Compare also Destercke, Dubois, and Chojnacki (2008) for a related concept.
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cited discussions had had a sustainable impact on their further research. Particularly close remained
over all the years the relationship of Weichselberger (and Augustin) with Frank Coolen.

In 1995 also a paper on the implications of the rich framework of interval probability on sam-
pling appeared (Weichselberger (1995b), see also Weichselberger (2001a, Chapter 4.3)), which in
our eyes by far did not receive the attention it actually deserves. Only with interval probability it
becomes possible to express the distinction between different types of symmetry, called epistemic
versus physical symmetry by Weichselberger. Epistemic symmetry relies merely on the lack of
knowledge of asymmetry, while for physical symmetry knowledge is available actively supporting
symmetry. Only the latter in its purest form justifies the use of precise, traditional probabilities.
By these concepts, Weichselberger develops nothing less than a generalization of the principle of
insufficient reason, replacing precise uniform probability by a continuum of uniform probabilities,
adequately expressing the knowledge on the system under consideration.

Decision theoretic implications of imprecise probabilities are discussed in 1998 in a contribution
(Weichselberger and Augustin, 1998) to a Festschrift honouring Weichselberger’s Munich long-
standing colleague Hans Schneeweiß, working out how interval probability provides an immediate
description of the preferences observed in Ellsberg’s seminal experiments (Ellsberg, 1961), violating
the axioms of traditional subjective utility theory.

As a preparation for the third volume, which was originally devoted to statistical implications of
interval probability, the Huber-Strassen theory on robust testing of hypotheses described by neigh-
bourhood models had been intensively discussed by the members of Weichselberger’s chair and
Helmut Rieder, who spent in 1994 one semester at LMU. Augustin, who originally had started a dis-
sertation about the historical roots of imprecise probability, took over the topic and developed under
Weichselberger’s supervision a Neyman-Pearson theory under general interval probability, where
the hypotheses are described by F-probability instead of two-monotone capacities. In his thesis
(Augustin, 1998) it is shown that Weichselberger’s condition of continuity of F-fields (Weichsel-
berger, 2001a, p. 152f.) is both necessary and sufficient for the structure to be uniformly dominated.
Furthermore, Augustin derives results on different types of least favourable pairs (published in a
generalized form for the first ISIPTA and in Augustin (2002a), based on it) and a representation of
the optimal test by a single linear program (published later in a decision theoretic context in Au-
gustin (2002b, 2004)), including a Neyman-Person lemma form obtained from duality arguments.

5.3 Further Planned Volumes, Work on Interval Probability After the Book

When the book appeared, a second volume was already in a rather advanced stage. Originally it
was devoted to a closer study of types of assignments that lead to two- or totally-monotone ca-
pacities (probability intervals, cumulative probabilities, belief-functions), concepts of conditional
probabilities and independence, parametric statistical models and a law of large numbers.16

In Weichselberger’s ISIPTA ’01 contribution (Weichselberger, 2001b), indicator fields are stud-
ied, i.e. interval probabilities that can be understood as basic building blocks for more complex
models. In 2002, Lev Utkin visited the Weichselberger chair for almost two years, and a very close
relationship with Weichselberger (and Augustin) was established that has endured over all the years.
At ISIPTA ’03 (cf. Weichselberger and Augustin (2003)), Weichselberger presented his research on
conditional probability. He strongly argued in favour of the idea that there cannot be a single con-
cept of conditional probability; several, conceptually different concepts are needed which happen to

16. Some concepts are already briefly sketched in Weichselberger (2000).
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coincide in the case of a precise probability. In particular, he elaborates his – rather controversially
perceived – canonical concept of conditional interval probability, derived from a canon of desirable
properties, like a commutative combination of marginals and conditional probabilities.17

In autumn of that year, Weichselberger abruptly stopped his research on one-place probability
and radically turned all his interest to the foundation of logical probability again.

Anton Wallner, who worked together very closely with Weichselberger at that time (see also
Footnote 11), first continued his research on the one-place interval probability and prepared a dis-
sertation under Weichselberger’s supervision (Wallner, 2002). There he develops a series of charac-
terisations of interval probabilities in general as well as of uniform interval probabilities, and studies
neighbourhood models based on distorted probabilities. Furthermore he presents a rather involved
proof that also under general interval probability the structure of an R-probability on a space with
cardinality k has, interpreted as a polyhedron in Rk−1, at most k! vertices. Related articles, pre-
sented at ISIPTA ’03 and ’05, are Wallner (2003) and Wallner (2007).

6. Logical Probability II

All the development of one-place interval probability described in the previous two sections, as
interesting it may be on its own, has been understood by Weichselberger mainly as a preparation
for his concept of logical probability, and thus for his general inference theory. Therefore, from
2003 on Weichselberger had devoted all his energy to this topic. Supported by Wallner, Weichsel-
berger started to (re)build a neat framework for logical probabilities, now finding a neat basis in the
theory of interval probability, pushing the vision of a closed theory of inference closer to reality.
In one of his last public presentations, a special session on the symmetric theory at ISIPTA ’09
(Weichselberger, 2009, p. 9), he characterises his major objective in simplified terms as follows:

A comprehensive methodology of probabilistic modelling and statistical reasoning,
which makes possible hierarchical modelling with information gained from empirical
data.
To achieve the goals of Bayesian approach — but without the pre-requisite of an as-
sumed prior probability. (Weichselberger, 2009, p. 3)

Many of the constituents already mentioned in his inaugural speech as rector in Berlin (Weichsel-
berger, 1968), see also Section 3 above, are revisited in the light of the new foundation. The fun-
damental idea of logical probability as a two-place function on the reasoning from a premise to the
conclusion is formalized in a system of axioms (Weichselberger (2009, p. 8), see Weichselberger
(2016, Chapter 4) for more details), while the inference is developed in the context of a duality
theory (Weichselberger (2009, p. 8), for the detailed arguments see Weichselberger (2016, Chap-
ter 6)). Also the idea of a frequency interpretation of logical probability could be made rigorous (see
Weichselberger (2009, p. 9) and Weichselberger (2016, Chapter 5)); special aspects have been pub-
lished in advance at the previous ISIPTAs in Pittsburgh and Prague (Weichselberger, 2005, 2007).

7. Concluding Remarks

We presented a preliminary summary of Kurt Weichselberger’s contribution to the theory of im-
precise probability. As already emphasized, this paper is a report on current research within the

17. Some aspects are already discussed in Weichselberger (2000, Section 3).
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HiStaLMU project, an interdisciplinary project involving statisticians and historians of science to
chronicle the history of statistics at LMU Munich. Concerning the research on Weichselberger’s
scientific biography, the next practical step is to build up the necessary infrastructure by establish-
ing an archive of his office estate, and we hope that we can integrate further material from his family
and friends. We also started to prepare a bibliometric network analysis on the spread and influence
of Weichselberger’s ideas. Far beyond the historical interest, a detailed rework of Weichselberger’s
unfinished opus and his scattered results will enable a deeper scientific discussion of his scientific
inheritance. His results and ideas provide a big challenge, still promising a substantial impact on –
nay a paradigmatic shift of – probability and statistics.
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B. Rüger. Nachruf auf Kurt Weichselberger, 2016. see: https://statsoz-neu.userweb.mwn.de/
research/MemoryKurtWeichselberger/Weichselberger.pdf.

P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman & Hall, London, 1991.
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Abstract
In the gambling foundation of probability theory, rationality requires that a subject should always

(never) find desirable all nonnegative (negative) gambles, because no matter the result of the exper-
iment the subject never (always) decreases her money. Evaluating the nonnegativity of a gamble in
infinite spaces is a difficult task. In fact, even if we restrict the gambles to be polynomials in Rn, the
problem of determining nonnegativity is NP-hard. The aim of this paper is to develop a computable
theory of desirable gambles. Instead of requiring the subject to accept all nonnegative gambles, we
only require her to accept gambles for which she can efficiently determine the nonnegativity (in
particular SOS polynomials). We call this new criterion bounded rationality.

1. Introduction

The subjective foundation of probability by de Finetti (1937) is based on the notion of rationality
(coherence or equiv. self-consistency). A subject is considered rational if she chooses her odds so
that there is no bet that leads her to a sure loss (no Dutch books are possible). In this way, since odds
are the inverse of probabilities, de Finetti provided a justification of Kolmogorov’s axiomatisation
of probability as a rationality criterion on a gambling system.1

Later Williams (1975) and Walley (1991) shown that it is possible to justify probability in a
simpler and more elegant way. This approach is nowadays known as the theory of desirable gam-
bles. To understand this gambling framework, we introduce a subject, Alice, and an experiment
whose result ω belongs to a possibility space Ω (e.g., the experiment may be tossing a coin or de-
termining the future value of a derivative instrument). When Alice is uncertain about the result ω
of the experiment, we can model her beliefs about this value by asking her whether she accepts to
engage in certain risky transactions, called gambles, whose outcome depends on the actual outcome
of the experiment ω. Mathematically, a gamble is a bounded real-valued function on Ω, g : Ω→ R,
and if Alice accepts a gamble g, this means that she commits herself to receive g(ω) utiles2 if the
experiment is performed and if the outcome of the experiment eventually happens to be the event
ω ∈ Ω. Since g(ω) can be negative, Alice can also lose utiles and hence the desirability of a gamble
depends on Alice’s beliefs about Ω. Denote by L the set of all the gambles on Ω. Alice examines
gambles in L and comes up with the subset K of the gambles that she finds desirable. How can we
characterise the rationality of the assessments represented by K?

1. De Finetti actually considered only finitely additive probabilities, while σ-additivity is assumed in Kolmogorov’s
axiomatisation.

2. A theoretical unit of measure of utility, for indicating a supposed quantity of satisfaction derived from an economic
transaction. It is expressed in some linear utility scale.
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Two obvious rationality criteria are: Alice should always accept (reject) gambles such that g ≥ 0
(supg < 0), because no matter the result of the experiment she never (always) decreases her utiles.
There is a world of difference between saying and doing. For instance, let us consider an infinite
space of possibilities like Ω = R2 and the gamble: g(x1, x2) = 4x4

1 + 4x3
1x2 − 3x2

1x2
2 + 5x4

2. Should
Alice accept this gamble? In practice the answer to this question does not only depend on Alice’s
beliefs about the value of x1 and x2. We can in fact verify that the above polynomial can be rewritten
as (2x2

1 − 2x2
2 + x1x2)2 + (x2

2 + 2x1x2)2 and, thus, is always nonnegative. Hence, rationality implies
that Alice should always accept it. However, in these cases, we must also take into account the in-
herent difficulty of the problem faced by Alice when she wants to determine whether a given gamble
is nonnegative or not. In other words, we need to quantify the amount of computational resources
needed to address rationality.
The aim of this paper is to develop a computable theory of desirable gambles by relaxing the two
rationality criteria discussed above. In particular, instead of requiring Alice to accept all nonnega-
tive gambles, we only require Alice to accept gambles for which she can efficiently determine the
nonnegativity. We call this new criterion bounded rationality. The term bounded rationality was
proposed by Herbert A. Simon – it is the idea that when individuals make decisions, their rationality
is limited by the tractability of the decision problem, the cognitive limitations of their minds, and
the time available to make the decision. Decision-makers in this view act as “satisficers”, seeking a
satisfactory solution rather than an optimal one. We do not propose our model as a realistic psycho-
logical model of Alice’s behaviour, but we embrace the idea that the actual rationality of an agent is
determined by its computational intelligence.

In this paper, we exploit the results on SOS polynomials and theory-of-moments relaxation
to make numerical inferences in our theory of bounded rationality and to show that the theory of
bounded rationality can be used to approximate the theory of desirable gambles. At the same time,
we provide a gambling interpretation of SOS optimization. Some preliminary applications of the
theoretical ideas presented in this paper can be found in Lasserre (2009); Benavoli and Piga (2016);
Piga and Benavoli (2018). It is worth mentioning that a relaxation of the rationality criteria for
desirability has also been investigated in Schervish et al. (2000); Pelessoni and Vicig (2016). In the
first case, the work focuses on relaxations of the “avoiding sure loss” axiom, while in the second on
two different criteria (additivity and positive scaling).

2. Theory of desirable gambles

In this section, we briefly introduce the theory of desirable gambles. Let us denote by L+ = {g ∈ L :
g ≥ 0} the subset of the nonnegative gambles and with K ⊂ L the subset of the gambles that Alice
finds desirable. How can we characterise the rationality of the assessments in K?

Definition 1 We say that K is a coherent set of (almost) desirable gambles (ADG) when it satisfies
the following rationality criteria:

A.1 If inf g > 0 then g ∈ K (Accepting Sure Gains);
A.2 If g ∈ K then supg ≥ 0 (Avoiding Sure Loss);
A.3 If g ∈ K then λg ∈ K for every λ > 0 (Positive Scaling);
A.4 If g,h ∈ K then g + h ∈ K (Additivity);
A.5 If g +δ ∈ K for every δ > 0 then g ∈ K (Closure).
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Note that A.1 and A.5 imply that L+ ⊆ K (including the zero gamble) (Walley, 1991; Miranda and
Zaffalon, 2010). The criterion A.5 does not actually follow from rationality and can be omitted
(Seidenfeld et al., 1990; Walley, 1991; Miranda and Zaffalon, 2010). However, it is useful to derive
a connection between the theory of desirable gambles and probability theory and for this reason we
consider it in this paper. This connection will be briefly discussed in Section 3.

To explain these rationality criteria, let us introduce a simple example: the toss of a fair coin
Ω = {Head,Tail}. A gamble g in this case has two components g(Head) = g1 and g(Tail) = g2. If
Alice accepts g then she commits herself to receive/pay g1 if the outcome is Heads and g2 if Tails.
Since a gamble is in this case an element of R2, g = (g1,g2), we can plot the gambles Alice accepts
in a 2D coordinate system with coordinate g1 and g2.

A.1 says that Alice is obviously willing to accept any gamble g = (g1,g2) with gi > 0 – Alice al-
ways accepts the first quadrant, Figure 1(a). Similarly. Alice does not accept any gamble g = (g1,g2)
with gi < 0. In other words, Alice always rejects the interior of the third quadrant, Figure 1(b). This
is the meaning of A.2. Then we ask Alice about g = (−0.1,1) – she loses 0.1 if Heads and wins 1
if Tails. Since Alice knows that the coin is fair, she accepts this gamble as well as all the gambles
of the form νg with ν > 0, because this is just a “change of currency” (this is A.3). Similarly, she
accepts all the gambles g + h for any h ∈ L+, since these gambles are even more favourable for her
(this is basically A.4). Now, we can ask Alice about g = (1,−0.1) and the argument is symmetric
to the above case. We therefore obtain the following set of desirable gambles (see Figure 1(c)):
K2 = {g ∈ R2 | 10g1 + g2 ≥ 0 and g1 + 10g2 ≥ 0}. Finally, we can ask Alice about g = (−1,1) – she
loses 1 if Heads and wins 1 if Tails. Since the coin is fair, Alice may accept or not accept this
gamble. A.5 implies that she must accept it (closure). A similar conclusion can be derived for the
symmetric gamble g = (1,−1). Figure 1(d) is her final set of desirable gambles about the experiment
concerned with the toss of a fair coin, which in a formula becomesK3 = {g ∈ R2 | g1 +g2 ≥ 0}. Alice
does not accept any other gamble. In fact, if Alice would also accept for instance h = (−2,0.5)
then, since she has also accepted g = (1.5,−1), i.e., g ∈ K3, she must also accept g + h (because this
gamble might also be favourable to her). However, g + h = (−0.5,−0.5) is always negative, Alice
always loses utiles in this case. In other words, by accepting h = (−2,0.5) Alice incurs a sure loss –
she is irrational (A.2 is violated).

In this example, we can see that Alice’s set of desirable gambles is a closed half-space, but
this does not have to be the case. For instance, if Alice does not know anything about the coin,
she should only accept nonnegative gambles: K = L+. This corresponds to a state of complete
ignorance, but all intermediate cases from complete belief on the probability of the coin to complete
ignorance are possible. In general, K is a pointed (whose vertex is the origin) closed convex cone
that includes L+ and exclude the interior of the negative orthant (this follows by A.1–A.5).

For the coin, the space of possibilities is finite and in this case Alice can check if a gamble g is
nonnegative by simply examining the elements of the vector g. In this paper, we are interested in
infinite spaces, in particular Ω = Rn, where applying the above rationality criteria is far from easy.
We aim to develop a theory of bounded rationality for this case. Before doing that, we briefly recall
the connection between ADG and probability theory.

3. Duality for ADG

Duality can be defined for general space of possibilitiesΩ (Walley, 1991). However, for the purpose
of the present paper, we consider gambles that are bounded real-valued function on Rn, i.e., g :
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Figure 1: Alices’ sets of coherent almost desirable gambles for the experiment of tossing a fair coin.

Rn → R. Let A be an algebra of subsets of Rn and µ :A→ [−∞,∞] denotes a charge: that is µ a
finitely additive set function ofA (Aliprantis and Border, 2007, Ch.11). LetAR denote the algebra
generated in R by the collection of all half open intervals (Aliprantis and Border, 2007, Th.11.8):

Theorem 2 Every bounded (A,AR)-measurable function is integrable w.r.t. any finite charge.

For any g ∈ L and charge µ we can define
∫

gdµ, that we can interpret as a linear functional 〈·,µ〉 on
L. We denote the set of all finite charges onA asM and the set of nonegative charges asM+. We
can then define the dual of the coherent set of desirable gambles K as:{
µ ∈M :

∫
gdµ ≥ 0, ∀g ∈ K

}
, and it can be proven that the above set is equivalent to

K• =

{
µ ∈M+ :

∫
gdµ ≥ 0, ∀g ∈ K

}
. (1)

This follow by observing that: (i) g = I{x} (with Ix being the indicator function on x ∈ Rn), is a
nonnegative gamble and, therefore, is always in K ; (ii) if µ is negative for some value of x ∈ Rn,
i.e., x = x̃, then

∫
Ix̃dµ is negative too and, thus, µ cannot be in K•. Hence, we can only focus on

µ ∈ M+. If we also impose the further requirement to 〈·,µ〉 to preserve constant gambles, in the
sense that

∫
cdµ = c, we obtain

P =

{
µ ∈M+ :

∫
gdµ ≥ 0,

∫
dµ = 1, ∀g ∈ K

}
. (2)

We have imposed that
∫

dµ = 1, i.e., µ is a probability charge. Hence, it can be observed that the
dual of an ADG K is a convex set of probability charges. The other direction of this result can be
obtained by applying Hahn-Banach Theorem.

4. Finite assessments

The goal of this and next sections is to define a practical notion of desirability. To this end, we first
assume that the set of gambles that Alice finds to be desirable is finitely generated. By this, we
mean that there is a finite set of gambles G = {g1, . . . ,g|G|} such that K = posi(G∪L+), where the
posi of a set A ⊂ L is defined as posi(A) :=

{∑|G|
j=1λ jg j : g j ∈ A,λ j ≥ 0

}
, and where by |G| we denote

the cardinality of G. By using this definition, it is clear that whenever K is finitely generated, it
includes all nonnegative gambles and satisfies A.3, A.4 and A.5. Once Alice has defined G and so
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K via posi, ADG assumes that she is able to perform the following operations: to check that K
avoids sure loss (A.2 is also satisfied); to determine the implication of desirability. It is easy to show
that all above operations in ADG imply the assessment of the nonnegativity of a gamble.

Proposition 3 Given a finite set G ⊂ L of desirable gambles, the set posi(G ∪L+) includes the
gamble f if and only if there exist λ j ≥ 0 for j = 1, . . . , |G| such that

f −
|G|∑

j=1

λ jg j ≥ 0. (3)

There are two subcases of (3) that are particularly interesting. The first is when f = h−λ0 for some
λ0 ∈ R that allows us to define the concept of lower prevision Walley (1991); Miranda (2008).

Definition 4 Assume thatK = posi(G∪L+) is an ADG, then the solution of the following problem

sup
λ0∈R,λ j≥0

λ0, s.t. h−λ0−
|G|∑
j=1
λ jg j ≥ 0, (4)

is called the lower prevision of h and denoted as P[h].

From a behavioural point of view, we can reinterpret this by saying that Alice is willing to buy
gamble h at price λ0, since she is giving away λ0 utiles while gaining h. The lower prevision is the
supremum buying price for h. We can equivalently define the upper prevision of h as P[h] =−P[−h].
From Section 3, it can be easily shown that P[h] is the lower expectation of h computed w.r.t. the
probability charges in P. As a matter of fact, the dual of (4) is the moment problem: inf

µ∈P
∫

hdµ. The

second subcase allows us to formulate sure loss as nonnegativity of a gamble (Walley et al., Alg.2).
Let us consider K = posi(G∪L+) and the following problem:

sup
0≤λ0≤1, λ j≥0

λ0, s.t. −λ0−
|G|∑
j=1
λ jg j ≥ 0. (5)

K incurs a sure loss iff the above problem has solution λ∗0 = 1 and avoids sure loss iff λ∗0 = 0.

4.1 Complexity of inferences

When Ω is finite (e.g., coin toss), then a gamble g can also be seen as a vector in R|Ω|, where (|Ω| = 2
for the coin). Then (3) can be expressed as a linear programming problem, thus its complexity is
polynomial: Alice can check her coherence in polynomial time. In case Ω = Rn, f : Rn→ R, solving
(3) means to check the existence of real parameters λ j ≥ 0 ( j = 1, . . . , |G|) such that the function

F := f −
|G|∑

j=1

λ jg j (6)

is non-negative in Rn. In order to study the problem from a computational viewpoint, and avoid
undecidability results, it is clear that we must impose further restrictions on the class of functions
F. At the same time we would like to keep the problem general enough, in order not to lose
expressiveness of the model. A good compromise can be achieved by considering the case of
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multivariate polynomials. The decidability of F ≥ 0 for multivariate polynomials can be proven by
means of the Tarski–Seidenberg quantifier elimination theory Tarski (1951); Seidenberg (1954).

Let d ∈N. By R2d[x1] we denote the set of all polynomials up to degree 2d in the indeterminate
variable x1 ∈R with real-valued coefficients. With the usual definitions of addition and scalar multi-
plication, R2d[x1] becomes a vector space over the field R of real numbers. We can introduce a basis
for R2d[x1] that we denote as v2d(x1) where v j(x1) = [1, x1, x2

1, . . . , x
j
1]>. We denote the dimension of

v j(x1) as s1( j) for j = 0,1,2, . . . , e.g., s1(2d) = 2d+1. Any polynomial in R2d[x1] can then be written
as p(x1) = b> v2d(x1) being b ∈ Rs1(2d) the vector of coefficients. We may also be interested in some
subsets of R2d[x1] that are: (1) the subset of nonnegative polynomials that we will be denoted as
R+

2d[x1]; (2) the subset of polynomials

Σ2d[x1] =

{
p(x1) ∈ R2d[x1]

∣∣∣∣ p(x1) = v>d (x1)Qvd(x1) with Q ∈ Rs1(d)×s1(d)
s , Q ≥ 0

}
, (7)

where Rs1(d)×s1(d)
s is the space of s1(d)× s1(d) real-symmetric matrices. The polynomial Σ2d[x1]

are also called SOS polynomials, because any polynomial in R2d[x1] that is a sum of squares of
polynomials belongs to Σ2d[x1] and viceversa (Lasserre, 2009, Prop.2.1).

We can extend the previous framework to multivariate polynomials R2d[x1, . . . , xn], by noticing
that any polynomial in R2d[x1, . . . , xn] can be written as p(x1, . . . , xn) = b> v2d(x1, . . . , xn) with

v2d(x1, . . . , xn) = [1, x1, . . . , xn, x2
1, x1x2, . . . , xn−1xn, x2

n, . . . , x
2d
1 , . . . , x

2d
n ]>, (8)

b ∈ Rsn(2d) with sn( j) =
(
n+ j

j

)
for j = 0,1,2, . . . . Similarly to the univariate case we can define the

nonnegative polynomials R+
2d[x1, . . . , xn] and the SOS polynomials Σ2d[x1, . . . , xn]. In the multivari-

ate case, it is in general not true that every nonnegative polynomial is SOS or, in other words, in
general Σ2d[x1, . . . , xn] ⊂ R+

2d[x1, . . . , xn]. For instance g(x1, x2) = x2
1x2

2(x2
1 + x2

2 −1) + 1 is a nonnega-
tive polynomial that does not have a SOS representation (Lasserre, 2009, Sec.2.4). Hilbert (1888)
showed the following.

Proposition 5 R+
2d[x1, . . . , xn] = Σ2d[x1, . . . , xn] holds iff either n = 1 or d = 1 or (n,d) = (2,2).

The problem of testing global nonnegativity of a polynomial function is in general NP-hard. If
Alice wants to avoid the complexity associated with this problem, an alternative option is to consider
a subset of polynomials for which a nonnegativity test is not NP-hard. The problem of testing if
a given polynomial is SOS has polynomial complexity (we only need to check if the matrix of
coefficients Q in (7) is positive-semidefinite).

5. Bounded rationality

In the bounded rationality theory we are going to represent we will work with Ω = Rn and make two
important assumptions. We assume that L is the set of multivariate polynomials of n variables and
of degree less than or equal to 2d, with d ∈N. We denoteL asL2d and the nonnegative polynomials
as L+

2d. Note that L2d is a vector space and A.1–A.5 are well-defined in L2d. This restriction is
useful to define the computational complexity of our bounded rationality theory as a function of n
and d. We now define our bounded rationality criteria, and point out the two assumptions.

Definition 6 We say that C ⊂ L2d is a bounded-rationality coherent set of almost desirable gam-
bles (BADG) when it satisfies A.2–A.5 and:
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bA.1 If g ∈ Σ2d then g ∈ C (bounded accepting sure gain);

where Σ2d ⊂ L+
2d is the set of SOS of degree less than or equal to 2d.

We have seen that A.1 and A.5 imply that a coherent set of gambles must include all nonnegative
gambles (and, therefore, L+

2d that is the set of all nonnegative polynomials). Here, we restrict A.1
imposing bounded-rationality that implies that the set must only include SOS polynomials up to
degree 2d. In BADG theory, we ask Alice only to accept SOS polynomials, i.e., gambles for which
she can efficiently determine the nonnegativity. Note that in Walley’s terminology (Walley, 1991,
Sec. 3.7.8,Appendix F) the set C is coherent relative to the vector subspace of quadratic forms
v2d(x1, . . . , xn)T Qv2d(x1, . . . , xn) defined by the symmetric real matrices Q (SOS are the nonnegative
gambles in this subspace, i.e., Q ≥ 0).

In the multivariate case, we have seen that there are nonnegative polynomials that do not have
a SOS representation. These polynomials should be in principle desirable for Alice in the ADG
framework, but in BADG we do not enforce Alice to accept them. For this reason, BADG is a
theory of bounded rationality. Note that Alice may not be able to prove that her set of desirable
gambles satisfies A.2. In fact, as it has been shown in (5) this requires to check the nonnegativity of
a gamble. Note however that, the requirement A.2 is weaker than A.1. In fact, while A.1 requires
Alice to accept all nonnegative gambles, A.2 only requires Alice to carefully choose the gambles in
G so that a sure loss is not possible. We will return on A.2 later in the section.

A BADG set C that satisfies A.2 but not A.1 can (theoretically) be turned to an ADG in L2d

by considering its extension posi(C∪L+
2d) and also to an ADG in L by considering its extension

posi(C∪L+) (note in fact that it holds Σ2d ⊆ L+
2d ⊂ L+). This is important because, as it will be

shown in the next sections, it will allow us to use BADG as a computable approximation of ADG.
In BADG theory, Proposition 3 is reformulated as follows.

Theorem 7 Given a finite set G ⊂ L2d of desirable gambles, the set posi(G ∪ Σ2d) includes the
gamble f if and only if there exist λ j ≥ 0 for j = 1, . . . , |G| such that

f −
|G|∑

j=1

λ jg j ∈ Σ2d. (9)

Also in this case we can consider the gamble f = h−λ0 for some λ0 ∈ R and define the concept
of lower prevision.

Definition 8 Let G ⊂ L2d be a finite set, and let C = posi(G∪Σ2d). Assume that C is BADG, then
the solution of the following problem

sup
λ0∈R,λ j≥0

λ0, s.t. h−λ0−
|G|∑
j=1
λ jg j ∈ Σ2d, (10)

is called the lower prevision of h and denoted as P∗[h].

We can similarly use (10) to prove that C = posi(G∪Σ2d) incurs a sure loss by solving the problem

sup
0≤λ0≤1, λ j≥0

λ0, s.t. −λ0−
|G|∑
j=1
λ jg j ∈ Σ2d. (11)
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We have that if λ∗0 = 1 then C incurs a sure loss. A similar reasoning holds for any 0 ≤ λ∗0 < 1
since, as it will be shown in Section 5.2, λ∗0 is always smaller or equal than the solution obtained in
(5). This means that we cannot use (11) to prove that C avoids a sure loss. An alternative way to
guarantee that C = posi(G∪L2d) avoids sure loss, is to relax (5) as

λ∗∗0 = sup
0≤λ0≤1, λ j≥0

λ0, s.t. −λ0−
|G|∑
j=1
λ jg j(xk) ≥ 0, k = 1, . . . ,M, (12)

thus by enforcing that the constraint −λ0 −∑|G|
j=1λ jg j ≥ 0 only holds in M (randomly generated)

points xk ∈ Rn. Indeed, if λ∗∗0 < 1, then the solution of problem (5) cannot be 1, thus C avoids sure
loss. We will discuss this case with an example in Section 7.

5.1 Duality for BADG

We can also define the dual of a BADG. In this case, the gambles g are polynomials and the non-
negative gambles that Alice accepts are SOS. Polynomials on Rn are not bounded functions and,
therefore, we cannot use Theorem 2.3 However, the rationality criteria A.1–A.5 do not explicitly
need boundedness, but boundedness is essential to show the duality between ADG and closed con-
vex set of probability charges, as shown in Section 3. However, since we are dealing with a vector
space, we can consider its dual space L•2d, defined as the set of all linear maps L : L2d → R (linear
functionals). The dual of C ⊂ L2d is defined as

C• =
{
L ∈ L•2d : L(g) ≥ 0, ∀g ∈ C

}
. (13)

Since L2d has a basis, i.e., the monomials, if we introduce the scalars

yα1α2...αn := L(xα1
1 xα2

2 , . . . , x
αn
n ) ∈ R, (14)

and we further assume that y0 = L(1) = 1 (the linear functionals preserve constants), then we
can rewrite L(g) for any polynomial g as a function of the vector of variables y ∈ Rsn(2d), whose
components are the real variables yα1α2...αn defined above. This means that L•2d is isomorphic to
Rsn(2d). We can then rewrite the dual in a simpler form. Before doing that we define the ma-
trix Mn,d(y) := L(vd(x1, . . . , xn)vd(x1, . . . , xn)>), where the linear operator is applied component-wise.
For instance, in the case n = 1 and d = 2, we have that

M1,2(y) = L(v2(x1)v2(x1)>) = L




1 x1 x2

1
x1 x2

1 x3
1

x2
1 x3

1 x4
1



 =


y0 y1 y2
y1 y2 y3
y2 y3 y4

 .

We have then the following result (see for instance (Lasserre, 2009)).

Theorem 9 Let C be a BADG. Then its dual is

C• =
{
y ∈ Rsn(2d) : L(g) ≥ 0, Mn,d(y) ≥ 0, ∀g ∈ C

}
. (15)

where L(g) is completely determined by y via the definition (14).

3. For an extension of the theory of desirable gambles to unbounded gambles see Troffaes and De Cooman (2003)
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Proof We have seen that any SOS in Σ2d can be written as vd(x1, . . . , xn)>Qvd(x1, . . . , xn) (see eq.
(7)). By exploiting matrix algebra we have vd(x1, . . . , xn)>Qvd(x1, . . . , xn) is equal to
Tr(Qvd(x1, . . . , xn)vd(x1, . . . , xn)>) with Q ≥ 0. Now observe that because of linearity of L and trace

L(Tr(Qvd(x1, . . . , xn)vd(x1, . . . , xn)>)) = Tr(QL(vd(x1, . . . , xn)vd(x1, . . . , xn)>)) = Tr(QMn,d(y))

where Mn,d(y) = L(vd(x1, . . . , xn)vd(x1, . . . , xn)>. From L(g) ≥ 0 in (13) for any g ∈ Σ2d we have
Tr(QMn,d(y)) ≥ 0. This means that Tr(QMn,d(y)) ≥ 0 ∀Q ≥ 0. This implies that Mn,d(y) ≥ 0 (it can
be proven by using the eigenvalue-eigenvector decomposition of Mn,d(y)).

The other direction follows by Hahn-Banach Theorem. Note that when C = Σ2d, its dual is

C• =
{
y ∈ Rsn(2d) : Mn,d(y) ≥ 0

}
, (16)

which corresponds to a state of ignorance: Alice only accepts nonnegative gambles.
In Section 3, by considering the space of all bounded gambles, we have showed that the dual of

an ADG is a closed convex set of probability charges. In (15) there is no reference to probability.
However, if the integral

∫
xα1

1 xα2
2 , . . . , x

αn
n dµ is well-defined, we can interpret yα1α2...αn as the expec-

tation of xα1
1 xα2

2 , . . . , x
αn
n w.r.t. the charge µ. Note that, y0 = L(1) = 1 implies that

∫
1dµ = 1 under this

interpretation (normalization). Therefore, we can interpret Mn,d(y) as a truncated moment matrix.
However, since C does not include all nonnegative gambles, we cannot conclude that the charges
are non-negative or, in other words, that µ is a probability charge. The constraint Mn,d(y) ≥ 0 is
not strong enough to guarantee non-negativity of µ (it is only a necessary condition). Negative
probabilities are a manifestation of incoherence, that is they are a manifestation of the assumption
of bounded rationality. Finally, the dual of the lower prevision problem (10) is then given by the
convex SDP problem: inf

y∈Rsn(2d)
L(h), s.t. L(g) ≥ 0, L(1) = 1, Mn,d(y) ≥ 0.

Example 1 Consider the case n = 1,d = 1. The matrix M1,2(y) is in this case

M1,2(y) = L
([

1 x1
x1 x2

1

])
=

[
1 y1
y1 y2

]
.

Assume that G = {g1,g2} = {x1 − 0.5,−x1 + 0.5} and so L(g1) = L(x1 − 0.5) = y1 − 0.5 and L(g2) =

L(−x1 + 0.5) = −y1 + 0.5. Hence, we have that

C• =
{
[y1,y2]> ∈ R2 : y1−0.5 ≥ 0, − y1 + 0.5 ≥ 0, M1,2([y1,y2]>) ≥ 0

}
. (17)

The first two constraints imply that y1 = 0.5 and so we are left with the only constraint
det(M1,2([y1,y2]>)) = y2 − 0.25 ≥ 0. Assume that we aim at computing P∗[−x1(1− x1)]. The solu-
tion of (10) is P∗[−x1(1− x1)] = −0.25 and it is attained for instance by the charge 0.352δ0.367 +

0.786δ0.521−0.138δ0.281 (that is not a probability), here δa denoted an atomic charge (Dirac’s delta)
centred on a.

5.2 BADG as an approximating theory for ADG

We are going to show that we can use BADG as a computable approximating theory for ADG. So
let us consider the BADG set C = posi(G∪Σ2d) and the corresponding ADG set K = posi(G∪L+)
(same G). We have the following result.
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Theorem 10 Assume thatK avoids sure loss and let f ∈ L2d, then BADG is a conservative approx-
imation of ADG theory in the sense that P∗( f ) ≤ P( f ).

Proof Let λ∗0 be the supremum value of λ0 such that h−λ0−∑|G|
j λ jg j ∈ Σ2d and λ∗∗0 the value such

that h− λ0 −∑|G|
j λ jg j ≥ 0. Since the constraint h− λ0 −∑|G|

j λ jg j ∈ Σ2d is more demanding than

h−λ0−∑|G|
j λ jg j ≥ 0, it follows that λ∗0 ≤ λ∗∗0 .

The fact that P[ f ] is equal to the minimum of f when G is empty, i.e., Alice is in a state of
full ignorance, explains why SOS polynomials are used in optimization, i.e., P∗[ f ] provides a lower
bound for the minimum of f (Lasserre, 2009).

6. Updating

We assume that Alice considers an event “indicated” by a certain finite set of polynomial constraints
A = {h1(x) ≥ 0, . . . ,h|A|(x) ≥ 0}: that means that Alice knows that x belongs to the set A = {x ∈ Rn :
h1(x) ≥ 0, . . . ,h|A|(x) ≥ 0}. In ADG we will use this information to update (conditioning) her set of
desirable gambles based on A (Walley, 1991; Couso and Moral, 2011) : K|A = {g ∈ L : gIA ∈ K},
where IA is the indicator function on A. How do we do that in the BADG framework? In BADG we
cannot completely use this information because Σ2d does not include indicator functions. However,
we can still exploit the information in A in a weaker way. In fact, if we know that hi(x) ≥ 0 in A,
then we also know that σ1(x)h1(x)+ · · ·+σ|A|(x)h|A|(x) ≥ 0 ∀x ∈ A and for every σi ∈ Σ2d with degree
equal to d−dnhi/2e, where nhi is the degree of hi(x) (so that the degree is less than 2d).

Definition 11 Let G be a finite subset of L2d, and C = posi(G∪Σ2d) be a set of BADG. Assume A
is a finite set of polynomial constraints. Then, the set C|A that includes all the gambles f ∈ L2d such
that there exist λi ≥ 0, with i = 1, . . . , |G|, and σ0,σ1, . . .σ|A|,σ|A|+1 ∈ Σ2d:

f −
|G|∑

i=1

λigi = σ0 +

|A|∑

i=1

σihi and −
|G|∑

i=1

λigi = σ|A|+1 (18)

is called the updated set of desirable gambles based on A.

In the state of full ignorance, since G is empty, there is only one constraint f = σ0 +
∑|A|

i=1σihi.

Theorem 12 Let G be a finite subset ofL2d, and A be a finite set of polynomial constraints. Assume
that K = posi(G∪L+) avoids sure loss and let f ∈ L2d. Then we have that PC|A( f ) ≤ PK|A( f ) where
C = posi(G∪Σ2d).

Proof From the definition of conditioning for ADG we aim to find the supremum λ0 such that
( f − λ0)IA −∑|G|

j=1λ jg j(x) ≥ 0 ∀x ∈ Rn. It can be rewritten as the two constraints on the left and
relaxed to the constraints on the right:

−∑|G|
j=1λ jg j(x) ≥ 0 ∀x < A, −∑|G|

j=1λ jg j(x) = σ|A|+1 ∀x ∈ Rn,

f −λ0−∑|G|
j=1λ jg j(x) ≥ 0 ∀x ∈ A, f −λ0−∑|G|

j=1λ jg j(x) = σ0 +
∑|A|

i=1σihi ∀x ∈ Rn.
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Corollary 13 The dual of C|A is

C•|A =
{
y ∈ Rsn(d) : L(g) ≥ 0, Mn,d(y) ≥ 0, Mn,d−dnh/2e(hy) ≥ 0 ∀g ∈ C|A

}

where Mn,d−dnh/2e(hy) = L(h(x)vd−dnh/2e(x)vd−dnh/2e(x)>) is called localizing matrix (Lasserre, 2009).

7. Numerical example

Consider the case n = 2,d = 3 and assume that Alice finds these gambles to be desirables

G = {g1, . . . ,g7} = {−x4
1x2

2− x2
1x4

2 + x2
1x2

2−1, x1,1− x1, x2,1− x2,10− x2
1,10− x2

2}

Alice first checks if her set of desirable gambles satisfies A.2 by solving (11). The solution is
λ∗0 = 0.0062 and, therefore, since λ∗0 ≈ 0 Alice may think that G does not incur in sure loss. To
numerically verify this statement, she can increase the degree d. For d = 4, Alice gets λ∗0 = 0.0774
that is greater than previous solution and for d = 5 λ∗0 = 1. Therefore, this shows that G actually
incurs a sure loss. In this case, since argmaxi>0λ

∗
i = 1, the polynomial that contributes more to the

sure loss is g1.
Alice can verify if g1 is negative by computing the BADG lower prevision of −g1 for an empty

G (this gives the minimum of −g1 in ADG). The solution of (10) is P∗[−g1] = −5.056 for d = 3.
For d = 4 we obtain P∗[−g1] = 0.596, for d ≥ 7 P∗[−g1] = 0.963. Therefore, g1 is strictly negative.
It can be verified that 0.963 is the minimum of −g1 and, therefore, P∗[−g1] = P[−g1]. So we have
generated a family of BADG approximations (relaxations of coherence) that converge to ADG. Why
can BADG obtain a lower “lower prevision” than ADG? In ADG P[−g1] is attained by an atomic
charge on the values of x1, x2 corresponding to the minimum of −g1. Conversely, in BADG, since
we allow mixtures of atomic charges with possibly negative weights, then we have more freedom in
the minimization.

Alice can then remove g1 from G and check if the following set satisfies A.2:
G\g1 = {g2, . . . ,g7} = {x1,1− x1, x2,1− x2,10− x2

1,10− x2
2}. To prove that, Alice can solve the linear

programming problem (12) that gives the solution λ∗0 ≈ 10−17 and shows that G avoids sure loss.
Let f = x4

1 + 4x3
1 + 5.375x2

1 + 2.75x1 + 0.41016 and assume Alice aims to solve (10), i.e., to
compute the BADG lower prevision of f . The result is P∗[ f ] = 0.41016 for d ≥ 3. Now let us
assume h(x1) = 0.0025− (x1 +0.425)2 and compute the conditional lower prevision. The solution is
P∗[ f |A] = −0.0625 that gives the conditional lower prevision for BADG. This is also the minimum
of f in h(x) > 0 and coincides with the conditional lower prevision for ADG P[ f |A].

8. Conclusions

In this paper we have presented a computable theory of desirable gambles by imposing bounded ra-
tionality. To achieve that we have exploited recent results from Sum-Of-Square (SOS) polynomials
optimization. As future work, we plan to further develop this theory by introducing other probabilis-
tic operations such as marginalisation and structural judgements such as epistemic independence.
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José Vicente-Pérez JOSE.VICENTE@UA.ES

Departamento de Fundamentos del Análisis Económico, Universidad de Alicante (Spain)

Abstract
Coherent sets of almost desirable gambles and credal sets are known to be equivalent models.
That is, there exists a bijection between the two collections of sets preserving the usual operations,
e.g. conditioning. Such a correspondence is based on the polarity theory for closed convex cones.
Learning from this simple observation, in this paper we introduce a new (lexicographic) polarity
theory for general convex cones and then we apply it in order to establish an analogous correspon-
dence between coherent sets of desirable gambles and convex sets of lexicographic probabilities.
Keywords: Desirability; Credal sets; Lexicographic probabilities; Separation theorem; Polarity.

1. Introduction

De Finetti (1937) established a foundation of probability theory based on the notion of “coherence”
(self-consistency). The idea was that a subject is considered rational if she chooses her odds so
that there is no bet that leads her to a sure loss (no Dutch books are possible). In this way, since
numerically odds are the inverse of probabilities, de Finetti’s approach provides a justification of
Kolmogorov’s axioms of probability as a rationality criterion on a gambling system.

Later, building on de Finetti’s betting setup, Williams (1975) and then Walley (1991) have shown
that it is possible to justify probability in a way that is even simpler, more general and elegant.
The basic idea is that an agent’s knowledge about the outcome of an experiment to be performed
(e.g. tossing a coin) is provided by her set of desirable gambles, that is the set of gambles she is
ready to accept. A gamble is modelled as a real-valued function g on the set Ω of outcomes of
the experiment. Hence by accepting a gamble g, an agent commits herself to receive g(ω) utiles
in case the experiment is performed and the outcome of the experiment eventually happens to be
the event ω ∈ Ω. Among all the sets of desirable gambles, we are able to find those satisfying
some properties, and called coherent sets of desirable gambles, as they represent rational choices.
Mathematically, those properties boil down to ask for a coherent set of desirable gambles to be a
convex cone without the origin that contains all positive gambles, and thus avoids the negative ones
(avoids partial loss). In spite of its simplicity, the theory of desirable gambles encompasses not
only the Bayesian theory of probability but also other important mathematical models like upper
and lower previsions or (credal) sets of probabilities.

An important variant of the traditional theory of probability is the probabilistic model of lex-
icographic probabilities (Blume et al., 1991), that is a sequence of standard probability measures.
Developed to deal with the problem of conditioning on events of measure 0, it shares several fea-
tures not only with models such as conditional probabilities or non-standard probabilities, but also
with the theory of desirable gambles (see, e.g., Seidenfeld et al., 1990; Seidenfeld, 2000; Coz-
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man, 2015; Van Camp et al., 2017). In particular Cozman (2015) notices that (conditional) sets
of desirable gambles expressed via preference relations can be represented by sets of (conditional)
lexicographic probabilities. This fact leads us to wonder whether, analogously to the case of sets
of almost desirable gambles and sets of probabilities, a stronger, more fundamental correspondence
exists between sets of desirable gambles and sets of lexicographic probabilities.

The goal of the present paper is to show that this is the case. That is, we verify that (conditional)
sets of lexicographic probabilities and (conditional) sets of desirable gambles are isomorphic struc-
tures. In doing so, we provide a duality transformation (via orthogonal matrices) that allows us
to go from a coherent set of desirable gambles to an equivalent set of lexicographic probabilities
and vice versa. This transformation is an important contribution to uncertainty modelling because
having access to dual models of uncertainty enables greater freedom of expression. In particular,
we believe that the possibility of transferring through duality constructions from one theory to the
other can be used to better understand issues related to lexicographic probabilities, such as defining
independence.

2. Preliminaries

We start by introducing the necessary notation and basic definitions to be used later. Assume that
the set of outcomes of an experiment is finite, say Ω = {ω1, . . . , ωn}, and that there is an unknown
true value in Ω. A gamble g on Ω is a mapping g : Ω → R, and so g(ω) represents the reward
the gambler would obtain if ω is the true unknown value. As the cardinality of Ω is n (a natural
number), every gamble g on Ω can be thought as a point in the Euclidean space Rn, and hence write
g = (g1, . . . , gn) with gi ∈ R for every i ∈ N := {1, . . . , n}. In line with the tradition within the
imprecise probability community, the set of all gambles defined on Ω is denoted by L(Ω), although
at times we simply write Rn.

The elements of Rn will be considered column vectors and the symbol > will mean trans-
pose. We denote by 0n (−1n, respectively) the vector whose components are all equal to 0 (−1,
respectively). The vectors e1, . . . , en stand for the canonical basis of Rn, that is, ei is the vector
of zeros with a one in the i-th position, for all i ∈ N . Given g, f ∈ Rn, the standard inner prod-
uct of g and f is 〈g, f〉 := g>f and the Euclidean norm of g is ‖g‖ :=

√
〈g, g〉. For any subset

C ⊂ Rn, we denote by posi(C) the set of all positive linear combinations of gambles in C, that is,
posi(C) := {∑m

j=1 λjg
j : gj ∈ C, λj > 0,m ∈ N}. We say that g is less than or equal to f (in

short, g ≤ f ) whenever gi ≤ fi for all i ∈ N , and we will write g < f whenever g ≤ f and g 6= f .
The set of non-negative gambles is Rn

+ := {g ∈ Rn : g ≥ 0n}. Furthermore, g is said to be lexico-
graphically less than f (in short, g <L f ) if g 6= f and gk < fk for k := min {i ∈ N : gi 6= fi}.
We also write g ≤L f if either g <L f or g = f .

The following properties for a subset K ⊂ Rn will be needed below.
A1. If g ∈ K and f ∈ K, then g + f ∈ K (addition).
A2. If g ∈ K and λ > 0, then λg ∈ K (positive homogeneity).
A3. If g > 0n, then g ∈ K (accepting partial gain).
A4. 0n /∈ K (avoiding status quo).
A5. If g < 0n, then g /∈ K (avoiding partial loss).
A6. −1n /∈ K (avoiding sure loss).
A7. If g + f ∈ K for all f > 0n, then g ∈ K (closure).
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A8. 0n ∈ K (accepting status quo).

Definition 1 A subset K ⊂ Rn is said to be a coherent set of

• desirable gambles if it satisfies properties A1, A2, A3, A4;

• almost desirable gambles if it satisfies properties A1, A2, A3, A6, A7.

Thus, it easily follows that a coherent set of desirable gambles also satisfies properties A5 and A6,
and a coherent set of almost desirable gambles also satisfies property A8. By definition, one has
that the elements of Dn, the family of all coherent sets of desirable gambles on Ω, are convex cones
in Rn omitting their apex (the origin), whereas the elements of An, the family of all coherent sets
of almost desirable gambles on Ω, are closed convex cones (containing the origin) in Rn. However,
not every convex cone omitting its apex (closed convex cone, respectively) belongs to Dn (An,
respectively).

A crucial tool for duality within the framework of Convex Analysis is the polarity operator.
Given a convex cone K ⊂ Rn, the (positive) polar of K is defined to be

K◦ := {v ∈ Rn : 〈v, g〉 ≥ 0 for all g ∈ K}.
Note that K◦ is a closed convex cone (containing the origin). Furthermore, one has K◦◦ = clK
(see Rockafellar, 1970), and for closed convex cones K1,K2 ⊂ Rn, one has K1 ⊂ K2 if and only
if K◦2 ⊂ K◦1 .

Let m ∈ N with m ≤ n. The symbol Mm,n denotes the space of real matrices with m rows
and n columns, whereas Om,n denotes the subset of matrices in Mm,n with orthonormal rows, that
is, those matrices A satisfying AA> = I (where I is the identity matrix of appropriate order). For
A ∈ Mm,n we denote by aij the element of A in row i and column j, the i-th row of A is denoted
by ai·, whereas its j-th column is denoted by a·j . Given A ∈Mn,n, we write A ≥L (>L) 0n (in the
sense of Martı́nez-Legaz, 1984) if each column of A satisfies a·j ≥L (>L) 0n for all j ∈ N .

A probability mass function over Ω is any vector belonging to the set

Pn :=

{
p ∈ Rn : 0 ≤ pi ≤ 1,

∑

i∈N
pi = 1

}
.

Any closed convex subset of Pn is called a credal set. We shall denote by Cn the family of all credal
sets within Pn. A lexicographic probability over Ω is a sequence {pj}mj=1 with pj ∈ Pn. We usually
identify lexicographic probabilities over Ω with stochastic matrices, that is,

Sm,n := {P ∈Mm,n : pi· ∈ Pn for all i = 1, . . . ,m} .
We shall denote by Tm,n the subset of Sm,n containing all the full-rank stochastic matrices.

3. Almost desirability and probability

Walley (1991) showed that there is a one-to-one correspondence between coherent sets of almost
desirable gambles and credal sets, say C : An → Cn. Moreover, it is often claimed that this
correspondence actually shows that the theory of almost desirable gambles and the theory of credal
sets are equivalent. In this section, we first recall the bijection C which is based on the polarity
theory for closed convex cones (Rockafellar, 1970). Second, by using the point of view of model
theory (see e.g. Hodges, 1997), we explain how one has to understand the claim that the theory of
almost desirable gambles and the theory of credal sets are equivalent. Finally, we prove the claim.
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3.1 Polarity for almost desirability

The underlying tool for getting the aforementioned bijection is the classical separation theorem for
closed convex sets: if K ⊂ Rn is a nonempty closed convex cone, then for every g /∈ K there exists
v ∈ Rn (non-null) such that 〈v, g〉 ≥ 0 > 〈v, g〉 for all g ∈ K. Thus, every closed convex cone
K ⊂ Rn can be written as K = {g ∈ Rn : 〈vt, g〉 ≥ 0, t ∈ T} for certain vt ∈ Rn and T an
arbitrary index set. In such a case, a well-known result in Convex Analysis (see Rockafellar, 1970)
states that K◦ coincides with the closure of the conic convex hull of the {vt, t ∈ T}. In particular,
if K = {g ∈ Rn : 〈v, g〉 ≥ 0} with v ∈ Rn, then K◦ = R+v = {λv : λ ≥ 0}. Concerning the
geometry of coherent sets of almost desirable gambles, any set K ∈ An is characterised as a closed
convex cone containing the set Rn

+ (or equivalently, containing all indicator gambles). Thus, as a
particular case, since any K ∈ An is a closed convex cone containing {e1, . . . , en}, the following
proposition holds.

Proposition 2 Let K ∈ An and g /∈ K. Then, there exists v ∈ Rn with v > 0n and ‖v‖ = 1 such
that 〈v, g〉 ≥ 0n > 〈v, g〉 for all g ∈ K.

Corollary 3 For every K ∈ An, there exist an index set T and vectors vt > 0n with ‖vt‖ = 1 for
all t ∈ T such that K = {g ∈ Rn : 〈vt, g〉 ≥ 0, t ∈ T}.

Recall that a set K ∈ An is said to be maximal if there is no other element K′ ∈ An such
that K ( K′. Thus, we have that the maximal elements in An are the closed halfspaces containing
the origin in the boundary and determined by vectors with non-negative components and norm 1.
Hence, if we denote by Max(An) the set of all maximal elements in An, given K ∈ An one has

K ∈ Max(An) ⇐⇒ ∃ v > 0n, ‖v‖ = 1 (unique) such that K = {g ∈ Rn : 〈v, g〉 ≥ 0}. (1)

This means that there is a one-to-one correspondence between maximal coherent sets of almost
desirables gambles and non-negative vectors with norm 1. Since a bijection between the set of
non-negative vectors with norm 1 and Pn exists, then there is a one-to-one correspondence between
maximal coherent sets of almost desirables gambles and probability mass functions over Ω. Fur-
thermore, as a consequence of Proposition 2, for any K ∈ An one can write

K =
⋂
{K′ ∈ Max(An) : K ⊂ K′}.

The above equality and the one in (1) imply a reformulation of Proposition 2: ifK ∈ An and g /∈ K,
then there exists K′ ∈ Max(An) such that K ⊂ K′ and g /∈ K′.

Next we define the function C : An → Cn which maps coherent sets of almost desirable
gambles into credal sets and it is the key for the equivalence of both theories. For a coherent set of
almost desirable gambles K ∈ An, we associate the credal set

C(K) := K◦ ∩ Pn. (2)

Observe that if K ∈ Max(An) is determined by v as in (1), then C(K) = (
∑

i∈N vi)
−1v.

Theorem 4 The mapping C : An → Cn defined in (2) is a bijection whose inverse is given by
C−1(P) := P◦ for every credal set P ∈ Cn.
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Proof First, it is easy to see that, for any K ∈ An, the set C(K) is a credal set. Since Rn
+ ⊂ K,

one has K◦ ⊂ (Rn
+)◦ = Rn

+. Moreover, K◦ does not reduce to 0n (this fact just happens whenever
K = Rn, which does not belong to An indeed) and so, K◦ contains non-null non-negative vectors,
and particularly, at least one vector with the sum of its components equal to 1 (up to normalisation).
Thus, the set K◦ ∩ Pn ⊂ Pn is nonempty. Moreover, since both K◦ and Pn are closed convex sets
and closedness and convexity are preserved under intersection, then C(K) ∈ Cn.

We have shown that the mapping C is well-defined, associating a credal set to each coherent
set of almost desirable gambles. Next, we verify that C is a bijection, that is, for any credal set
P ∈ Cn, there exists a unique K ∈ An such that C(K) = P .

Given a credal set P ∈ Cn, it follows that R+P is a closed convex cone contained in Rn
+. Thus,

by taking polars one has Rn
+ = (Rn

+)◦ ⊂ (R+P)◦ = P◦ and so, C−1(P) ∈ An as P◦ is a closed
convex cone containing Rn

+. Indeed, C−1(P) ∈ An is the unique coherent set of almost desirable
gambles satisfying C(C−1(P)) = P . Furthermore, for any K ∈ An one has C−1(C(K)) = K.

3.2 Theories as structures, and equivalence as isomorphism

The fact that C establishes a bijection between coherent sets of almost desirable gambles and credal
sets is clearly not enough for claiming that the two theories are equivalent. We also need to verify
that such a mapping preserves all considered operations (like conditioning and marginalisation) and
relations (like independence). In other words, we have to verify that it is an isomorphism, once
the two theories, from the point of view of model theory, are formulated as structures on the same
signature. To illustrate this point, let us assume that we are only interested in conditioning. From
a model-theoretic point of view, this means that we are considering a signature consisting of only
a unary functional symbol. The next steps are thence the following: (i) we have to state how the
considered operation is defined over coherent sets of almost desirable gambles and over credal sets
(in model-theoretic terms, we have to specify how the elements of the signature – in this case its
unique element – must be interpreted in both cases), and then (ii) we have to show that the map C
preserves the considered operation (in model-theoretic terms, we have to verify that the map is a
homomorphism).

Here below we thence recall the definition of this operation within the theory of almost desirable
gambles as given in De Cooman and Quaeghebeur (2012), a slightly different but completely equiv-
alent version as the one in Walley (1991). To this aim, given a subset Π ( Ω of cardinality m < n,
we shall denote by Πc the set of outcomes which are not in Π, that is, Πc := Ω\Π. For a gamble
g ∈ Rm we define the gamble (gdΠc) ∈ Rn as (gdΠc)(ω) := g(ω) if ω ∈ Π and (gdΠc)(ω) := 0 if
ω ∈ Πc.

Definition 5 Let K ⊂ Rn. The conditioned set of K with respect to Π is the set

(KcΠ) := {g ∈ Rm : (gdΠc) ∈ K}.

Notice that conditioning does not necessarily preserve coherent sets of almost desirable gambles
(see Miranda and Zaffalon (2010, Section 4) for a thorough discussion on this point). As an example,
consider the sets Ω = {1, 2}, Π = {2} and K = {g ∈ R2 : g1 ≥ 0}. Whereas K ∈ A2, it holds that
(KcΠ) = R /∈ A1.
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For a probability mass function p over Ω, let p(·|Π) denote the usual conditioning of p with
respect to Π ⊂ Ω. Hence, if P ⊂ Pn is a credal set over Ω, the conditioning of P on Π is the projec-
tion on Π of all p(·|Π) ∈ Pn, with p ∈ P; that is (PcΠ) := {p ∈ Pm : ∃ q ∈ P such that (pdΠc) =
q(·|Π)}. Notice that this definition is completely equivalent as the usual definition of conditioning
for credal sets as given in Couso and Moral (2011).

We can thence formulate the missing property for the mapping C to be called an isomorphism,
and thus to be claimed to show the equivalence between the two theories (when the considered
operation is conditioning only).

Theorem 6 Let K ∈ An and Π ⊂ Ω. The following statements hold:

(i) (KcΠ) ∈ Am if and only if (C(K)cΠ) ∈ Cm.

(ii) If (KcΠ) ∈ Am, then C(KcΠ) = (C(K)cΠ).

Proof It is enough to prove both claims for K ∈ Max(An). Let {p} = C(K) ∈ Cn. With iΠ we
should denote the indicator gamble on Π. Since 〈p, iΠf〉 = 〈iΠp, f〉 and Theorem 4, the following
holds:

(KcΠ) = {g ∈ Rm : 〈iΠp, f〉 ≥ 0, for f ∈ Rn such that iΠf = gdΠc}. (3)

Hence, for both points we conclude by applying Theorem 4 to Equation 3.

4. Desirability and lexicographic probabilities

As discussed by Cozman (2015), coherent sets of desirable gambles and lexicographic probabilities
seem to share several properties. We wonder whether these two models are somehow equivalent,
that is, if there is a one-to-one correspondence G : Dn → Gn between coherent sets of desirable
gambles and certain sets (to be defined later) of lexicographical probabilities, similar to the one
existing for credal sets and coherent sets of almost desirable gambles described in Section 3.

4.1 Polarity for desirability

As done in Section 3, the following (lexicographic) separation theorem for convex sets will be now
the key result for getting the aforementioned equivalence.

Theorem 7 (Martı́nez-Legaz (1983)) Let G ⊂ Rn be a nonempty convex set and g /∈ G. Then,
there exists A ∈Mn,n and b ∈ Rn such that Ag >L b ≥L Ag for all g ∈ G.

The matrix A in the above theorem can be assumed to be full-rank, or even orthonormal. Con-
sequently, every convex set G ⊂ Rn can be written as G = {g ∈ Rn : Atg >L bt, t ∈ T} for
certain At ∈ Mn,n, bt ∈ Rn and T an arbitrary index set. In particular, if K ⊂ Rn is a convex cone
omitting its apex, one can take b = 0n in Theorem 7 and write K = {g ∈ Rn : Atg >L 0n, t ∈ T}
for certain At ∈Mn,n (even in On,n) and T an arbitrary index set.

At this point, we recall that in Rn there exist maximal convex cones excluding their vertices
which are called semispaces (at the origin) (see Hammer, 1955). Thus, a convex set K ⊂ Rn is
a semispace if and only if 0n /∈ K and for all g ∈ Rn\{0n}, exactly one of g and −g belongs to
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K. Furthermore, according to Singer (1984, Lemma 1.1), K ⊂ Rn is a semispace if and only if
there exists A ∈ On,n (unique, as follows from Martı́nez-Legaz and Singer (1988, p. 139)) such
that K = {g ∈ Rn : Ag >L 0n}. Thus, every convex cone omitting its apex can be written as an
intersection of semispaces.

Concerning the geometry of coherent sets of desirable gambles, any setK ∈ Dn is characterised
as a convex cone omitting its apex and containing the set Q := Rn

+\{0n}. Thus, as a consequence
of the above statement, since any K ∈ Dn is a convex cone containing {e1, . . . , en}, the following
proposition follows.

Proposition 8 Let K ∈ Dn and g /∈ K. Then, there exists A ∈ On,n with A >L 0n such that
Ag >L 0n ≥L Ag for all g ∈ K.

Corollary 9 For every K ∈ Dn, there exist an index set T and matrices At ∈ On,n with At >L 0n
for all t ∈ T such that K = {g ∈ Rn : Atg >L 0n, t ∈ T}.

Next we characterise the matrices which are lexicographically greater than 0n. We understand that
a matrix is unitary if it has ones in the main diagonal.

Lemma 10 Given A ∈Mn,n, the following statements are equivalent:

(i) A >L 0n.

(ii) Ag >L 0n for all g > 0n.

(iii) A = LP for some unitary lower-triangular matrix L and some P ∈Mn,n such that p·j > 0n
for all j ∈ N .

Proof (i)⇔ (ii). If Ag >L 0n for all g > 0n, then in particular we have a·j = Aej >L 0n for all
j ∈ N since ej > 0n, and that is the definition of A >L 0n. Conversely, assume that A >L 0n and
so, Aej >L 0n for all j ∈ N . Since any g = (g1, . . . , gn) > 0n can be written as g =

∑
i∈N gie

i

with gi ≥ 0 for all i ∈ N and there is at least one index j such that gj is strictly positive, then
Ag =

∑
i∈N giAe

i >L 0n.
(i) ⇔ (iii). Observe that A >L 0n if and only if A ≥L 0n and a·j 6= 0n for each j ∈ N .

According to Martı́nez-Legaz (1984, Proposition 2), A ≥L 0n if and only if A = LP for some
unitary lower-triangular matrix L ∈ Mn,n and some P ∈ Mn,n such that pij ≥ 0 for all i, j ∈ N .
Since a·j = L(p·j) and L is a regular lower-triangular matrix, then a·j = 0n if and only if p·j = 0n.
Thus, the conclusion follows.

We say that a coherent set of desirable gambles K ∈ Dn is maximal if there is no other element
K′ ∈ Dn such that K ⊂ K′. Thus, we have that the maximal elements in Dn are the semispaces (at
the origin) given by matrices A ∈ On,n satisfying A >L 0n. Hence, if we denote by Max(Dn) the
set of all maximal elements in Dn, given K ∈ Dn one has

K ∈ Max(Dn) ⇐⇒ ∃A ∈ On,n, A >L 0n (unique) such that K = {g ∈ Rn : Ag >L 0n}. (4)

This means that there is a one-to-one correspondence between maximal coherent sets of desirables
gambles and orthonormal matrices whose columns are lexicographically positive. Furthermore, as
a consequence of Proposition 8, for any K ∈ Dn one can write

K =
⋂
{K′ ∈ Max(Dn) : K ⊂ K′}, (5)
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recovering thus the characterisation given in Couso and Moral (2011, Theorem 21). The above
equality and the one in (4) imply a reformulation of Proposition 8: if K ∈ Dn and g /∈ K, then there
exists K′ ∈ Max(Dn) such that K ⊂ K′ and g /∈ K′.

The following notions will be useful in the sequel.

Definition 11 We say that A ⊂ Mn,n is L-convex if A = {A ∈ Mn,n : Agt >L bt, t ∈ T} for
certain vectors gt, bt ∈ Rn for all t ∈ T . In other words, A ⊂ Mn,n is L-convex if and only if for
every A /∈ A there exist g, b ∈ Rn such that Ag >L b ≥L Ag for all A ∈ A.

Analogously, we say that A ⊂ Mn,n is an L-convex cone (omitting its apex) if A = {A ∈
Mn,n : Agt >L 0n, t ∈ T} for certain gt ∈ Rn for all t ∈ T . For any A ⊂ Mn,n, we define the set
Lposi(A) := {B ∈ Mn,n : Bg >L 0n for any g ∈ Rn satisfying Ag >L 0n for all A ∈ A}. Thus,
B /∈ Lposi(A) if and only if there is g ∈ Rn such that Ag >L 0n ≥L Bg for all A ∈ A.

Next we define a new polarity operator which is suitable for general convex cones in Rn.

Definition 12 For a set K ⊂ Rn, we define K� := {A ∈ Mn,n : Ag >L 0n for all g ∈ K}.
Furthermore, for a set A ⊂Mn,n we also define A♦ := {g ∈ Rn : Ag >L 0n for all A ∈ A}.

The following facts can be derived from these definitions:

1. A♦ is a convex cone omitting its apex in Rn. Moreover, A = (A♦)� if and only if A is an
L-convex cone omitting its apex in Mn,n.

2. K� is an L-convex cone omitting its apex in Mn,n. Moreover, K = (K�)♦ if and only if K is
a convex cone omitting its apex in Rn. In particular, this equality holds whenever K ∈ Dn.

3. For any K,H ⊂ Rn, if K ⊂ H thenH� ⊂ K�. Analogously, for anyA,B ⊂Mn,n, ifA ⊂ B
then B♦ ⊂ A♦.

4. K� = {A ∈Mn,n : K ⊂ A♦} and A♦ = {g ∈ Rn : A ⊂ g�}.

Proposition 13 The following statements hold:

(i) If A = {A ∈Mn,n : Agt >L 0, t ∈ T}, then A♦ = posi{gt, t ∈ T}.

(ii) If K = {g ∈ Rn : Atg >L 0, t ∈ T}, then K� = Lposi{At, t ∈ T}.

Proof (i) Clearly, gt ∈ A♦ for all t ∈ T . Since A♦ is a convex cone omitting its apex, then
posi{gt, t ∈ T} ⊂ A♦. To prove the converse statement, assume that there is g ∈ A♦ such that
g /∈ posi{gt, t ∈ T}. By the separation theorem, there existsA ∈Mn,n such thatAg >L 0n ≥L Ag
for all g ∈ posi{gt, t ∈ T}. In particular, Agt >L 0n for all t ∈ T , which implies that A ∈ A.
Thus, as g ∈ A♦, one has Ag >L 0n, which entails a contradiction. The proof of (ii) follows the
same reasoning as for (i).

Remark 14 As a consequence of the above result, if we consider the setsH := {g ∈ Rn : g > 0n}
and B := {A ∈Mn,n : A >L 0n}, then one hasH� = B and B♦ = H.
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As this point, we establish an important correspondence between orthonormal matrices with
lexicographically positive columns and equivalence classes of full-rank stochastic matrices. Next
result guarantees the existence of a full-rank stochastic matrix determining the same semispace as a
given orthonormal matrix A >L 0n, and the proof provides a method for obtaining such a matrix.

Proposition 15 Let A ∈ On,n be such that A >L 0n. Then, there exists a full-rank stochastic
matrix P ∈ Tn,n such that P♦ = A♦.

Proof In virtue of Lemma 10, one can write A = LQ with L a unitary lower-triangular matrix
and Q such that q·j > 0n for all j ∈ N . Thus, one has a1· = q1· and ai· =

∑i−1
j=1 lijqj· + qi· for

i ∈ N\{1}. Since A is orthonormal, then it follows that qi· > 0n for all i ∈ N , that is, Q does
not have null rows, and clearly Q is full-rank as A is. By normalising each row so as that each row
becomes a probability mass function, that is, by dividing each row by its sum, one gets the existence
of a P ∈ Tn,n. Finally, we observe that A♦ = Q♦ = P♦.

The following proposition studies the way of getting an orthonormal matrix being lexicograph-
ically greater than 0n from a full-rank stochastic one.

Proposition 16 Let P ∈ Tn,n be a full-rank stochastic matrix. Then, there exists A ∈ On,n with
A >L 0n such that A♦ = P♦.

Proof We shall denote by GS(P ) the orthogonal matrix obtained from the full-rank stochastic ma-
trix P ∈ Tn,n by applying the Gram–Schmidt orthogonalisation procedure according to the row
order. Let A ∈ On,n be the orthonormal matrix obtained from GS(P ) by normalising each row.
Since P have neither null rows nor null columns, it follows that GS(P ) >L 0n and so, A >L 0n.
Finally, the Gram–Schmidt procedure guarantees that A♦ = P♦.

The next example illustrates that the matrix whose existence has been guaranteed in the Propo-
sition 15 is not necessarily unique.

Example 1 Let us consider the maximal coherent set of desirable gambles K = {g ∈ R3 : Ag >L

03}, where A =




0 1/
√

2 1/
√

2

0 −1/
√

2 1/
√

2
1 0 0


. Since A >L 03, following Lemma 10 A can be written as

A =




1 0 0
τ 1 0
l31 l32 1






0 1/
√

2 1/
√

2

0 (−1− τ)/
√

2 (1− τ)/
√

2
1 0 0




for any τ ≤ −1, l31, l32 ∈ R. According to Proposition 15, by normalising each row of the second
matrix in the right-hand side of the equality above, we get that every matrix

P (τ) =




0 1/2 1/2
0 (τ + 1)/2τ (τ − 1)/2τ
1 0 0


 ,

with τ ≤ −1, is a full-rank stochastic matrix which determines K. Finally, it can be checked that
GS(P (τ)) = A holds for any τ ≤ −1 (after normalisation).
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The above results suggest the definition of the ♦-equivalence class of a given matrix A ∈ Mn,n

as the set of matrices having the same polar that A, that is, [A]♦ := {P ∈ Mn,n : P♦ = A♦}.
According to this definition, we have that there is a one-to-one correspondence between maximal
coherent sets of desirable gambles and ♦-equivalence classes of stochastic matrices of full rank.

Definition 17 We say that a nonempty subset of Mn,n is an L-credal set if it is the intersection with
Tn,n of some L-convex cone in Mn,n. We shall denote by Gn the family of all L-credal sets.

We are now in position to define the function G : Dn → Gn which maps coherent sets of
desirable gambles into L-credal sets and it is the key for the equivalence of both theories. For a
coherent set of desirable gambles K ∈ Dn, we associate the L-credal set

G(K) := K� ∩ Tn,n. (6)

We aim at showing that G is a bijection.

Theorem 18 The mapping G : Dn → Gn defined in (6) is a bijection whose inverse is given by
G−1(P) := P♦, for every P ∈ Gn.

Proof From the definition of the �-polarity operator, G(K) is an L-credal set, for any K ∈ Dn.
As H ⊂ K, then K� ⊂ H� = B (see Remark 14). One also has K� = {A ∈ Mn,n : K ⊂
A♦}. Since K is determined by orthonormal matrices, then K� contains orthonormal matrices with
lexicographically positive columns and, as a consequence of Proposition 15, K� also contains full-
rank stochastic matrices, which shows that G(K) is nonempty. Now, if P ∈ Gn, one has that
G−1(P) = P♦ is a convex cone omitting its apex. On the other hand, as P ⊂ Tn,n ⊂ B, then
Q = B♦ ⊂ P♦ and so, G−1(P) ∈ Dn.

To see that G is one-to-one, we just need to show G(G−1(P)) = P for any P ∈ Gn and also
G−1(G(K)) = K forK ∈ Dn. First, G(G−1(P)) = G(P♦) = P♦�∩Tn,n = Lposi(P)∩Tn,n =
P . On the other hand, G−1(G(K)) = G−1(K� ∩ Tn,n) = (K� ∩ Tn,n)♦ = K�♦ = K as K is a
convex cone omitting its apex.

4.2 Closing the circle, or preserving conditioning

As for almost desirability, one wants to verify that G is not only a bijection but also an isomorphism.
To make sense of this claim, we thus have first to specify which operations and relations we decide
to consider (in model-theoretic terms, the signature), and how they are defined over sets of gambles
and over sets of stochastic matrices (in model-theoretic terms, the interpretation). Finally, we have
to verify that the map G preserves the considered operations and relations. As before, here we are
only interested in conditioning.

Without loss of generality we assume that Π ( Ω has cardinality m. In the case of stochastic
matrices, conditioning has to be defined by slightly modifying the approach by Blume et al. (1991).
This is because we want to be sure that the result of the operation is a square stochastic matrix. With
this aim in mind, we first define the following reduction rule for matrices:

(R) Given A ∈Mn,m, for every i ∈ N , discard the i-th row ai· whenever it is a linear combination
of a1·, . . . , ai−1· (and thus in particular when it is equal to 0m).
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Let P ′ ∈Mn,m be the matrix obtained by projecting on Π the conditioning p(·|Π), or taking 0m
when it is undefined, for each row p of P ∈ Tn,n. Define P cΠ as the matrix obtained from P ′ by
applying rule (R). By an immediate application of properties of minors and cofactors, we get that
P cΠ ∈ Tm,m. Moreover (P cΠ)c∆ = (P c∆), for ∆ ⊂ Π. Hence, the following operation is always
defined.

Definition 19 Let P ⊂ Tn,n, with n > 1. Its conditioning on Π is the set (PcΠ) := {(P cΠ) | P ∈
P} ⊂ Tm,m.

From Definition 5, it is immediate to verify that (KcΠ) ∈ Dm whenever K ∈ Dn, and that Dn is
closed under conditioning. Moreover, (KcΠ) ∈ Max(Dm) whenever K ∈ Max(Dn). To conclude,
we verify that polarity preserves conditioning.

Theorem 20 Let K ∈ Dn, then (G(K)cΠ) = G(KcΠ) ∈ Gm.

Proof It is enough to prove the claim for maximal consistent sets of desirable gambles. Hence, let
K ∈ Max(Dn). We first define a conditioning operation on orthogonal matrices. Let A ∈ On,n.
Its conditioning on Π is the matrix AcΠ obtained by the following procedure: (i) erase all k-th
column from A, with k ∈ {m + 1, . . . , n}; (ii) apply rule (R) to the matrix obtained after the pre-
vious point; (iii) assume the matrix you obtained after the previous point is B. By linear algebra,
B ∈ Um,m. Hence, AcΠ := GS(B) ∈ Om,m. Note that the operation also preserves the property
of being lexicographic positive for columns. Thus, let A ∈ On,n, A >L 0n, such that K = A♦.
Both (KcΠ), (A♦cΠ) ∈ Max(Dm). This means that, in order to show that (KcΠ) = (A♦cΠ), it is
enough to verify one of the two inclusions. So, let f ∈ (KcΠ). By definition fdΠc∈ K, and thus
A(fdΠc) >L 0n. But this means thatBf >L 0n, since fdΠc agrees on Π with f , and is 0 elsewhere.
Thence GS(B)f >L 0n, meaning that f ∈ A♦cΠ. Now, because of the properties of the procedures
given by Propositions 15 and 16, it holds that P ∈ [A]♦ if and only if P cΠ ∈ [AcΠ]♦, for P ∈ Tn,n.
Finally, we can apply Theorem 18 and conclude that (G(K)cΠ) = G(KcΠ).

5. Conclusions

In this paper we have shown that (conditional) sets of lexicographic probabilities and (conditional)
sets of desirable gambles are isomorphic structures. In doing so, we have provided a duality transfor-
mation (via orthogonal and stochastic matrices) that allows us to go from a coherent set of desirable
gambles to an equivalent (convex) set of lexicographic probabilities and vice versa. As future work
we plan to complete this analysis by including other operations, such as marginalisation (this should
be straightforward), and structural judgements such as independence. It would be also of great in-
terest to study what are the geometric properties of lexicographic convex sets of stochastic matrices,
and what happens for gambles on infinite sample spaces.
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Abstract
We study languages that specify Markov Decision Processes with Imprecise Probabilities (MDPIPs)
by mixing probabilities and logic programming. We propose a novel language that can capture
MDPIPs and Markov Decision Processes with Set-valued Transitions (MDPSTs); we then obtain
the complexity of one-step inference for the resulting MDPIPs and MDPSTs. We also present
results of independent interest on the complexity of inference with probabilistic logic programs
containing interval-valued probabilistic assessments. Finally, we also discuss policy generation
techniques.
Keywords: Markov Decision Processes; MDP; MDPIP; MDPST; Imprecise Probabilities; Non-
determinism; Probabilistic Logic Programming; Credal Semantics.

1. Introduction

To be able to plan, one must be able to represent the relation between actions and their consequences
on the world. Operator-based languages such as STRIPS or PDDL (Fikes and Nilsson, 1971; Mc-
Dermott et al., 1998) have been devised so as to encode deterministic sequential decision problems,
with a specific solution in mind (heuristic search). Action languages such as A or C (Giunchiglia
and Lifschitz, 1998), as well as programming languages such as GOLOG (Levesque et al., 1997),
add more expressiveness, but also focus primarily on deterministic problems. Other languages focus
on decision under uncertainty; for instance, PPDDL (Younes and Littman, 2004), RDDL (Sanner,
2010), DT-GOLOG (Boutilier et al., 2000). In particular, languages based on probabilistic logic
programming (Kersting and De Raedt, 2003; Nitti et al., 2015; Srivastava et al., 2014; Bueno et al.,
2016) allow for probabilities, while C+ (Giunchiglia et al., 2004) and K (Eiter et al., 2004) allow
for nondeterminism. There are languages that even allow both probabilities and nondeterminism
(Halpern and Tuttle, 1993; Eiter and Lukasiewicz, 2003; Trevizan et al., 2008; Iocchi et al., 2009).

In this paper, we study the properties of planning domain description languages that have enough
power so as to encode Markov Decision Processes with Imprecise Probabilities (MDPIPs) (White III
and Eldeib, 1994; Delgado et al., 2009, 2011). We propose a novel language based on probabilistic
logic programming, enhanced with decision theoretic constructs such as actions, state fluents and
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utilities. We consider interval-valued probabilities attached to independent facts, and we adopt a
semantics given by Lukasiewicz (2007) within the context of probabilistic description logics. The
semantics assigns probability measures over answer sets (Gelfond and Lifschitz, 1988). As has been
recently noted by Cozman and Mauá (2016), this semantics induces an infinitely-monotone Cho-
quet capacity on intepretations of atoms. We show that our language can be used to specify Markov
Decision Processes with Set-valued Transitions (MDPSTs) when all probabilities are point-valued.
This class of MDPIPs encompass a wide spectrum of planning tasks ranging from the classical, de-
terministic case to the probabilistic setting in which actions have stochastic and/or uncertain effects
(Trevizan et al., 2007, 2008). We derive the complexity of one-step inference with the resulting
languages; we also present results of independent interest on the complexity of inference with prob-
abilistic logic programs containing interval-valued probabilistic assessments. We also discuss how
to generate optimal policies from a specification in our language, in this paper focusing on MDPSTs.

The paper is organized as follows. We offer some background knowledge on MDPIPs and
MDPSTs, and on probabilistic logic programming, in Section 2. We then present our language
in Section 3. We discuss the complexity of one-step inference in Section 4, and describe policy
generation algorithms in Section 5. Finally, Section 6 concludes the paper.

2. Background

In this section we review the main concepts behind Markov Decision Processes and some of their
variants. We also summarize the main ideas in probabilistic logic programming.

2.1 MDPs, MDPIPs and MDPSTs

Markov Decision Processes (MDP) represent a class of sequential decision-making problems in
a stochastic environment (Puterman, 2014). Intuitively, a planning agent has to deliberate over
his/her model of the world to choose an optimal action in each decision stage in order to maximize
his/her accumulated reward (or minimize the accumulated cost) given the immediate and long-term
uncertain effects of available actions.

Formally, an MDP consists of (i) a finite set of states S; (ii) a finite set of applicable actions
A(s) for each state s; (iii) a Markovian transition model T (s, a, s′) = P(s′|s, a) specifying the
probability that after executing action a in state s the next state is s′; (iv) a reward modelR(s, a, s′)
specifying the reward (or cost) of executing action a in state s and transitioning to state s′; and (v)
a set of decision stages D = 1, ...,H . The solution of an MDP with infinite horizon (i.e., H →∞)
is a stationary, deterministic optimal policy π∗ : S → A(s) that prescribes an optimal action a in
state s in order to maximize the expected cumulative reward of state s defined by the optimal value
function V ∗ : S → R given by:

V ∗(s) = max
a∈A(s)

{∑

s′∈S
P(s′|s, a)(R(s, a, s′) + γ V ∗(s′))

}
, (1)

where γ ∈ [0, 1[ is the discount factor necessary for convergence.
There are situations in which it is not easy (or even possible) to define a precise probability

measure for a given transition. In this case, it is necessary to consider a more general version of
an MDP known as Markov Decision Processes with Imprecise Probabilities (MDPIP) (White III
and Eldeib, 1994; Satia and Lave Jr, 1973). In this model, the probability parameters are imprecise
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and therefore the transition model cannot be specified by a single conditional distribution, but it
must be defined by sets of probabilities for each state transition. These sets are commonly referred
to as transition credal sets K(·|s, a) (Delgado et al., 2009). All other components of the MDP are
unchanged (i.e., finite state and action space, reward function).

There are several objective criteria for solving an MDPIP with infinite horizon. In this paper,
we only consider the Γ-maximin criterion (Delgado et al., 2009) which selects a robust policy that
yields the supremum of the lower expected reward. The optimal value function of state s is:

V ∗(s) = max
a∈A(s)

{
min

P(·|s,a)∈K(·|s,a)

∑

s′∈S
P(s′|s, a)(R(s, a, s′) + γ V ∗(s′))

}
. (2)

Finally, another interesting variant model of MDP is the Markov Decision Process with Set-
valued Transition (MDPST). This model is a particular instance of an MDPIP aimed at repre-
senting the transition model of an MDP with (separate) components for probabilistic and non-
deterministic action effects (Trevizan et al., 2007, 2008). In an MDPST, the transition model is de-
fined by the probability mass function m(k|s, a) and the non-deterministic function F (s, a) ⊆ 2S ,
such that k ∈ F (s, a). Its semantics is that after applying action a to state s the probability that the
next state s′ is in the reachable set k ∈ F (s, a) is given by m(k|s, a). These components together
induce the imprecise probabilities over next states constrained by the following set of inequalities:

0 ≤ m({s′}|s, a) ≤ P(s′|s, a) ≤
∑

k∈F (s,a) s.t. s′∈k
m(k|s, a) ≤ 1, (3)

0 ≤
∑

s′∈D(k,s,a)

P(s′|s, a) ≤ m(k|s, a) ≤
∑

s′∈k
P(s′|s, a) ≤ 1, (4)

where D(k, s, a) = k − ∪
k′∈F (s,a),k′ 6=k

k′.

Inequalities 3 and 4 define a transition credal set K(·|s, a) as demonstrated by Trevizan et al.
(2007) therefore proving that an MDPST is indeed an MDPIP. Though, the contrary does not nec-
essarily holds since the class of MDPIPs is much more general than that of MDPSTs.

The solution of an MDPST under the minimax criteria is an optimal policy with respect to the
optimal value function, given by:

V ∗(s) = max
a∈A(s)

{ ∑

k∈F (s,a)

m(k|s, a) min
s′∈k

(R(s, a, s′) + γ V ∗(s′))
}
. (5)

Throughout the paper we assume a factored representation of the state in which a state s is
given by a set of state fluents {x1, ..., x2} which are state properties whose truth value changes
with the actions; the factored transition function is P(s′|s, a) =

∏n
i=1 P(x′i|x1, ..., xn, a) and the

reward function is also factored. This representation implies a dynamic Bayesian network in which
next-state fluents are independent given the current-state fluents and action.

2.2 Probabilistic Logic Programming and the Credal Semantics

Probabilistic Logic Programming (PLP) extends Logic Programming (LP) by assigning probability
measures to logical facts. It is typically assumed a fixed vocabulary of constants and relations. An
atom is a predicate r(t1, ..., tn) representing a n-arity relation over terms t1, ..., tn where a term is

51



BUENO ET AL.

either a logical variable or a constant from the vocabulary. We use lowercase to denote constants
and uppercase to denote variables. A ground atom is an atom with no variables as one of its terms.

A probabilistic logic program is a pair Lp = 〈BK,PF〉 consisting of a set of logical rules
BK called background knowledge and a set of probabilistic facts PF. A logical rule is of the form
h :− b1, ..., bm, not bm+1, ..., not bn., where atom h is called the head and the atoms bi, i = 1, ..., n
are called the body. The reserved symbol not is to be interpreted as negation as failure, i.e., not bi is
true in the absence of information that justifies bi being true. A probabilistic fact denoted by α :: f.
is an atom f annotated with probability α ∈ [0, 1]. All probabilistic facts are probabilistically
independent and cannot be unified with any rule’s head atom.

A total choice denoted by θ is a complete truth assignment to the probabilistic facts of Lp. Each
total choice θ induces a logical program denoted by Lθ containing the background knowledge of
Lp and only the facts with a true value in θ. This semantics defines each probabilistic fact αi :: fi
as a boolean random variable fi distributed accordingly to the Bernoulli distribution with mean αi.
Since the probabilistic facts αi :: fi are independent, the probability of the induced logic program
Lθ is given by:

P(Lθ|Lp) =
∏

fi∈θ
αi
∏

fi 6∈θ
(1− αi) . (6)

The semantics of a probabilistic logic program Lp is given by the set of all probability models
of Lp, accordingly to its credal semantics (Lukasiewicz, 2007; Cozman and Mauá, 2016). A prob-
ability model for a program Lp is a probability measure P over logical interpretations of its atoms
such that (i) every interpretation I with P(I) > 0 is a stable model of the induced program Lθ for
the total choice θ that is consistent with I on the set PF; and (ii) the probability of the induced
program Lθ is given by Equation 6. If the probabilistic logic program Lp is acyclic or stratified
(Lloyd, 2012) then the credal set for program Lp consists of a single probability model related to
its unique stable model.

An interpretation I over the set of atoms of a logic program L is a stable model if and only if I
is the minimal model of the reduct program LI . The reduct program LI is the set of positive rules
{H(r) :− B+(r) | r ∈ L and B−(r)∩ I = ∅} where H(r) is the head of rule r; B+(r) and B−(r)
are the sets of positive and negative atoms in the body of rule r. A typical logic program with more
than one stable model is the non-stratified program L = {p :− not q. q :− not p.} which has two
stable models, namely the set of models {{p}, {q}}.

Given a probabilistic logic program Lp whose credal semantics is given by the credal set KLp ,
the inference tasks of computing the lower conditional probability of query Q given evidence E
denoted by P(Q|E) and respectively the upper conditional probability denoted by P(Q|E) are given
by:

P(Q|E) = inf
P∈KLp

P(Q|E) (7)

P(Q|E) = sup
P∈KLp

P(Q|E) (8)

where Q and E are consistent sets of literals and it is assumed that P(E) > 0 .

3. A Language to Specify MDPIPs and MDPSTs

One can specify an MDP through a probabilistic logic program, by annotating atoms with special
meanings so as to distinguish actions, state fluents and rewards. This has been, for instance, the
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approach taken by LOMDP (Kersting and De Raedt, 2003), DTBLOG (Srivastava et al., 2014), and
DDC (Nitti et al., 2015). In a previous work, we devised the MDP-PROBLOG specification language
for sequential decision problems based on the PROBLOG language (Bueno et al., 2016). Here we
extend the language so as incorporate incomplete and imprecise assessments.

An MDP-PROBLOG program consists of three parts: a program LSPACE
MDP declaring state fluents

and actions, a program LTRANSITION
MDP encoding a transition model, and a program LREWARD

MDP encoding
the reward model.

The dependency graph of an MDP-PROBLOG program is the signed directed graph over the
ground atoms of the program; there is a positive (resp., negative) arc B → A if there is a rule with
B in the body and A in the head, and B is non-negated (resp., negated). In our previous work,
we showed that MDP-PROBLOG programs with acyclic dependency graphs represents a factored
MDP, whose transition model for each action is a dynamic Bayesian network: each ground atom is
a variable; probabilistic facts are root nodes associated with corresponding probabilities and non-
probabilistic facts are internal nodes associated with deterministic functions. We also showed that
MDP-PROBLOG with positive cycles in its dependency graph still represent factored MDP (note that
dynamic Bayesian networks do not allow cycles). We did not define the semantics of programs with
cycles; we close this gap here.

We use the following running example to illustrate concepts:

Example 1 In the Viral Marketing (VM) domain, we are given an information about individuals
and their trust relationships, and we are interested in selecting individuals to market a certain
product. The goal is to maximize the long-term profit by increasing the likelihood of sales while
decreasing the cost of marketing. We assume that a person might buy the product after being
marketed or because she trusts someone who already bought it. Also, if a person has not been
the target of a marketing action in the current step, but she has been marketed in the past, then the
delayed effect of past marketing actions should be accounted for.

The program LSPACE
MDP consists of (invariant) facts and two types of rules: state fluent declara-

tions and action fluent declarations. State fluent declarations are of the form state fluent(A) :−
B1, . . . , Bn., where A is an atom representing a state fluent and B1, . . . , Bn are literals men-
tioning action fluents (actions that may or may not occur) or non state fluents (state properties
whose truth value does not change, i.e. invariants). Action fluent declarations are of the form
action fluent(A) :− B1, . . . , Bn., where A is an atom representing an action and B1, . . . , Bn are
as before. The state fluents are distinguished between current state and next state. Current-state
fluents take an extra argument 0 to indicate the current stage, while next-state fluents take an extra
argument 1 to indicate the next stage.

Consider our running example. We declare individuals by a set of (invariant) ground facts
person(pi), a state and action fluents by:

state fluent(marketed(P )) :− person(P ).

state fluent(buys(P )) :− person(P ).

action fluent(market(P )) :− person(P ).

Given persons p1 and p2, we have 4 state fluents: marketed(p1), marketed(p2), buys(p1) and
buys(p2). Thus, the program above defines 24 states. For example, we have a state where marketed(p1)
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is true, and all of marketed(p2), buys(p1) and buys(p2) are false. Similarly, we have 2 actions flu-
ents: market(p1) and market(p2). Thus, the program defines 22 actions. For example, we have an
action where market(p1) is true and market(p2) is true 1.

The program LTRANSITION
MDP contains a set of rules such that no action fluents nor current-state

fluents unify with head atoms.
The transition model of our running example is given by the program:

0.5 :: decay(Person).

marketed(Person, 1) :− market(Person).

marketed(Person, 1) :− not market(Person), marketed(Person, 0), decay(Person).

0.2 :: buy from marketing(Person).

0.3 :: buy from trust(Person).

buys(Person, 1) :− marketed(Person, 1), buy from marketing(Person).

buys(Person, 1) :− trusts(Person, Person2), buys(Person2, 1), buy from trust(Person).

According to this program, an individual is under the effect of a marketing action if she has
either been targeted in the current stage, or, with probability 0.5, if she was under the effect in a
previous stage. There is also the idea that a person buys the product with a certain probability if
she has been the target of marketing, and with a different probability if some of her trustees was the
target of marketing.

The transition program induces a transition credal set K(s′|s, a), where s is an interpretation
of current-state fluents, a is an interpretation of action fluents and s′ is an interpretation of next-
state fluents. Each conditional distribution in the transition credal set specifies a transition model
T (s, a, s′) assigned with probability P(s′|s, a) given by the credal semantics of the program.

The program LREWARD
MDP contains a set of rules of the form utility(A, c) :− B1, . . . , Bn, where A

is state or action fluent, c is a value denoting reward/cost, and each Bi is a literal.
In our running example, every product bought contributes with a reward of 5, and every market-

ing action costs -1:
utility(buys(Person, 1), 5).

utility(market(Person), − 1).

Finally, the program LREWARD
MDP specifies an additive reward model R(s, a, s′) over current states

(interpretation of current-state fluents), actions (interpretation of action fluents) and next states (in-
terpretations of next-state fluents). A rule utility(A, c) :− B1, . . . , Bn contributes with (additive)
reward c if and only if A,B1, . . . , Bn are all true in the interpretation.

Since we adopted the credal semantics for the transition program, the transition credal set is the
dominating credal set of an infinitely monotone Choquet capacity (Cozman and Mauá, 2016); that
is, each transition is governed by a probabilistic transition into a reachable set that consists of the
stable models. To get some intuition on this result, consider that for each fixed total choice, we
obtain a logic program that may have more than one stable model (if it has no stable model, the
whole probabilistic logic program has no semantics). And recall that over the total choices we have

1. Note that the semantics of the probabilistic logic programming allows concurrent actions just like in RDDL (Sanner,
2010).
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a product measure. Hence we have a multi-valued mapping form one sample space endowed with a
probability measure (the space of total choices) into another space (the space of stable models); this
implies that over the latter space we have an infinitely monotone Choquet capacity (Augustin et al.,
2014). Thus we have the following surprising (and pleasant) consequence:

Theorem 1 An MDP-PROBLOG program specifies a factored MDPST.

Although an MDPST is a particular case of MDPIP, so far we have assumed that every proba-
bility value is known with absolute precision. This is obviously unrealistic in practice. The natural
solution then is to allow a fact to be associated with a probability interval. We denoted these ex-
tended probabilistic facts by [α, β] :: p. where p is an atom and parameters α and β are probability
bounds such as 0 ≤ α ≤ β ≤ 1. In the case of α = β, we have a standard probabilistic fact. The
semantics of a probabilistic logic program with interval-valued facts is the credal set that consists
of all probability distributions that satisfy the constraints (that is, whose marginal probabilities for
facts lies within given intervals).

For example, in the viral marketing domain, we might be uncertain about the probabilities that
an individual will buy a product given different scenarios:

[0.1, 0.3] :: buy from marketing(Person).

[0.2, 0.4] :: buy from trust(Person).

Now suppose we have an MDP-PROBLOG program, possibly with interval-valued probabilistic
facts and negative cycles 2. Suppose also the current state S0 is given, and possibly an additional
set of grounded atoms E on the current time step; finally suppose we have a set of grounded atoms
Q of next state, and we wish to compute P(Q|E,S0). By using arguments that apply to inference
in credal networks, we have that the value of P(Q|E,S0) is attained at a selection of extreme points
of the probability intervals, together with a selection of reachable set for all resulting probabilities
(Augustin et al., 2014). That is, to compute an upper probability, we must go through all extreme
points of probability intervals, and all possible extreme points of the induced infinitely monotone
Choquet capacities. The same result obtains for the computation of lower probabilities. We will use
these results in Section 5.

4. The Complexity of One-Step Inference

In this section we will need a number of concepts from complexity theory; most of them are stan-
dard: we use languages, decision problems, many-one reductions, and complexity classes such as P
and NP (Papadimitriou, 2003). The complexity class PP consists of those languages L such that:
there is a polynomial time nondeterministic Turing machine M such that ` ∈ L if and only if more
than half of the computations of M on input ` end up accepting). We consider oracle machines and
complexity classes such as ΣP

i , recursively defined as ΣP
i = NPΣP

i−1 with ΣP
0 = P. We also use

classes from Wagner’s polynomial counting hierarchy: that is, the smallest set of classes containing
P and, recursively, for any class C in the polynomial counting hierarchy, the classes PPC, NPC, and
coNPC (Torán, 1991; Wagner, 1986).

2. One could suppose that an MDP-PROBLOG program with interval-valued probabilities defines a BMDP (Givan et al.,
1997), however in our language the imprecision is over state fluents while in BMDPs the imprecision is over states.
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We are interested here in the complexity of one-step inference; that is, if we have the state at
time t, then what is the computational cost of computing the probability of {Xt+1 = x}? We start
by analyzing a problem of independent interest: the complexity of inferences in probabilistic logic
programs with interval-valued probabilistic facts (Section 4.1) and then we look at the complexity
of one-step inference (Section 4.2).

4.1 Credal logic programs with interval-valued probabilistic facts

Suppose we have a credal logic program, possibly disjunctive and non-stratified, but not necessarily
aimed at modeling planning scenarios. That is, we just have a disjunctive logic program associated
with a number of interval-valued probabilistic facts. The only restriction we impose is that there is a
bound on predicate arity. Suppose that additionally we have, as input, a set Q of truth assignments
to grounded atoms, and another set E of truth assignments to grounded atoms; additionally we have
a rational number γ in [0, 1]. We refer to (Q,E) as the query, and to E as the evidence. As output we
have the decision as to whether P(Q|E) > γ where the probabilities are computed with respect to
the input credal logic program. Consider the strings describing a credal logic program, a query, and
a rational, and denote by C the language consisting of all such strings that satisfy P(Q|E) > γ. Note
that if we restrict our programs to be non-disjunctive and acyclic, then they specify credal networks
(Cozman, 2005), and therefore deciding C is at least a NPPP-hard problem. It is remarkable that we
can also decide C in NPPP; that is:

Theorem 2 Deciding whether a string is in C is a NPPP-complete problem.

Proof Hardness follows, as already noted, from the fact that inference with credal networks is
NPPP-complete (De Campos and Cozman, 2005). Membership is a consequence of the following
construction. First, guess the extreme point of each interval-valued probability assessment (this
requires a nondeterministic Turing machine, but given that predicate arity is bounded, there is a
polynomial number of guesses to be made). Then call, as an oracle, a counting Turing machine that
guesses the truth assignment for all grounded probabilistic facts; by counting the number of such
assignments that leads to satisfaction of Q and E, we can decide whether the base nondeterministic
choice satisfies or not the inequality of interest. The problem is that, for each selected truth assign-
ment for ground probabilistic facts, we must decide whether it is possible to satisfy the query; for a
disjunctive logic program this can be made using a ΣP

3 oracle. That is, our problem can be solved in

NPPPΣP
3 . However, due to a remarkable result by Toda and Watanabe (Toda and Watanabe, 1992),

we have that PPPΣP
k = PPP; consequently, our decision problem is in NPPP and the proof is fin-

ished.

4.2 One-step transitions

Now consider the specification of a planning problem using a credal logic program as described in
Section 3. That is, we have a logic program with added interval-valued probabilistic facts. Denote by
PC the language that consists of strings encoding a credal logic program with a bound on predicate
arity, a query, and a rational as in Section 4.1, but now the credal logic program is the description of
a planning scenario as in Section 3, and with the following additional restrictions. The query must
now refer only to grounded atoms at the next time step (not at current time step), and a string is
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in the language if and only if P(Q|E,S0) > γ where S0 is the current state. That is, we focus on
one-step, from current to next state, and we wish to compute an inference about the time step.

Using the result in the previous section we immediately have:

Theorem 3 Deciding whether a string is in PC is a NPPP-complete problem.

Proof Note that when we fix S0, we obtain a decision problem for a credal probabilistic program.
Then Theorem 2 implies the result.

Now suppose we restrict ourselves to point-valued probabilistic assessments; that is, every prob-
abilistic facts is of the form α :: A.. As discussed in Section 3, such assessments allow us to define
MDPSTs when programs can be disjunctive/non-stratified. Now denote by PM the language de-
fined exactly as PC, with the difference that every probabilistic assessment is point-valued. It is
known that the complexity of inference in non-disjunctive probabilistic logic programs that can be
non-stratified is PPΣP

2 -complete, while the complexity of inference in disjunctive probabilistic logic
programs is PPΣP

3 -complete (Cozman and Mauá, 2017), submitted. Hence we obtain, as a direct
consequence:

Theorem 4 Deciding whether a string is in PM is a NPΣP
3 -complete problem.

5. Dynamic Programming for MDP-PROBLOG programs

In this section, we discuss how dynamic programming can be applied to solve sequential decision
problems specified by MDP-PROBLOG programs. To emphasize: we allow programs with (negative
and positive) cycles in the dependency graph and interval-valued probabilistic facts.

For simplicity, we consider grounded programs. So consider a (ground) MDP-PROBLOG pro-
gram, a current state s (i.e., an interpretation of state fluents) and action a ∈ A(s) (i.e., an inter-
pretation of actions). Due to Theorem 1, given evidence s, a, the transition model induces a set of
probability mass functions m(k|s, a) over sets of stable models k ∈ F (s, a). One can show that the
robust (i.e., maximin) policy is given by the argument of the following modified Bellman equation:

V ∗(s) = max
a∈A(s)

{
min

m(·|s,a)∈K(·|s,a)

∑

k∈F (s,a)

m(k|s, a) min
s′∈k

(R(s, a, s′) + γ V ∗(s′))
}

(9)

The outer (i.e., leftmost) minimization can be solved by considering all extremes of the interval-
valued probabilities; after each choice is made, the resulting program specifies an MDPST whose
transition is governed by the stable models of the transition program: this is the inner (rightmost)
minimization in the equation above.

When all reachable sets are singletons (i.e., ∀k ∈ F (s, a), |k| = 1) there is no need to perform
the inner minimization over the states in k and then we have the traditional case of MDPIPs given by
Equation 2. On the other hand, if all interval-valued probabilistic facts degenerate to point-valued
standard probabilistic facts the outer minimization over the probabilistic models of the credal set
K(·|s, a) is not need and then we have the Equation 5 for precise MDPSTs. Finally, when both
assumptions hold we are back to the classical MDP case of Equation 1.

The traditional dynamic programming scheme for solving the set of equations defining the state
value function is the Value Iteration algorithm (Puterman, 2014). Essentially, it assigns an initial
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value to all states and iteratively updates all state values until the convergence by using Equation 9 as
an update rule known as Bellman backup. A number of optimizations exist for avoiding redundant
calculations and restricting the computation for only the most promising states regarding the optimal
policy. Nevertheless, virtually all of these techniques has to deal one or more backup calculations.

6. Conclusion

In this paper, we addressed the problem of modeling MDPIPs and MDPSTs using probabilistic logic
programming. Our contributions are:

• an extension of the MDPPROBLOG language that aimed at representing imprecise probabil-
ities and non-determinism;

• novel results about the complexity of one-step inference in credal logic programs with interval-
valued probabilistic facts (and on the complexity of probabilistic logic programs with interval-
valued probabilistic facts); and

• a scheme for generating optimal policy for MDPIPs and MDPSTs encoded by probabilistic
logic programming.

For the future, we plan to implement and test algorithms for policy generation. In order to
do so, it would be valuable to maximize expected values with respect to the credal sets encoding
transitions. Given that heuristics are important in state-of-art algorithms for MDPs, we believe that
similar heuristics must be developed for MDPIPs and MDPSTs. In particular, it should be important
to import techniques from logical reasoning into the realm of probabilistic logic programming.

Acknowledgments

This work was partially supported by CNPq (grants 870666/1998-3, 308433/2014-9) and FAPESP
(grants 2015/01587-0, 2016/01055-1, 2016/22900-1).

References

T. Augustin, F. P. Coolen, G. de Cooman, and M. C. Troffaes. Introduction to imprecise probabili-
ties. 2014.

C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-Theoretic, High-Level Agent Pro-
gramming in the Situation Calculus. In AAAI/IAAI, pages 355–362, 2000.
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F. G. Cozman and D. Mauá. The Complexity of Inferences and Explanations in Probabilistic Logic
Programming. Proceedings ISIPTA, Lugano, Switzerland, 2017.

C. P. De Campos and F. G. Cozman. The inferential complexity of bayesian and credal networks.
In IJCAI, volume 5, pages 1313–1318, 2005.

K. V. Delgado, L. N. de Barros, F. G. Cozman, and R. Shirota. Representing and solving factored
Markov decision processes with imprecise probabilities. ISIPTA, pages 169–178, 2009.

K. V. Delgado, S. Sanner, and L. N. De Barros. Efficient solutions to factored MDPs with imprecise
transition probabilities. Artificial Intelligence, 175(9-10):1498–1527, 2011.

T. Eiter and T. Lukasiewicz. Probabilistic Reasoning About Actions in Nonmonotonic Causal The-
ories. In UAI, pages 192–199, 2003.

T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A Logic Programming Approach to
Knowledge-state Planning: Semantics and Complexity. ACM Trans. Comput. Logic, 5(2):206–
263, 2004.

R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence, 2(3-4):189–208, 1971.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In ICLP/SLP,
volume 88, pages 1070–1080, 1988.

E. Giunchiglia and V. Lifschitz. An Action Language based on Causal Explanation: Preliminary
Report. In AAAI/IAAI, pages 623–630, 1998.

E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic causal theories.
Artificial Inteligence, 153:49–104, 2004.

R. Givan, S. Leach, and T. Dean. Bounded parameter Markov decision processes. In European
Conference on Planning, pages 234–246, 1997.

J. Y. Halpern and M. R. Tuttle. Knowledge, Probability, and Adversaries. J. ACM, 40(4):917–960,
1993.

L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati. Reasoning About Actions with Sensing Under
Qualitative and Probabilistic Uncertainty. ACM Trans. Comput. Logic, 10(1):5:1–5:41, 2009.

K. Kersting and L. De Raedt. Logical Markov decision programs. In Proceedings of the IJCAI’03
Workshop on Learning Statistical Models of Relational Data, pages 63–70, 2003.

H. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl. GOLOG: A logic programming
language for dynamic domains. Journal of Logic Programming, 31(1–3):59–83, 1997.

J. W. Lloyd. Foundations of logic programming. 2012.

T. Lukasiewicz. Probabilistic description logic programs. International Journal of Approximate
Reasoning, 45(2):288–307, 2007.

59



BUENO ET AL.

D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, and D. Wilkins.
PDDL-the Planning Domain Definition Language. 1998.

D. Nitti, V. Belle, and L. De Raedt. Planning in discrete and continuous Markov decision processes
by probabilistic programming. In ML and KD in Databases, pages 327–342. 2015.

C. H. Papadimitriou. Computational complexity. 2003.

M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. 2014.

S. Sanner. Relational dynamic influence diagram language (RDDL): Language description. Unpub-
lished ms. Australian National University, page 32, 2010.

J. K. Satia and R. E. Lave Jr. Markovian decision processes with uncertain transition probabilities.
Operations Research, 21(3):728–740, 1973.

S. Srivastava, S. J. Russell, P. Ruan, and X. Cheng. First-Order Open-Universe POMDPs. In UAI,
pages 742–751, 2014.

S. Toda and O. Watanabe. Polynomial-time 1-turing reductions from #PH to #P. Theoretical Com-
puter Science, 100(1):205–221, 1992.

J. Torán. Complexity classes defined by counting quantifiers. Journal of the ACM (JACM), 38(3):
752–773, 1991.

F. W. Trevizan, F. G. Cozman, and L. N. de Barros. Planning under Risk and Knightian Uncertainty.
In IJCAI, pages 2023–2028, 2007.

F. W. Trevizan, F. G. Cozman, and L. N. De Barros. Mixed probabilistic and nondeterministic
factored planning through Markov decision processes with set-valued transitions. In Workshop
on A Reality Check for Planning and Scheduling Under Uncertainty at ICAPS, 2008.

K. W. Wagner. The complexity of combinatorial problems with succinct input representation. Acta
informatica, 23(3):325–356, 1986.

C. C. White III and H. K. Eldeib. Markov decision processes with imprecise transition probabilities.
Operations Research, 42(4):739–749, 1994.

H. L. Younes and M. L. Littman. PPDDL1. 0: An extension to PDDL for expressing planning
domains with probabilistic effects. Techn. Rep. CMU-CS-04-162, 2004.

60



PMLR: Proceedings of Machine Learning Research, vol. 62, 61-72, 2017 ISIPTA ’17

Empirical Interpretation of Imprecise Probabilities

Marco E. G. V. Cattaneo M.CATTANEO@HULL.AC.UK

University of Hull
Kingston upon Hull (UK)

Abstract
This paper investigates the possibility of a frequentist interpretation of imprecise probabilities, by
generalizing the approach of Bernoulli’s Ars Conjectandi. That is, by studying, in the case of
games of chance, under which assumptions imprecise probabilities can be satisfactorily estimated
from data. In fact, estimability on the basis of finite amounts of data is a necessary condition
for imprecise probabilities in order to have a clear empirical meaning. Unfortunately, imprecise
probabilities can be estimated arbitrarily well from data only in very limited settings.

Keywords: Imprecise probabilities; frequentist interpretation; empirical meaning; bag of marbles;
strong estimability; consistent estimators; empirical recognizability.

1. Introduction

Imprecise probabilities mostly have a subjective, epistemic interpretation (Walley, 1991; Troffaes
and de Cooman, 2014), while in this paper we will study the possibility of a frequentist, empirical
interpretation for them. As regards precise probabilities, empirical interpretations are dominant in
science and statistics. They are usually related to Bernoulli’s law of large numbers, which connects
the probabilities of events with the relative frequencies of the events’ occurrence in sequences of
independent repetitions of experiments.

This connection can be used asymptotically, by defining probabilities as limits of relative fre-
quencies (Venn, 1866; von Mises, 1928, 1957; Reichenbach, 1935, 1949), but the empirical mean-
ing of such probabilities for finite samples is then problematic. In order to have probabilities with
a direct empirical meaning, the connection in Bernoulli’s law of large numbers can be used in a
finite-sample way, by defining probabilities as approximately equal to relative frequencies in large,
but finite samples. The difficulty of this approach comes from the fact that the exact meaning of
“approximately equal” is probabilistic, and therefore this definition of probability is circular.

A possible answer to this circularity consists in accepting it and interpreting probability as an
abstract concept, whose meaning comes from the possibility of statistically falsifying probabilistic
statements (Popper, 1935, 1959). An alternative, but related answer to the above circularity is the
original approach of Bernoulli (1713, 2006): define probability only for games of chance (where
the definition is unproblematic) and extend it to other fields by analogy. This analogy is empirically
meaningful because Bernoulli’s law of large numbers provides a way of estimating probabilities
arbitrarily well (and thus also a way of statistically falsifying probabilistic statements).

In this paper, we will see if Bernoulli’s approach can be extended to imprecise probabilities.
That is, practically we will focus on games of chance: for example drawing colored marbles at
random from a bag. In this situation, the precise probability of a certain color corresponds to the
proportion of marbles of this color in the bag, and if we draw several marbles (with replacement)
from the bag, we obtain probabilistic independence automatically from the noninteraction of the
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drawings. How should we interpret an imprecise probability in this setting? We will see that several
different interpretations may be reasonable.

The spectacular achievement of Bernoulli was to prove, through his law of large numbers, that
precise probabilities are estimable from finite amounts of data, and therefore have an empirical
meaning. Analogously, a frequentist, empirical interpretation of imprecise probabilities is possible
only if these are estimable from finite amounts of data. The core of the present paper consists
of mathematical results about the estimability of imprecise probabilities, depending on their exact
interpretation in the case of games of chance. These results are given in Section 3 (due to space
limitations, proofs are omitted, and will appear only in an extended version of the paper), while the
next section provides a quick overview of frequentist interpretations, and the last section concludes
the paper and points to an open problem.

2. Interpretations of Imprecise Probabilities

The interpretations of (precise) probabilities can be roughly grouped in two main classes, often
called subjective and frequentist (see for example Gillies, 2000). With a subjective (or epistemic,
Bayesian, personalistic, . . . ) interpretation, probabilistic statements are about the degrees of belief
or knowledge of an individual. By contrast, with a frequentist (or empirical, objective, scientific, . . . )
interpretation, probabilistic statements are about the material world. For this reason, frequentist
interpretations of probabilities are the dominant interpretations in science and in statistics.

In particular, according to the subjective interpretation of de Finetti (1931, 1974–1975), a prob-
ability is an individual’s fair price for a bet. This interpretation can quite naturally be extended to an
interpretation of lower and upper probabilities as an individual’s maximum buying price and mini-
mum selling price for a bet (Williams, 1975, 2007; Walley, 1991; Troffaes and de Cooman, 2014).
In fact, it can certainly be argued that with this subjective interpretation, imprecise probabilities are
more natural than precise ones. However, the topic of the present paper is frequentist interpretations
for imprecise probabilities, which, contrary to what happens for precise probabilities, are far less
common than subjective ones.

Since usual imprecise probability measures correspond mathematically to sets of precise ones,
they appear often in classical statistics, which is based on frequentist interpretations of probabilities.
In particular, imprecise probabilities can be used to describe what has been learnt so far from data
(see for example Cattaneo and Wiencierz, 2012; Antonucci et al., 2012), but in this case their inter-
pretation is in reality epistemic, although more properly intersubjective than subjective. However,
a truly frequentist interpretation is indeed obtained in classical statistics when imprecise probabili-
ties do not describe what has been learnt, but what can potentially be learnt from infinite amounts
of incomplete data (see for instance Manski, 2003; Dempster, 1967). Anyway, this frequentist in-
terpretation of imprecise probabilities is limited to particular situations involving incomplete data,
while we are looking for a generally valid interpretation.

In general, frequentist interpretations of precise probabilities are related to laws of large num-
bers implying that the relative frequency of an event’s occurrence in a sequence of independent
repetitions of an experiment converges to the probability of the event. Although laws of large num-
bers have been generalized to the case of imprecise probabilities (Walley and Fine, 1982; Cozman
and Chrisman, 1997; Marinacci, 1999; de Cooman and Miranda, 2008; Peng, 2010; Chen and Wu,
2011), the generalization of frequentist interpretations is not straightforward.
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If we would simply interpret the probability of an event as the limit of the relative frequency of
its occurrence in an infinite sequence of independent repetitions of an experiment (Venn, 1866; von
Mises, 1928, 1957; Reichenbach, 1935, 1949), then we could interpret lower and upper probabilities
as limits inferior and superior of such a sequence, respectively. That is, the imprecise probability
interpretation would extend the precise one to the case of nonconvergent sequences of relative fre-
quencies, and also with this frequentist interpretation (besides the above subjective one) it could be
argued that imprecise probabilities are more natural than precise ones. However, this interpretation
is problematic for imprecise as well as precise probabilities, since no finite part of a sequence of rel-
ative frequencies has any connection at all with the limit of the sequence, and thus strictly speaking
the interpretation has no empirical meaning.

In order to have an empirical meaning, a frequentist interpretation must make probabilistic state-
ments falsifiable on the basis of finite amounts of data. Of course, probabilistic statements are in
general not strictly falsifiable, but they can be methodologically falsifiable in the sense of Popper
(1935, 1959) if they can be rejected through some reasonable statistical test with arbitrarily low
significance level (see also Gillies, 1995, 2000). Such a test for the probability of an event could
be based on Bernoulli’s law of large numbers, which is a probabilistic statement connecting the
probability of the event to the relative frequency of the event’s occurrence in a finite sequence of
independent repetitions. That is, we could consider frequentist probability as an abstract concept
deriving its meaning from the theory surrounding it, which makes probabilistic statements (method-
ologically) falsifiable.

However, in the present paper we will follow a related, but more direct approach to frequentist
probability, corresponding to the original interpretation of Bernoulli’s law of large numbers in the
Ars Conjectandi (Bernoulli, 1713, 2006). This book represents the starting point of modern prob-
ability theory, and interestingly also the (temporary) end point of imprecise probability (Shafer,
1978). Citing Sylla (2014): “before Bernoulli’s work, there existed a mathematics of games of
chance but that mathematics did not involve probability—not the Latin word probabilis, not relative
frequencies and not degrees of certainty.”

Bernoulli’s law of large numbers is a theorem in the mathematics of games of chance. That is,
a theorem about probabilities interpreted as ratios between the numbers of favorable and possible
outcomes. Bernoulli extended the concept of probability to other fields by analogy with games of
chance, an idea already present in the Logique de Port-Royal (Arnauld and Nicole, 1662, 1996).
According to this approach, the probability of an event is interpreted through an analogy with a
game of chance: for example as corresponding to the probability of drawing a black marble at
random from a bag containing white and black marbles. Bernoulli’s law of large numbers implies
that it is possible to learn with arbitrarily high precision the probability of an event from the relative
frequency of its occurrence in sufficiently many independent repetitions of an experiment.

3. Empirical Meaning of Imprecise Probabilities

The approach to frequentist probability of the Ars Conjectandi consists of two parts: the interpreta-
tion of probabilities by analogy with games of chance, and their estimability on the basis of finite
amounts of data. In this section we will study how far this approach can be generalized to the case
of imprecise probabilities. For the sake of simplicity, we will focus on a sequence of Bernoulli
trials, whose outcomes are described by the binary random variables X1, X2, . . . ∈ {0, 1} (that is,
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we consider only the interpretation and estimability of imprecise probabilities of single events, not
of whole imprecise probability measures on arbitrary sample spaces).

Each Bernoulli trial corresponds for instance to drawing a black or white marble (described by
Xi = 1 or Xi = 0, respectively) at random from a bag containing only white and black marbles
with a proportion pi ∈ [0, 1] of black ones (strictly speaking, all probabilities should be rational
numbers, but for the sake of simplicity we will ignore this technical detail, since rational numbers are
dense in the reals). The sequence of Bernoulli trials corresponds thus to drawings from a sequence
of bags with possibly different proportions of black marbles. The noninteraction of the drawings
corresponds to an assumption of independence of the random variables Xi, in the usual sense of
(precise) probability theory (see also Chen and Wu, 2011; De Bock and de Cooman, 2012). We
have a precise probability model when pi = p does not depend on i, and an imprecise one when
pi ∈ [p, p] is not completely determined.

For example, in Section 2 we have considered two ways in which imprecise probability mea-
sures often appear in classical statistics. The first one, related to an intersubjective epistemic in-
terpretation, is as descriptions of what has been learnt so far from data: this would be the case for
instance if [p, p] was obtained as a confidence interval for the precise probability p. The second one,
related to a truly frequentist but limited interpretation, is as descriptions of what can potentially be
learnt from infinite amounts of incomplete data: this would be the case for instance if Xi = 1 and
Xi = 0 were observed with probabilities p and 1− p, respectively, while with probability p− p we
would have a missing observation (independently of i). In this case, without making any assump-
tions about the noninformativity of the missing data, [p, p] is the identification region of the precise
probability p: that is, values of p in this interval cannot be discriminated on the basis of any amount
of (incomplete) data.

In the general case without missing data, there are several possible interpretations of an impre-
cise probability [p, p] with 0 ≤ p ≤ p ≤ 1 (where p = p corresponds to the case of a degenerate
interval representing a precise probability). In particular, Walley and Fine (1982) distinguish be-
tween an ontological indeterminacy interpretation, where

pi ∈ [p, p] (1)

is the only assumption about the sequence pi, and an epistemological indeterminacy interpretation,
where

pi = p ∈ [p, p] (2)

does not depend on i. The latter can also be seen as the special case in which the sequence of draw-
ings (with replacement) is from the same bag, which contains a not completely determined propor-
tion of black marbles. The interpretations (1) and (2) appear also in the theory of Markov chains
with imprecise probabilities (which can be seen as generalizations of sequences of Bernoulli trials):
for example in Hartfiel (1998) and Kozine and Utkin (2002), respectively. Moreover, the ontological
indeterminacy interpretation (1) plays a prominent role in the theory of probabilistic graphical mod-
els with imprecise probabilities (which can be seen as further generalizations of Markov chains):
see for instance Cozman (2005).

From the point of view of the estimability of the imprecise probability [p, p], both interpretations
(1) and (2) are problematic, because in general the sequence pi does not determine the interval [p, p].
That is, with these interpretations the imprecise probability is only partially identified and therefore
cannot in general be estimated with arbitrarily high precision. In order to make the imprecise prob-
ability identifiable, we can interpret it as allowing only the sequences pi ∈ [p, p] that determine in

64



EMPIRICAL INTERPRETATION OF IMPRECISE PROBABILITIES

a certain sense the interval [p, p]. However, we would most likely betray the intuitive meaning of
imprecise probabilities if we would exclude any starting sequence p1, . . . , pn ∈ [p, p]. Similarly,
assigning some kind of degree of plausibility to the starting sequences p1, . . . , pn ∈ [p, p] would
also lead to a new model, different from the one of imprecise probabilities (such as the chaotic
probability model of Fierens et al., 2009).

On the basis of these considerations, we obtain an identifiable ontological indeterminacy inter-
pretation, where

pi ∈ [α(p1, p2, . . .), α(p1, p2, . . .)] = [p, p] (3)

is a condition on the sequence pi, determined by two functions α, α : [0, 1]N → [0, 1] that do not
depend on any finite number of their arguments (that is, each function would assign the same value
to sequences differing only at a finite number of positions). These functions are considered to be
fixed, but we do not need to further specify them in order to obtain the results of the present paper
(that is, these results are valid for any particular choice of the above functions α, α). An example of
such pairs of functions is the limits inferior and superior of the sequence pi, implying that the whole
width of the interval

[p, p] =

[
lim inf
i→∞

pi, lim sup
i→∞

pi

]
(4)

is used by the sequence pi, and infinitely many times (in the sense that the sequence gets infinitely
many times arbitrarily close to both endpoints of the interval). A related example is the limits
inferior and superior of the Cesàro means of the sequence pi (that is, the limits inferior and superior
of the averages of the starting sequences p1, . . . , pn), implying that the whole width of the interval

[p, p] =

[
lim inf
n→∞

1

n

n∑

i=1

pi, lim sup
n→∞

1

n

n∑

i=1

pi

]
(5)

is used by the sequence pi, not only infinitely many times, but also not too rarely (in order to bring
not only the sequence, but also its Cesàro means infinitely many times arbitrarily close to both
endpoints of the interval).

However, it is intuitively clear that imprecise probabilities are not estimable in full generality,
because for instance any finite amount of data from Bernoulli trials would always be perfectly com-
patible with the vacuous imprecise probability [0, 1], independently of the considered interpretation
(1), (2), or (3). This difficulty in discriminating between the vacuous and other imprecise prob-
abilities is related to the more general difficulty in comparing imprecise probability models with
different degrees of imprecision (see also Seidenfeld et al., 2011; Cattaneo, 2013). Anyway, impre-
cise probabilities are estimable under additional assumptions about the possible intervals [p, p]. Let
I be the set of all imprecise probabilities that are considered possible in a given situation: that is,
let I be a nonempty set of intervals of the form [p, p] with 0 ≤ p ≤ p ≤ 1.

Bernoulli’s law of large numbers implies the uniformly consistent estimability of the precise
probability pi = p ∈ [0, 1] on the basis of the outcomes X1, X2, . . . of the Bernoulli trials. An
estimator πn : {0, 1}n → [0, 1] (or more precisely, a sequence of estimators πn) of p is said to be
uniformly consistent when for all ε > 0 and all δ > 0 there is an N such that

P
(∣∣πn(X1, . . . , Xn)− p

∣∣ > ε
)
≤ δ (6)

for all n ≥ N , all [p, p] ∈ I, and all (precise) probability measures P corresponding to the se-
quences pi compatible with the imprecise probability [p, p] according to the considered interpre-
tation (1), (2), or (3) (since we are in the setting of games of chance, the interpretation of P is
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unproblematic: probabilities are ratios between the numbers of favorable and possible outcomes).
The definition of a uniformly consistent estimator πn of p is analogue, and [p, p] ∈ I is said to be
uniformly consistently estimable when there are uniformly consistent estimators πn and πn of p and
p, respectively.

The uniform consistency of an estimator πn of p is particularly important, because it implies that
[πN (X1, . . . , XN )− ε, πN (X1, . . . , XN ) + ε] is a confidence interval for p with coverage proba-
bility at least 1 − δ (an analogous result is implied by the uniform consistency of an estimator πn

of p). That is, uniformly consistent estimators provide us with arbitrarily short confidence intervals
of arbitrarily high confidence level, when we have a sufficiently large amount of data. In this sense,
uniformly consistent estimability endows imprecise probabilities [p, p] ∈ I with a clear empirical
meaning. However, the next theorem states that this is the case only when all nondegenerate inter-
vals in I are isolated in I. An interval [p, p] ∈ I is said to be nondegenerate when p < p, and it is
said to be isolated in I when there is a γ > 0 such that [p − γ, p + γ] does not intersect any other
interval in I (degenerate or nondegenerate). If all nondegenerate intervals in I are isolated in I,
then all intervals in I (degenerate or nondegenerate) are pairwise disjoint, while the converse is not
true. For example, if I consists of the nondegenerate interval [0, 12 ] and all the degenerate intervals
[p, p] with 1

2 < p ≤ 1, then all elements of I are pairwise disjoint, but [0, 12 ] is not isolated in I.

Theorem 1 The following four statements are equivalent:

(i) [p, p] ∈ I is uniformly consistently estimable under the ontological indeterminacy interpre-
tation (1),

(ii) [p, p] ∈ I is uniformly consistently estimable under the epistemological indeterminacy inter-
pretation (2),

(iii) [p, p] ∈ I is uniformly consistently estimable under the identifiable ontological indeterminacy
interpretation (3),

(iv) all nondegenerate intervals in I are isolated in I.

Theorem 1 implies in particular Bernoulli’s law of large numbers, which corresponds to the case
where I is the set of all degenerate intervals [p, p] with p ∈ [0, 1]. More precisely, Bernoulli (1713,
2006) proved the result only in the case where I is the set of the m + 1 degenerate intervals [p, p]
such that p ∈ [0, 1] is a rational number with (arbitrarily large) denominator m. For this case, he
also provided an explicit way of calculating a value for the quantity N appearing in the definition of
uniform consistency (6), thus obtaining a clear empirical meaning for precise probabilities through
what we now call confidence intervals. Anyway, Theorem 1 shows that this is possible for imprecise
probabilities only in very limited settings, independently of their exact interpretation.

In order to endow imprecise probabilities with a clear empirical meaning in more general set-
tings, we can moderate our requirements for their estimability. In particular, Walley and Fine (1982)
introduced the concept of strong estimability, which weakens uniformly consistent estimability (6)
by allowing N to depend on the interval [p, p], besides on ε and δ. When we weaken strong estima-
bility further by allowing N to depend also on the probability measure P , we get the concept of con-
sistent estimability. That is, strong estimability lies between consistent estimability and uniformly
consistent estimability, and must not be confused with strongly consistent estimability (which cor-
responds to consistent estimability when convergence in probability is replaced by almost sure con-
vergence). Anyway, strong estimability can also be interpreted as the generalization of consistent
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estimability to imprecise probabilities: in fact, strong estimability and consistent estimability are
equivalent when all intervals in I are degenerate (that is, in the case of precise probabilities).

Theorem 2 The following four statements are equivalent:

(i) [p, p] ∈ I is strongly estimable under the ontological indeterminacy interpretation (1),

(ii) [p, p] ∈ I is strongly estimable under the epistemological indeterminacy interpretation (2),

(iii) [p, p] ∈ I is strongly estimable under the identifiable ontological indeterminacy interpreta-
tion (3),

(iv) all intervals in I (degenerate or nondegenerate) are pairwise disjoint.

Contrary to uniformly consistent estimability, strong estimability does not guarantee the exis-
tence of arbitrarily short confidence intervals of arbitrarily high confidence level for p and p, but is
nonetheless important because it is required in order for imprecise probabilities to be empirically
recognizable, in the following sense. Given an imprecise probability [p, p] ∈ I and a desired level of
precision for the estimators, we can choose n such that if the data X1, . . . , Xn are generated accord-
ing to [p, p] (that is, according to any sequence pi compatible with it), then [p, p] can be estimated
to the desired level of precision on the basis of X1, . . . , Xn (in other words, an imprecise proba-
bility can be recognized arbitrarily well on the basis of finite amounts of data generated according
to it). However, Theorem 2 shows that imprecise probabilities are empirically recognizable only
in very limited settings, independently of their exact interpretation. In fact, requiring only strong
estimability instead of uniformly consistent estimability as in Theorem 1 weakened only slightly the
necessary and sufficient condition on I. As a side result, the following corollary of Theorem 2 com-
pletes a basic result of Walley and Fine (1982) about the strong estimability of imprecise probability
measures on finite sample spaces.

Corollary 3 The necessary condition in Theorem 5.1 of Walley and Fine (1982) is sufficient as well,
also in the case of infinitely many imprecise probability measures.

Although consistent estimability (with respect to precise probability measures) is too weak to
endow imprecise probabilities with a clear empirical meaning (in the sense that it does not guarantee
their empirical recognizability), for completeness we can look at the consequences of requiring only
this level of estimability. The next theorem shows that there is no difference between consistent
estimability and strong estimability of imprecise probabilities, when only the interpretations (1) and
(2) are considered. However, there is a difference when the identifiable ontological indeterminacy
interpretation (3) is considered, as we will see in a moment.

Theorem 4 The following three statements are equivalent:

(i) [p, p] ∈ I is consistently estimable under the ontological indeterminacy interpretation (1),

(ii) [p, p] ∈ I is consistently estimable under the epistemological indeterminacy interpretation
(2),

(iii) all intervals in I (degenerate or nondegenerate) are pairwise disjoint.
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Theorems 1, 2, and 4 give necessary and sufficient conditions for the estimability of imprecise
probabilities, but there is a difference between knowing that something is estimable and knowing
how to estimate it. The next theorem closes this gap by explicitly giving examples of estimators
with the required properties.

Theorem 5 The following estimators of p and p satisfy all the properties considered in Theorems
1, 2, and 4, when the corresponding necessary and sufficient conditions on I are fulfilled:

πn(x1, . . . , xn) = inf

{
p : [p, p] ∈ I, p+ cn >

1

n

n∑

i=1

xi

}
, (7)

πn(x1, . . . , xn) = sup

{
p : [p, p] ∈ I, p− cn <

1

n

n∑

i=1

xi

}
, (8)

for all x1, . . . , xn ∈ {0, 1}, where cn is any sequence of real numbers such that limn→∞ cn = 0
and limn→∞

√
n cn = +∞, while inf ∅ and sup∅ can be defined arbitrarily.

The estimators (7) and (8) exploit the fact that the relative frequency 1
n

∑n
i=1Xi of the occur-

rence of the event Xi = 1 will lie in [p − cn, p + cn] with arbitrarily high probability when n is
sufficiently large, independently of the considered interpretation (1), (2), or (3). Theorems 4 and 5
imply that when all intervals in I (degenerate or nondegenerate) are pairwise disjoint, the estima-
tors (7) and (8) are also consistent under the identifiable ontological indeterminacy interpretation
(3), since this property is weaker than the consistency under the ontological indeterminacy inter-
pretation (1). However, the next theorem implies that the pairwise disjointness of the intervals in
I is not a necessary condition for the consistent estimability of [p, p] ∈ I under the identifiable
ontological indeterminacy interpretation (3), because it is sufficient that all nondeterministic inter-
vals in I (degenerate or nondegenerate) are pairwise disjoint. An interval [p, p] ∈ I is said to be
nondeterministic if it is not one of the two degenerate intervals [0, 0] and [1, 1].

Theorem 6 A sufficient condition for [p, p] ∈ I to be consistently estimable under the identifiable
ontological indeterminacy interpretation (3) is that all nondeterministic intervals in I (degenerate
or nondegenerate) are pairwise disjoint, while a necessary condition is that I does not contain at the
same time the interval [0, 1] and another nondeterministic interval (degenerate or nondegenerate).

The following estimators of p and p are consistent under the identifiable ontological indetermi-
nacy interpretation (3), when the above sufficient condition on I is fulfilled:

π′
n(x1, . . . , xn) =

{
1 if x1 = · · · = xn = 1,
πn(x1, . . . , xn) otherwise,

(9)

π′
n(x1, . . . , xn) =

{
0 if x1 = · · · = xn = 0,
πn(x1, . . . , xn) otherwise,

(10)

for all x1, . . . , xn ∈ {0, 1}, where πn and πn are the estimators (7) and (8), respectively.

Theorems 1, 2, and 4 characterize three different levels of estimability of imprecise probabilities
according to three different ways of interpreting them. Only one of the nine possible characteriza-
tions is missing: the one of consistent estimability under the identifiable ontological indeterminacy
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interpretation (3), because the necessary and sufficient conditions in Theorem 6 are different. In
fact, this characterization seems to be much more difficult than the other eight, also because the
exact meaning of the interpretation (3) depends on the functions α, α considered. In particular, for
the limits inferior and superior of the sequence pi (4), it seems plausible that the sufficient condition
of Theorem 6 is also necessary, but the proof does not seem to be straightforward.

In general, the results of the present section show that an empirical interpretation of imprecise
probabilities is possible only in very limited settings, because imprecise probabilities cannot be
estimated satisfactorily on the basis of finite amounts of data. This is hardly surprising when con-
sidering that imprecise probabilities are not identifiable in general under the interpretations (1) and
(2), and only asymptotically identifiable under the interpretation (3). For these reasons, it can be
interesting to study the estimability of the actual, finite-sample imprecise probabilities: that is, the
estimability of min{p1, . . . , pn} and max{p1, . . . , pn} on the basis of the outcomes X1, . . . , Xn of
the corresponding Bernoulli trials.

The concepts of uniformly consistent estimability, strong estimability, and consistent estima-
bility of the finite-sample imprecise probabilities [min{p1, . . . , pn}, max{p1, . . . , pn}] can be ob-
tained by replacing p with min{p1, . . . , pn} in (6), and p with max{p1, . . . , pn} in the analogue
expression for πn (the resulting concepts generalize the usual ones, since min{p1, . . . , pn} and
max{p1, . . . , pn} are not necessarily constant). The next theorem implies that also the finite-sample
imprecise probabilities have a very limited empirical meaning, since they can be estimated satisfac-
torily only when they are known to be precise.

Theorem 7 The following six statements are equivalent:

(i) [min{p1, . . . , pn}, max{p1, . . . , pn}] is uniformly consistently estimable under the ontologi-
cal indeterminacy interpretation (1) of [p, p] ∈ I,

(ii) [min{p1, . . . , pn}, max{p1, . . . , pn}] is uniformly consistently estimable under the identifi-
able ontological indeterminacy interpretation (3) of [p, p] ∈ I,

(iii) [min{p1, . . . , pn}, max{p1, . . . , pn}] is strongly estimable under the ontological indetermi-
nacy interpretation (1) of [p, p] ∈ I,

(iv) [min{p1, . . . , pn}, max{p1, . . . , pn}] is strongly estimable under the identifiable ontological
indeterminacy interpretation (3) of [p, p] ∈ I,

(v) [min{p1, . . . , pn}, max{p1, . . . , pn}] is consistently estimable under the ontological indeter-
minacy interpretation (1) of [p, p] ∈ I,

(vi) all intervals in I are degenerate.

The estimability of [min{p1, . . . , pn}, max{p1, . . . , pn}] under the epistemological indetermi-
nacy interpretation (2) is uninteresting, since it corresponds to the estimability of precise proba-
bilities, which is implied by Bernoulli’s law of large numbers. Of the other six possible charac-
terizations, the only one missing is again the one of consistent estimability under the identifiable
ontological indeterminacy interpretation (3): in fact, it can be shown that under this interpretation,
the consistent estimabilities of [min{p1, . . . , pn}, max{p1, . . . , pn}] and [p, p] are equivalent, and
so we are back to the difficulties of Theorem 6.
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4. Conclusion

We have seen that in particular situations involving incomplete data, imprecise probabilities can
have a clear empirical meaning as identification regions of frequentist, precise probabilities. Unfor-
tunately, such situations are exceptional, and imprecise probabilities do not have a generally valid,
clear empirical meaning, in the sense discussed in this paper.

Imprecise probabilities can be interpreted in several ways in terms of precise probabilities,
as done for example in the imprecise versions of the theories of Markov chains and probabilistic
graphical models. However, all these interpretations have a very limited empirical meaning, since
imprecise probabilities are strongly estimable (that is, empirically recognizable) only in situations
in which they are known to belong to a given set of pairwise disjoint imprecise probabilities. These
results get even worse when we consider the actual, finite-sample imprecise probabilities, instead
of the virtual, asymptotic ones. Anyway, examples of estimators have been given explicitly in this
paper for the cases in which imprecise probabilities are satisfactorily estimable.

A mathematically interesting open problem is the question for a necessary and sufficient condi-
tion on a set of possibly degenerate probability intervals [p, p], in order for them to be consistently
estimable on the basis of any sequence of independent Bernoulli trials with precise probabilities of
success pi ∈ [p, p] such that the sequence pi has p and p as limits inferior and superior, respectively.
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Abstract
Bayesian inference under imprecise prior information is studied: the starting point is a precise
strategy σ and a full B-conditional prior belief functionBelB , conveying ambiguity in probabilistic
prior information. In finite spaces, we give a closed form expression for the lower envelope P of
the class of full conditional probabilities dominating {BelB , σ} and, in particular, for the related
“posterior probabilities”. The assessment {BelB , σ} is a coherent lower conditional probability in
the sense of Williams and the characterized lower envelope P coincides with its natural extension.
Keywords: Conditional belief function, Bayesian conditioning rule, inference, ambiguity

1. Introduction

Bayesian inference is known to naturally fit into de Finetti’s theory of coherent (finitely additive)
conditional probabilities, where a coherent assessment can be always extended, generally not in a
unique way, to any superset of conditional events (de Finetti, 1975; Williams, 1975).

In some application domains (e.g., decision theory, economics, game theory and forensic anal-
ysis, to cite some) the prior knowledge could be only partially specified or, even worse, it could
refer to a different space of hypotheses. In these circumstances, instead of considering a single prior
distribution, one is forced to take into account a set of priors (see, e.g., (Dempster, 1967; DeRoberts
and Hartigan, 1981; Gilboa and Schmeidler, 1989)).

For instance, suppose that a pension system, based on the social security contributions Λ, is
modified by a legal reform so that the new pension scheme takes into account the contribution’s
years Θ. In order to use the previous information, we need to extract a new prior, starting from
the prior distribution P of Λ by taking into account the logical relations between Λ and Θ. There
could be possibly infinite probability distributions of (Λ,Θ) compatible with P , determining a lower
envelope for the distribution of Θ. In particular, if the initial prior information P is a full conditional
probability (Dubins, 1975), then for Θ we obtain a full B-conditional belief function (Coletti et al.,
2016b), i.e., a conditional totally monotone uncertainty measure. Now, considering the profession
X and a statistical model connectingX and Θ, the goal could be to draw inferences on Θ belonging
to a set of values A (e.g., social pension) under particular values of X (e.g., a person is a clerk).

Motivated by the previous discussion, the main aim of this paper is to prove a generalized
version of Bayes’ theorem, working with an ambiguous conditional prior information in the form
of a full B-conditional belief function BelB and a precise statistical model λ, the latter uniquely
determining a strategy σ (Dubins, 1975). A prior in the form of a full B-conditional belief function
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is not so uncommon. For instance, in Example 2, starting from an automatic system S which evolves
according to a Markov chain, we show how to generate a full B-conditional prior belief function on
the algebra spanned by the states of another unobservable automatic system T, taking into account
the logical constraints among the states of S and those of T.

Focusing on finite spaces, we provide a characterization of the lower envelope P of the class
of full conditional probabilities dominating {BelB, σ}. The assessment {BelB, σ} is a Williams-
coherent lower conditional probability and P turns out to be its natural extension (Williams, 1975).

Our results are connected with those proved in (Walley, 1981, 1991; Wasserman, 1990a,b;
Wasserman and Kadane, 1990): we generalize them in a finite context, since no assumption of
positivity for the (lower or upper) probability of the conditioning events is required.

2. Preliminaries

Let A be a Boolean algebra of events E’s, and denote with (·)c, ∨ and ∧ the usual Boolean opera-
tions of negation, disjunction and conjunction, respectively, and with ⊆ the partial order of impli-
cation. The sure event Ω and the impossible event ∅ coincide, respectively, with the top and bottom
elements ofA. IfA is finite, we denote with CA the subset of its atoms which form the finer partition
of Ω contained inA. DenoteA0 = A\{∅}, N is the set of natural numbers, I stands for an arbitrary
index set and 〈{Ei}i∈I〉 indicates the Boolean algebra generated by the set of events {Ei}i∈I .

A conditional event E|H is an ordered pair of events (E,H) with H 6= ∅. In particular, any
event E can be identified with the conditional event E|Ω. An arbitrary set of conditional events
G = {Ei|Hi}i∈I can always be embedded into a minimal set A×A0, where A = 〈{Ei, Hi}i∈I〉.

Recall the definition of coherent conditional probability essentially due to (de Finetti, 1975;
Holzer, 1984; Regazzini, 1985; Williams, 1975).

Definition 1 Let G = {Ei|Hi}i∈I be a set of conditional events. A function P : G → [0, 1] is a
coherent conditional probability if and only if, for every n ∈ N, every Ei1 |Hi1 , . . . , Ein |Hin ∈ G
and every real numbers s1, . . . , sn, denoting B = 〈{Eij , Hij}j=1,...,n〉 with set of atoms CB =
{C1, . . . , Cm}, the random gain defined on CB as G =

∑n
j=1 sj(1Eij − P (Eij |Hij ))1Hij satisfies

min
Cr⊆H0

0

G(Cr) ≤ 0 ≤ max
Cr⊆H0

0

G(Cr),

where H0
0 =

∨n
j=1Hij and, for every E ∈ B, 1E is its indicator defined on CB as 1E(Cr) = 1 if

Cr ⊆ E and 0 otherwise.

In particular, if G = A × A0 where A is a Boolean algebra, then P (·|·) is a coherent conditional
probability if and only if it satisfies the following conditions:

(C1) P (E|H) = P (E ∧H|H), for every E ∈ A and H ∈ A0;

(C2) P (·|H) is a finitely additive probability on A, for every H ∈ A0;

(C3) P (E ∧ F |H) = P (E|H) · P (F |E ∧H), for every H,E ∧H ∈ A0 and E,F ∈ A.

In this case P (·|·) is simply said a full conditional probability on A according to (Dubins, 1975).
If G = {Ei|Hi}i∈I is an arbitrary set, the coherence condition is equivalent to the existence of

a full conditional probability on the A = 〈{Ei, Hi}i∈I〉 extending the given assessment. This is
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a consequence of the conditional version of the fundamental theorem for probabilities (de Finetti,
1975; Regazzini, 1985; Williams, 1975): every coherent conditional probability P on an arbitrary
G can be extended, generally not in a unique way, to every superset of conditional events G′.

If A is a finite Boolean algebra, every full conditional probability P (·|·) on A is in bijection
with a unique linearly ordered class {P0, . . . , Pk} of probability measures on A whose supports
form a partition of Ω (Krauss, 1968). The class {P0, . . . , Pk} is called complete agreeing class and
represents the full conditional probability P (·|·) in the sense that, for every F |K ∈ A × A0, there
is a minimum index α ∈ {0, . . . , k} such that Pα(K) > 0 and P (F |K) = Pα(F∧K)

Pα(K) .
If G is an arbitrary set, we can have more complete agreeing classes, each of them obtained by

solving a suitable sequence of linear systems (Coletti and Scozzafava, 2002).
The set P = {P̃ (·|·)} of all coherent extensions of P to a superset G′ is a compact subset of the

space [0, 1]G
′

endowed with the product topology and the projection set on each element of G′ is a
(possibly degenerate) closed interval. The pointwise envelopes

P = minP and P = maxP,

are known as coherent lower and upper conditional probabilities (Coletti and Scozzafava, 2002),
where coherence here is intended in the sense of (Williams, 1975) (namely, Williams-coherence).
The envelopes P and P satisfy the duality property, i.e., P (E|H) = 1 − P (Ec|H), for every
E|H,Ec|H ∈ G′, so in the following we mainly deal with P .

In general, Williams-coherent lower conditional probabilities can be introduced without starting
from a precise coherent conditional probability (Williams, 1975):

Definition 2 A function P (·|·) on a set of conditional events G = {Ei|Hi}i∈I is a Williams-
coherent lower conditional probability if there is a class of P = {P̃ (·|·)} of coherent conditional
probabilities on G such that P = inf P .

The extendibility of every coherent conditional probability implies the extendibility, generally
not in a unique way, of every Williams-coherent lower conditional probability: the pointwise min-
imal of such extension is referred to as natural extension (Williams, 1975). For checking that an
assessment is Williams-coherent in a finite setting and to find its natural extension see (Capotorti
et al., 2003; Coletti and Scozzafava, 2002).

3. Full B-conditional belief and plausibility functions

A belief function Bel (Dempster, 1967; Shafer, 1976) on a finite Boolean algebra A with set of
atoms CA is a function such that Bel(∅) = 0, Bel(Ω) = 1 and satisfying the n-monotonicity
property for every n ≥ 2, i.e., for every E1, . . . , En ∈ A,

Bel

(
n∨

i=1

Ei

)
≥

∑

∅6=I⊆{1,...,n}
(−1)|I|+1Bel

(∧

i∈I
Ei

)
.

The associated dual function Pl, defined as Pl(E) = 1 − Bel(Ec), for every E ∈ A, is said
plausibility function. Both Bel and Pl are particular (normalized) capacities (Choquet, 1953), i.e.,
they are monotone with respect to the ⊆ relation. A belief function Bel (and so its dual Pl) on a
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finite Boolean algebra is completely characterized by its Möbius inversion m : A → [0, 1], also
known as basic probability assignment (Shafer, 1976), defined, for every E ∈ A, as

m(E) =
∑

B⊆E
(−1)|CE\B|Bel(B),

where CE\B = {Dr ∈ CA : Dr ⊆ E ∧Bc}. In particular,m satisfiesm(∅) = 0 and
∑

E∈Am(E) =
1, and, for every E ∈ A, it holds

Bel(E) =
∑

B⊆E
m(E) and Pl(E) =

∑

B∧E 6=∅
m(E).

Denote with FBel the set of focal elements of Bel, where an event A in A is a focal element of Bel
whenever m(A) > 0.

Given a finite partition L = {H1, . . . ,Hn} of Ω, a capacity ϕ on AL = 〈L〉 and a function
X : L → R, the Choquet integral of X with respect to ϕ is defined as

C
∫
X(Hi)ϕ(dHi) =

n∑

i=1

[
X(Hρ(i))−X(Hρ(i−1))

]
ϕ
(
Hρ(i) ∨ . . . ∨Hρ(n)

)
,

where ρ is a permutation of {1, . . . , n} such that X(Hρ(1)) ≤ . . . ≤ X(Hρ(n)) and X(Hρ(0)) := 0.
We write dHi since we are integrating a function defined on the partition L = {H1, . . . ,Hn} with
respect to a capacity defined on AL = 〈L〉.

We recall the definitions of C-class and full B-conditional belief and plausibility functions given
in (Coletti et al., 2016b).

Definition 3 LetA be a finite Boolean algebra. A linearly ordered class {Bel0, . . . , Belk} of belief
functions on A with sets of focal elements {FBel0 , . . . ,FBelk} is said a covering class, or C-class
for short, if it satisfies the following covering condition

∨

E∈⋃kα=0 FBelα

E = Ω. (1)

By duality, a linearly ordered class {Pl0, . . . , P lk} of plausibility functions on A is said C-class
if the corresponding class of dual belief functions {Bel0, . . . , Belk} is. By means of a C-class
of belief functions we define the concept of full B-conditional belief function, where B stands for
Bayesian.

Definition 4 Let A be a finite Boolean algebra. A function BelB : A × A0 → [0, 1] is a full
B-conditional belief function on A if there exists a C-class {Bel0, . . . , Belk} of belief functions
on A whose dual plausibility functions are {Pl0, . . . , P lk}, such that, for every E|H ∈ A×A0, if
E ∧H = H then BelB(E|H) = 1, while if E ∧H 6= H

BelB(E|H) =
BelαE,H (E ∧H)

BelαE,H (E ∧H) + PlαE,H (Ec ∧H)
, (2)

where αE,H = min{α ∈ {0, . . . , k} : Belα(E ∧H) + Plα(Ec ∧H) > 0}.
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The previous definition introduces a full B-conditional belief function through a generalized
Bayesian conditioning rule corresponding to the one originally given in (Walley, 1981) for 2-
monotone capacities. The Bayesian conditioning rule has been discussed for belief functions in
(Dempster, 1967; Dubois and Denœux, 2012; Fagin and Halpern, 1991; Jaffray, 1992).

The difference with the previous ones is that the rule given in Definition 4 covers also the case
in which Bel(E ∧H|Ω) +Pl(Ec ∧H|Ω) = Bel0(E ∧H) +Pl0(E

c ∧H) = 0, since it relies not
on a single belief function but on a linearly ordered class of belief functions.

In this paper conditional belief functions are always intended in the sense of Definition 4: notice
that full conditional probabilities reveal to be both full B-conditional belief and full B-conditional
plausibility functions.

For H ∈ A0, the dual conditional function PlB of a full B-conditional belief function BelB on
A is defined, for every E ∈ A, as

PlB(E|H) = 1−BelB(Ec|H),

and is called full B-conditional plausibility function. By duality we immediately have PlB(E|H) =
0 when E ∧H = ∅, while if E ∧H 6= ∅ it holds

PlB(E|H) = 1−BelB(Ec|H) =
PlαEc,H (E ∧H)

PlαEc,H (E ∧H) +BelαEc,H (Ec ∧H)
. (3)

Notice that a full conditional probability P on A is both a full B-conditional belief function and a
full B-conditional plausibility function.

In (Coletti et al., 2016b) it is proved that the conditional measures BelB and PlB determine the
non-empty compact set

PB = {π̃ : π̃ is a full conditional probability on A, BelB ≤ π̃ ≤ PlB}, (4)

for which it holds BelB = minPB and PlB = maxPB . In the same paper we prove that, for every
full B-conditional belief function BelB on A it is always possible to find a different finite Boolean
algebra B and a full conditional probability P on B such that PB can be recovered as the set of
coherent extensions of P to A×A0 and, thus, BelB and PlB as the envelopes of PB .

In (Coletti et al., 2016a) it is also shown that if all the belief functions in a C-class reduce to
necessity measures then the corresponding full B-conditional belief function is a full B-conditional
necessity measure and its dual is a full B-conditional possibility measure. In particular, interpreting
the conditional measures BelB and PlB as envelopes, a necessary and sufficient condition (involv-
ing the finite Boolean algebras B and A and the full conditional probability P ) is given for BelB
and PlB to be full B-conditional necessity and possibility measures.

Since a full B-conditional belief function BelB determines the non-empty compact set PB of
full conditional probabilities dominating it, its use in a Bayesian inferential procedure implies an
ambiguous specification of a full conditional probability.

4. Bayesian inference with full B-conditional prior belief functions

Let L = {H1, . . . ,Hn} and E = {E1, . . . , Em} be two finite partitions of Ω and consider the
Boolean algebras AL = 〈L〉, AE = 〈E〉, A = 〈AL ∪ AE〉. The partitions L and E play the roles of
the sets of mutually exclusive and exhaustive “hypotheses” and “evidences”, respectively.
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In the standard Bayesian setting, a statistical model (see, e.g., (Torgersen, 1991)) is given on
AE × L, where the latter is a function λ : AE × L → [0, 1] such that, for every Hi ∈ L:

(L1) λ(B|Hi) = 0 if B ∧Hi = ∅ and λ(B|Hi) = 1 if B ∧Hi = Hi, for every B ∈ AE ;

(L2) λ(·|Hi) is a probability on AE .

Proposition 1 in (Petturiti and Vantaggi, 2017) implies that any statistical model λ on AE × L
uniquely extends to a strategy onA×L (see, e.g., (Dubins, 1975)) which is a function σ : A×L →
[0, 1] such that, for every Hi ∈ L:

(S1) σ(Hi|Hi) = 1;

(S2) σ(·|Hi) is a probability on A.

By Theorem 5 in (Dubins, 1975), for every full conditional prior probability π on AL, the
assessment {π, σ} (and, in particular, {π, λ}) is a coherent conditional probability, therefore it can
be extended, generally not in a unique way, to a full conditional probability on A. This implies
that, given a full B-conditional prior belief function BelB on A, the assessment {BelB, σ} (and, in
particular, {BelB, λ}) is a Williams-coherent lower conditional probability.

Remark 5 The assessment {BelB, σ} determines a Williams-coherent lower conditional probabil-
ity P on the set of conditional events G = (AL ×A0

L) ∪ (A×L) such that P |AL×A0
L

= BelB and
PA×L = σ so, with a little abuse of terminology, {BelB, σ} is directly referred to be a Williams-
coherent lower conditional probability.

Remark 6 Recall that, in view of the finite setting adopted in this paper, the notion of conditioning
for lower probabilities due to Williams coincides with that due to (Walley, 1991) since in this case
the conglomerability condition is automatically satisfied.

Let BelB be a full B-conditional belief function on AL and σ a strategy on A × L and denote
with PB the set of full conditional probabilities on AL dominating BelB . Consider

P = {P̃ : P̃ is a full conditional probability on A extending {π̃, σ}, π̃ ∈ PB},

which is a non-empty compact subset of [0, 1]A×A
0

endowed with the product topology, whose
envelopes are P = minP and P = maxP . The lower envelope P (·|·) turns out to be the natural
extension of the Williams-coherent lower conditional probability {BelB, σ}.

The following theorem provides a characterization of the lower envelope P (·|·), relying on the
functions defined, for every F,K ∈ A and A ∈ A0

L such that K ⊆ A, as

L(F,K;A) = min
π̃∈PB

{
n∑

i=1

σ(FK|Hi)π̃(Hi|A) :

n∑

i=1

σ(F cK|Hi)π̃(Hi|A) = P (F cK|A)

}
,

U(F,K;A) = max
π̃∈PB

{
n∑

i=1

σ(FK|Hi)π̃(Hi|A) :

n∑

i=1

σ(F cK|Hi)π̃(Hi|A) = P (F cK|A)

}
,

where we write FK and F cK in place of F ∧K and F c ∧K to save space.
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Theorem 7 The lower envelope P (·|·) is such that, for every F |K ∈ A×A0
L, if F ∧K = K, then

P (F |K) = 1, otherwise:

(i) if K ∈ A0
L, then

P (F |K) = C
∫
σ(F |Hi)BelB(dHi|K);

(ii) if K ∈ A0 \ A0
L, then if there exists A ∈ A0

L such that K ⊆ A and P (K|A) > 0 we have
that

P (F |K) = min

{
P (F ∧K|A)

P (F ∧K|A) + U(F c,K;A)
,

L(F,K;A)

L(F,K;A) + P (F c ∧K|A)

}
,

otherwise P (F |K) = 0.

Proof The statement is trivial if F ∧K = K since in this case P̃ (F |K) = 1 for every P̃ ∈ P , thus
suppose F ∧K 6= K. Condition (i) follows since, if K ∈ A0

L then

P (F |K) = min
P̃∈P

P̃ (F |K) = min
π̃∈PB

n∑

i=1

σ(F |Hi)π̃(Hi|K)

= min
π̃∈CBelB(·|K)

n∑

i=1

σ(F |Hi)π̃(Hi|K) = C
∫
σ(F |Hi)BelB(dHi|K),

where CBelB(·|K) = {π̃(·|K)} is the core of probability measures on AL induced by BelB(·|K)
and the last equality follows by Proposition 3 in (Schmeidler, 1986). To prove condition (ii) let us
consider K ∈ A0 \ A0

L. If there exists A ∈ A0
L such that K ⊆ A and P (K|A) > 0 we have that

P̃ (K|A) > 0 for every P̃ ∈ P , thus P (F |K) = min
P̃∈P

P̃ (F∧K|A)
P̃ (F∧K|A)+P̃ (F c∧K|A) . So, the conclusion

follows since x
x+y is increasing in x and decreasing in y, and, for every P̃ ∈ P , P̃ (·|A) is the convex

combination of probabilities P1(·|A) and P2(·|A), P1, P2 ∈ P , attaining the lower and the upper
envelopes, respectively, on F ∧K (or on F c ∧K) and P̃ (F |K) ≥ min{P1(F |K), P2(F |K)}. The
remaining case, realizing when for all A ∈ A0

L with K ⊆ A it holds P (K|A) = 0, is proven in
analogy to the proof of Lemma 3 in (Petturiti and Vantaggi, 2017).

Restricting to a finite setting, the previous theorem generalizes some results proved in (Coletti
et al., 2014) in which an ambiguous unconditional prior is considered, either in the form of a belief
function or a 2-monotone capacity.

A simplification of condition (ii) of Theorem 7 is obtained when the functions on L, defined as
X(·) = σ(F ∧H|·) and (1− Y (·)) = (1− σ(F c ∧H|·)), are comonotonic (see, e.g., (Denneberg,
1994)), i.e., for every Hh, Hk ∈ L, [X(Hh) − X(Hk)] · [(1 − Y (Hh)) − (1 − Y (Hk))] ≥ 0,
as shown by the following Proposition 8. In particular, this happens for all conditional events in
AL × A0

E related to “posterior probabilities”, obtaining, for a finite setting, a generalization of
results in (Wasserman, 1990a).

Proposition 8 For every F |K ∈ A×A0 such that F ∧K 6= K, K ∈ A0 \A0
L and there existsA ∈

A0
L such that K ⊆ A and P (K|A) > 0, if X(·) = σ(F ∧H|·) and (1−Y (·)) = (1−σ(F c∧H|·))

are comonotonic then

P (F |K) =
P (F ∧K|A)

P (F ∧K|A) + P (F c ∧K|A)
.
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Proof For every A ∈ A0
L, BelB(·|A) is a totally monotone capacity on AL inducing a core

CBelB(·|A) = {π̃(·|A)} of probability measures onAL, moreover, the functionsX(·) and (1−Y (·))
are comonotonic.

By Proposition 6.26 in (Troffaes and de Cooman, 2014) there exists π̃(·|A) ∈ CBelB(·|A) such
that

∑n
i=1X(Hi)π̃(Hi|A) = C

∫
X(Hi)BelB(dHi|A) and

∑n
i=1(1 − Y (Hi))π̃(Hi|A) = C

∫
(1 −

Y (Hi))BelB(dHi|A).
Since

∑n
i=1(1−Y (Hi))π̃(Hi|A) = 1−∑n

i=1 Y (Hi)π̃(Hi|A) and C
∫

(1−Y (Hi))BelB(dHi|A) =
1 − C

∫
Y (Hi)PlB(dHi|A), it follows C

∫
Y (Hi)PlB(dHi|A) =

∑n
i=1 Y (Hi)π̃(Hi|A) and this im-

plies P (F ∧K|A) = C
∫
X(Hi)BelB(dHi|A) =

∑n
i=1X(Hi)π̃(Hi|A) = L(F,K;A) and P (F c ∧

K|A) = C
∫
Y (Hi)PlB(dHi|A) =

∑n
i=1 Y (Hi)π̃(Hi|A) = U(F c,K;A).

The following example shows that, though BelB(·|K) is a belief function on AL, for every
K ∈ A0

L, and σ(·|Hi) is a probability measure on A, for every Hi ∈ L, the function P (·|K) can
fail 2-monotonicity, for some K ∈ A0.

Example 1 Let L = {H1, H2, H3} and E = {E1, E2, E3, E4} be logically independent partitions
of Ω, and takeAL = 〈L〉,AE = 〈E〉 andA = 〈AL∪AE〉. LetBelB be the full B-conditional belief
function on AL determined by the C-class of belief functions {Bel0, Bel1} displayed below

AL ∅ H1 H2 H3 H1 ∨H2 H1 ∨H3 H2 ∨H3 Ω

Bel0 0 1
2 0 0 1 1

2 0 1
Bel1 0 1

2 0 0 1
2

1
2

1
2 1

where FBel0 = {H1, H1 ∨H2} and FBel1 = {H1, H2 ∨H3}, thus condition (1) of Definition 3 is
satisfied.

Let λ be the statistical model on AE × L such that

λ(Ej |H1) = λ(Ej |H3) =
1

6
, for j = 1, 2, 3, and λ(E4|H1) = λ(E4|H3) =

1

2
,

λ(E1|H2) = λ(E3|H2) =
1

2
, and λ(E2|H2) = λ(E4|H2) = 0.

which uniquely extends to a strategy σ onA×L by Proposition 1 in (Petturiti and Vantaggi, 2017).
Let K = H2 ∨H3, A = E1 ∨E2 and B = E2 ∨E3. Simple computations show that BelB(·|K) is
a belief function vacuous at K, so, we have

P (A ∨B|K) = C
∫
σ(A ∨B|Hi)BelB(dHi|K) = inf

Hi⊆K
σ(A ∨B|K) =

1

2
,

P (A|K) = C
∫
σ(A|Hi)BelB(dHi|K) = inf

Hi⊆K
σ(A|K) =

1

3
,

P (B|K) = C
∫
σ(B|Hi)BelB(dHi|K) = inf

Hi⊆K
σ(B|K) =

1

3
,

P (A ∧B|K) = C
∫
σ(A ∧B|Hi)BelB(dHi|K) = inf

Hi⊆K
σ(A ∧B|K) = 0.

Since P (A ∨B|K) < P (A|K) + P (B|K)− P (A ∧B|K), P (·|K) is not 2-monotone.
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Proposition 8 is a generalization of the ε-contamination model presented in Example 2.3 in
(Huber, 1981), where the author provides a characterization of the lower envelope P on AL × E ,
starting from a statistical model λ and an unconditional prior belief function Bel obtained as the ε-
contamination of a reference prior probability. In such case, in (Huber, 1981) it is stated that P (·|Ej)
is a 2-monotone capacity on AL, for every Ej ∈ E , nevertheless, as shown in our Example 2 the
envelope P (·|K) can fail 2-monotonicity on the whole A, for some K ∈ A0.

The following example shows that a full B-conditional prior belief function can be obtained
starting from a full conditional prior probability defined on a different algebra.

Example 2 We consider an automatic system S that can assume three possible states s1, s2 and
s3. Let S = {S1, S2, S3} be the partition of Ω, where Si = “S is in state si”, for i = 1, 2, 3, and
denote AS = 〈S〉. The evolution of S is determined by the Markov chain whose transition matrix
and graph are reported in Figure 1.

A =




1 0 0
1
3

1
3

1
3

1
3

1
3

1
3




Figure 1: Transition matrix and graph of the Markov chain related to S

Suppose that the initial state of S is selected at random and that we observe the system evolve
indefinitely in time, so, we can take the limit probabilistic behaviour as our prior information on S.
The starting probability distribution on the states of S is π(0) =

(
1
3 ,

1
3 ,

1
3

)
, while after n > 0 steps

we have π(n) = π(n−1)A =
(

1−
(
2
3

)n+1
, 13
(
2
3

)n
, 13
(
2
3

)n).

It is easily seen that the probability distribution π(n) is positive for every n ≥ 0, so, it uniquely
extends to a full conditional probability (still denoted with π(n)) on AS setting, for every A|B ∈
AS × A0

S , π(n)(A|B) = π(n)(A∧B)

π(n)(B)
. Thus, we have a sequence {π(n) : n = 0, 1, 2, . . .} of full

conditional probabilities on AS converging pointwise to the full conditional probability π(∞) on
AS defined below

AS ∅ S1 S2 S3 S1 ∨ S2 S1 ∨ S3 S2 ∨ S3 Ω

π(∞)(·|S1) 0 1 0 0 1 1 0 1

π(∞)(·|S2) 0 0 1 0 1 0 1 1

π(∞)(·|S3) 0 0 0 1 0 1 1 1

π(∞)(·|S1 ∨ S2) 0 1 0 0 1 1 0 1

π(∞)(·|S1 ∨ S3) 0 1 0 0 1 1 0 1

π(∞)(·|S2 ∨ S3) 0 0 1
2

1
2

1
2

1
2 1 1

π(∞)(·|Ω) 0 1 0 0 1 1 0 1
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The full conditional probability π(∞) is determined by the complete agreeing class {P0, P1} of
probability measures on AS such that P0(·) = π(∞)(·|Ω) and P1(·) = π(∞)(·|S2 ∨ S3).

Consider now a second automatic system T that is not directly observable: the only information
we have is that T can assume three possible states t1, t2 and t3, and that if S is in state si then
T is not in state ti, for i = 1, 2, 3. Let T = {T1, T2, T3} be the partition of Ω, where Ti =
“T is in state ti”, for i = 1, 2, 3, and denote AT = 〈T 〉 with Ti ∧ Si = ∅, for i = 1, 2, 3.

As proven in (Coletti et al., 2016b) setting, for every B ∈ AT ,

(B)∗ =
∨
{Si ∈ S : Si ⊆ B}, Bel0(B) = P0((B)∗) and Bel1(B) = P1((B)∗),

we obtain a C-class of belief functions {Bel0, Bel1} on AT which, in turn, determines the full
B-conditional belief function on AT reported below

AT ∅ T1 T2 T3 T1 ∨ T2 T1 ∨ T3 T2 ∨ T3 Ω

BelB(·|T1) 0 1 0 0 1 1 0 1
BelB(·|T2) 0 0 1 0 1 0 1 1
BelB(·|T3) 0 0 0 1 0 1 1 1

BelB(·|T1 ∨ T2) 0 0 0 0 1 0 0 1
BelB(·|T1 ∨ T3) 0 0 0 0 0 1 0 1
BelB(·|T2 ∨ T3) 0 0 0 0 0 0 1 1
BelB(·|Ω) 0 0 0 0 0 0 1 1

Suppose that the state of the unobservable system T can be verified through a detector D that
returns one of three possible values d1, d2 and d3, with di corresponding to the state ti, for i =
1, 2, 3, with a reliability of 90% and equal chances on failures. Let D = {D1, D2, D3} be the
partition of Ω, where Di = “D returns di”, for i = 1, 2, 3, and denote AD = 〈D〉. Let A =
〈AT ∪ AD〉 and consider the statistical model on AD × T singled out by

λ(Di|Ti) = 90%, λ(Dj |Ti) = λ(Dk|Ti) = 5%, for different i, j, k ∈ {1, 2, 3},

that uniquely extends to a strategy σ on A× T by Proposition 1 in (Petturiti and Vantaggi, 2017).
The full B-conditional belief function BelB encodes all our prior information on T and can

be used together with σ to draw Bayesian inferences. At this aim, suppose that the detector D
shows the value dj , for j = 1, 2, 3, then the lower posterior distribution on the states of T can be
easily determined using Proposition 8. For instance, since P (Dj |Ω) > 0, P (T1 ∧Dj |Ω) = 0 and
P (T c1 ∧Dj |Ω) > 0, for j = 1, 2, 3, we get

P (T1|Dj) =
P (T1 ∧Dj |Ω)

P (T1 ∧Dj |Ω) + P (T c1 ∧Dj |Ω)
= 0,

and, analogously, we can compute P (T c1 |Dj) = 1, so, P (T1|Dj) = P (T1|Dj) = 0, i.e., the
observation of the detector D does not change our degree of belief on T1 since it is BelB(T1|Ω) =
PlB(T1|Ω) = 0.

5. Conclusions

We show that, as long as we consider a precise strategy σ, the introduction of ambiguity in the
prior information through a full B-conditional belief function BelB has straightforward treatment:
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a characterization for the envelopes of the class of full conditional probabilities dominating the
assessment {BelB, σ} is provided. The entire procedure lives inside Williams framework and the
characterized lower envelope reveals to be the natural extension of {BelB, σ}. Our aim for future
research is to introduce ambiguity also in the strategy by considering an imprecise strategy β such
that β(·|Hi) is a belief function, for every Hi ∈ L, possibly removing the finiteness assumption.
This would lead to a theory to compare with that of (Walley, 1991).
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Abstract
Several consistency notions for lower previsions (coherence, convexity, others) require that the
suprema of certain gambles, having the meaning of gains, are non-negative. The limit situation that
a gain supremum is zero is termed Weak Dutch Book (WDB). In the literature, the special case of
WDBs with precise probabilities has mostly been analysed, and strict coherence has been proposed
as a radical alternative. In this paper the focus is on WDBs and generalised strict coherence, termed
strict consistency, with imprecise previsions. We discuss properties of lower previsions incurring
WDBs and conditions for strict consistency, showing in both cases how they are differentiated by
the degree of consistency of the given uncertainty assessment.
Keywords: Weak Dutch Books; (Williams’) coherence; convex previsions; strict consistency.

1. Introduction

In the coherence approach to the theory of Imprecise Probabilities, consistency of an uncertainty
measure is formalised requiring that the supremum of a certain gamble (a bounded random number,
called gain) is non-negative. This is a common feature to several consistency notions, like coherence
for lower previsions (Walley (1991)), Williams’ coherence (W -coherence, Williams (1975)), con-
vexity (Pelessoni and Vicig (2005b)), coherence for precise previsions or dF -coherence (de Finetti
(1974)), and others. These concepts allow for a behavioural interpretation: the gain has the mean-
ing of an agent’s overall gain from a finite number of bets (rules for selecting the admissible gains
distinguish the various consistency concepts).

Within this context, the limiting situation that the supremum of some gain G is precisely zero
is termed Weak Dutch Book (WDB). In fact, under the behavioural interpretation, an agent whose
gain is G would at best gain nothing, but otherwise lose, from the corresponding overall bet.

The literature on WDBs is not extended, and mostly focused on WDBs for dF -coherent proba-
bilities. Contributions go back to the fifties of the last century (Kemeny (1955); Shimony (1955)),
when de Finetti’s theory was getting widespread. In an attempt to avoid WDBs, the notion of strict
coherence was introduced, although it became soon clear that it is subject to important constraints.

Properties of an uncertainty assessment incurring a WDB received a lesser attention, and the
whole issue was rarely considered outside dF -coherence. The agent’s beliefs of incurring a real
loss were investigated in Crisma (2006) for dF -coherent probabilities, and in Vicig (2010) for (un-
conditional) coherent lower/upper previsions.

After introducing some preliminary material in Section 2, in this paper we focus precisely on
the properties of WDB assessments, and on how they are differentiated under different consistency
assumptions. We especially discuss W -coherence, convexity and dF -coherence. Section 3 is con-
cerned with a ‘local precision’ property. This means that if the lower prevision P satisfies in general
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a certain consistency requirement, then P complies with stronger properties, that make it closer to
a precise prevision, on the set DG of (possibly conditional) gambles appearing in the expression
of a WDB gain for P . We prove one such relationship for the case of conditional convex lower
previsions (Proposition 10). This implies that, if P is an unconditional convex prevision, P is the
translation of a dF -coherent prevision on DG, while if P is a coherent lower prevision on its do-
main, it is precisely a dF -coherent prevision on DG. A result for W -coherence is also supplied.
Section 4 discusses the agent’s beliefs about incurring a real Dutch Book with a WDB gain. Again,
these are differentiated by consistency of the assessment, ranging from near-certainty of avoiding
any losses bounded away from zero with dF -coherence to no such reassuring beliefs for convexity,
with W -coherence somewhat intermediate. We also discuss interdependencies between events of
positive probability and maxima for WDB gains. In Section 5 strict consistency, a generalisation of
strict coherence, is explored. After recalling a result in Corsato et al. (2017) for W -coherence, the
perspective is that of analysing various strict consistency conditions, which are equivalent with dF -
coherence, but not necessarily so in an imprecise framework (Proposition 21). Section 6 concludes
the paper. Results not proven here may be found in the extended paper Corsato et al. (2017).

2. Preliminaries

Denote with D an arbitrary non-empty set of possibly conditional gambles. In the sequel, D will
be the domain of a (precise or imprecise) conditional or unconditional prevision.

In the conditional case, the generic element (conditional gamble) of D is X|B, where X is a
gamble and B is a non-impossible event. In the unconditional case, we shall simply term X the
generic element (gamble) of D.

The simplest non-trivial gamble is the indicator IE of an event E. We shall not distinguish
explicitly IE and E, using the same symbol E for both. Thus we may speak of a set of events (of
conditional events) D, when for any X ∈ D (for any X|B ∈ D), X is an (indicator of) event.

We recall the definition of dF -coherence for a precise prevision. In the sequel N+ = N \ {0}.

Definition 1 Given P : D → R, P is a (conditional) dF -coherent prevision on D if, ∀n ∈ N+,
∀X1|B1, . . . , Xn|Bn ∈ D, ∀s1, . . . , sn ∈ R, defining

G =

n∑

i=1

siBi

(
Xi − P (Xi|Bi)

)
, B =

n∨

i=1

Bi, (1)

it holds that sup(G|B) ≥ 0.

If D is made of unconditional gambles only, then (1) simplifies to

G =

n∑

i=1

si
(
Xi − P (Xi)

)
(B = Ω), (2)

and consequently the coherence condition reduces to supG ≥ 0.

The condition of dF -coherence allows a betting (or behavioural) interpretation, where gi = si(Xi−
P (Xi)) in (2) is an elementary gain with stake si. It represents the agent’s gain from buying (if
si > 0) or selling (if si < 0) siXi for siP (Xi). Thus the condition supG ≥ 0 requires that no
finite combination of elementary gains produces an overall uniformly negative gain to the agent.
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The other consistency concepts we recall here have a similar betting interpretation. Actually,
they can be derived from dF -coherence simply by introducing constraints on the stakes si. Their
definitions and a few basic properties are laid down below (for more on this topic see e.g. Pelessoni
and Vicig (2005b, 2009); Troffaes and de Cooman (2014); Walley (1991); Williams (1975)). Prior
to this, let us recall some properties of dF -coherent previsions to be employed later on.

Proposition 2 If P is a dF -coherent prevision on D, then there exists a dF -coherent extension of
P on any D′ ⊇ D. Moreover, the following properties hold whenever their terms are defined:

(a) P (aX + bY |B) = aP (X|B) + bP (Y |B), ∀a, b ∈ R (linearity).

(b) P (AX|B) = P (A|B)P (X|A ∧B), A ∧B 6= ∅ (product rule).

Definition 3 Let P : D → R be given. P is a W -coherent lower prevision on D if, ∀n ∈ N,
∀X0|B0, X1|B1, . . . , Xn|Bn ∈ D, ∀si ≥ 0, with i = 0, 1, . . . , n, defining

G =
n∑

i=1

siBi

(
Xi − P (Xi|Bi)

)
− s0B0

(
X0 − P (X0|B0)

)
, B =

n∨

i=0

Bi,

it holds that sup(G|B) ≥ 0.

W -coherence was introduced in Williams (1975); the structure-free form in Definition 3 was em-
ployed in Pelessoni and Vicig (2009). In the unconditional case, it is equivalent to Walley’s coher-
ence (Walley, 1991, Section 2.5.4 (a)), while it includes (strictly) Walley’s definition of coherence
in (Walley, 1991, Section 7.1.4 (b)) in the conditional environment.

Proposition 4 Let P : D → R be a W -coherent lower prevision on D. Then P has a least-
committal W -coherent extension E on any D′ ⊇ D, termed natural extension: E = P on D, and
whatever is P ∗, W -coherent extension of P on D′, E ≤ P ∗ on D′. Moreover, for X|B, Y |B ∈ D,

(a) If X|B ≤ Y |B, then P (X|B) ≤ P (Y |B) (monotonicity).

(b) P (X|B) ∈ [inf(X|B), sup(X|B)] (internality).1

Proposition 5 (Envelope theorem) Given P : D → R, P is a W -coherent lower prevision on D if
and only if there exists a non-empty set P of dF -coherent previsions on D such that, ∀X|B ∈ D, it
holds that P (X|B) = min{P (X|B) : P ∈ P}.

Definition 6 Given P : D → R,

(a) P is a convex lower prevision onD if, ∀n ∈ N+, ∀X0|B0, X1|B1, . . . , Xn|Bn ∈ D, ∀si ≥ 0,
with i = 1, . . . , n, and

∑n
i=1 si = 1 (convexity condition), defining

Gc =

n∑

i=1

siBi

(
Xi − P (Xi|Bi)

)
−B0

(
X0 − P (X0|B0)

)
, B =

n∨

i=0

Bi,

it holds that sup(Gc|B) ≥ 0.

1. Being also W -coherent, a dF -coherent prevision satisfies properties (a), (b) too. Property (a) (monotonicity) also
holds for a convex lower prevision (Definition 6).
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(b) P is centered convex on D if it is convex on D and ∀X|A ∈ D, ∅|A ∈ D and P (∅|A) = 0.

Proposition 7 (Envelope theorems with convex previsions) Let P : D → R be given. Then

(a) (Implicit Envelope Theorem, Pelessoni and Vicig (2005a)) P is a convex lower prevision on
D if and only if there exists a non-empty set P of dF -coherent previsions such that ∀X0|B0 ∈
D,∃ PX0|B0

∈ P: ∀X|B ∈ D

PX0|B0
(B|B ∨B0)(PX0|B0

(X|B)− P (X|B)) ≥
PX0|B0

(B0|B ∨B0)(PX0|B0
(X0|B0)− P (X0|B0)).

(3)

(b) (Envelope Theorem) With unconditional lower previsions, P is convex on D if and only if
there exist a non-empty set P of dF -coherent previsions on D and α : P → R such that,
∀X ∈ D, it holds that P (X) = min{P (X) + α(P ) : P ∈ P}.
Moreover, P is centered if and only if min{α(P ) : P ∈ P} = 0.

Next to lower previsions, upper previsions could be assessed. Customarily, one refers to just one
type of previsions by the conjugacy relation: P (−X|B) = −P (X|B). Using conjugacy, the con-
sistency notions for lower previsions and their properties can be expressed for upper previsions.

The various gains we recalled (G,G,Gc) are gambles themselves, being functions of a finite
number of gambles in D (and, in the conditional case, of indicators of their conditioning events).
We mention next some other concepts regarding gains for later use.

Definition 8 Let G be the gain in Definition 3.
Then DG = {X0|B0, X1|B1, . . . , Xn|Bn} ⊆ D is the set of conditional gambles in G.
The coarsest partition G|B is defined on is termed PG|B. In other words, the atoms ω|B of

PG|B correspond to the distinct jointly possible values ofX0, X1, . . . , Xn that implyB =
∨n

i=0Bi.
We say that G is a WDB gain if sup(G|B) = 0.

Analogous definitions apply to the other gains we considered (for instance, DGc
with Gc).

Given a partition P, the powerset of P is called A(P). With a conditional gamble X|B, if X is
defined on P and B ∈ A(P) \ {∅}, then X|B is defined on P|B = {ω|B : ω ∈ P, ω ⇒ B}.

3. Local Precision Properties of Weak Dutch Books

It is not difficult to obtain WDB gains, see the following simple example.

Example 1 Let E ∈ D, with ∅ 6= E 6= Ω. Let P 1, P 2 : D → R be such that P 1(E) = 0, P 2(E) =
1. Then P 1, P 2 are coherent lower probabilities on {E}. Consider the gains G1 = −s(E −
P 1(E)) = −sE and G2 = s(E − P 2(E)) = s(E − 1), with s > 0. Then maxG1 = G1(¬E) =
0 = G2(E) = maxG2, that is G1, G2 are WDB gains associated with P 1, P 2, respectively.

In this section, we show that the existence of a WDB imposes some constraints both on convex and
on coherent imprecise previsions, as for the gambles involved in the corresponding WDB gain.

Let us start with a convex lower prevision P (·|·). Its properties on those DGc
derived from

WDB gains are investigated in Proposition 10.
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Lemma 9 Let P : D → R be a conditional convex lower prevision, Gc, B be as in Definition 6.
Then, any dF -coherent prevision PX0|B0

satisfying (3) is such that

PX0|B0
(Gc|B) =

n∑

i=1

siPX0|B0
(Bi ∨B0|B)[PX0|B0

(Bi|Bi ∨B0)(PX0|B0
(Xi|Bi)− P (Xi|Bi))

− PX0|B0
(B0|Bi ∨B0)(PX0|B0

(X0|B0)− P (X0|B0))] ≥ 0.

(4)

Proof Let PX0|B0
satisfy (3). By Proposition 2 (a), recalling also that

∑n
i=1 si = 1, any dF -

coherent extension of PX0|B0
(still termed PX0|B0

) on a large enough set is such that

PX0|B0
(Gc|B) =

n∑

i=1

si[PX0|B0

(
Bi(Xi−P (Xi|Bi))|B

)
−PX0|B0

(
B0(X0−P (X0|B0))|B

)
]. (5)

In general, we have that, for i = 0, 1, . . . , n,

PX0|B0

(
Bi(Xi − P (Xi|Bi))|B

)
= PX0|B0

(
BiXi|B − P (Xi|Bi)Bi|B

)

= PX0|B0
(BiXi|B)− P (Xi|Bi)PX0|B0

(Bi|B)

= PX0|B0
(Xi|Bi ∧B)PX0|B0

(Bi|B)− P (Xi|Bi)PX0|B0
(Bi|B)

=
(
PX0|B0

(Xi|Bi)− P (Xi|Bi)
)
PX0|B0

(Bi|B),

using Proposition 2 (a) at the second equality, Proposition 2 (b) at the third, and Bi ∧ B = Bi at
the fourth. Using Proposition 2 (b) again, we get also, for any i = 1, . . . , n,

PX0|B0
(Bi|B) = PX0|B0

(Bi ∨B0|B)PX0|B0
(Bi|Bi ∨B0),

PX0|B0
(B0|B) = PX0|B0

(Bi ∨B0|B)PX0|B0
(B0|Bi ∨B0).

(6)

From (5), these derivations and (3), we obtain (4).

Proposition 10 Let P : D → R be a conditional convex lower prevision, Gc, B be as in Definition
6 and such that Gc is a WDB gain. Then, there exist a dF -coherent prevision PX0|B0

satisfying (3)
and αX0|B0

∈ R such that, for i = 0 and for any i such that si > 0 (i = 1, . . . , n), exactly one of
the following holds

(a) PX0|B0
(Bi|B) = 0;

(b) P (Xi|Bi) = PX0|B0
(Xi|Bi) +

αX0|B0

PX0|B0
(Bi|B)

.

Proof Take X0|B0 in Gc. Let PX0|B0
be the dF -coherent prevision in Proposition 7 (a) and define

αX0|B0
= −PX0|B0

(B0|B)
(
PX0|B0

(X0|B0)− P (X0|B0)
)
.

Since now sup(Gc|B) = 0, using Proposition 4 (b) and Footnote 1 at the first inequality, Lemma 9
at the second, we get 0 = sup(Gc|B) ≥ PX0|B0

(Gc|B) ≥ 0, i.e. PX0|B0
(Gc|B) = 0.
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Let now si > 0 (i = 1, . . . , n) such that PX0|B0
(Bi|B) > 0. Since PX0|B0

(Gc|B) = 0, by
Lemma 9 (the expression in square brackets in (4) is non-negative by (3)), recalling (6) at the second
equality, we get

0 = PX0|B0
(Bi ∨B0|B)[PX0|B0

(Bi|Bi ∨B0)(PX0|B0
(Xi|Bi)− P (Xi|Bi))

− PX0|B0
(B0|Bi ∨B0)(PX0|B0

(X0|B0)− P (X0|B0))]

= PX0|B0
(Bi|B)(PX0|B0

(Xi|Bi)− P (Xi|Bi)) + αX0|B0
,

hence (b). The case i = 0 follows immediately from the definition of αX0|B0
.

Thus, for a convex P , a WDB implies the existence of a dF -coherent prevision PX0|B0
such that

P (Xi|Bi) differs from PX0|B0
(Xi|Bi) by a term

αX0|B0

PX0|B0
(Bi|B)

, for any Xi|Bi ∈ DG \ {X0|B0}
such that PX0|B0

(Bi|B) 6= 0. This latter constraint becomes irrelevant when P is unconditional,
since then Bi = Ω, for i = 0, 1, . . . , n. Therefore B = Ω as well as Bi|B = Ω (i = 0, 1, . . . , n),
hence PX0|B0

(Bi|B) = PX0|B0
(Ω) = 1. Proposition 10 specialises then to:

Proposition 11 Let P : D → R be an unconditional convex lower prevision, and Gc as in Defini-
tion 6 with Bi = Ω, for i = 0, 1, . . . , n, be a WDB gain. Then there exist a dF -coherent prevision
PX0 onD∪{Gc} and αX0 ∈ R such that P = PX0 +αX0 onD+

Gc
= {X0}∪{Xi : si > 0, for i =

1, . . . , n}.

Hence, convexity of an unconditional lower prevision P on D implies that P has a special
structure on D+

Gc
, with WDBs: for each Xi ∈ D+

Gc
, P differs from a dF -coherent prevision P by

the same constant αP . Perhaps surprisingly, if P is centered convex, the preceding result does not
imply that αP = 0 in all cases, but only if ∅ ∈ D+

Gc
.

When P is a conditional W -coherent prevision, Proposition 5 can be applied in the place of
Proposition 7 (a). We get the following proposition (Corsato et al. (2017)).

Proposition 12 Let P : D → R be a W -coherent lower prevision, G,B be as in Definition 3 and
such that G is a WDB gain. Suppose B1|B, . . . , Bn|B ∈ D. Define

D+
G = {X0|B0} ∪ {Xi|Bi ∈ DG : siP (Bi|B) > 0, for i = 1, . . . , n}.

Then P is dF -coherent on D+
G.

The condition B1|B, . . . , Bn|B ∈ D in Proposition 12 is not overly restrictive. If it is not met,
we may consider a W -coherent extension P ′ of P on D′ = D ∪ {Bi|B : i = 1, . . . , n} and apply
Proposition 12 to P ′ on D′. However, the set on which P ′ is dF -coherent depends then on the
specific extension. It is minimal when the natural extension of P is selected.

The result is subject to a second, more significant restriction. In fact, assumingP (Bi|B) positive
is a sufficient but not necessary condition for dF -coherence of P , i.e. P may be dF -coherent on a
set larger than D+

G.
The important special case that P is unconditional, i.e Bi = Ω, for i = 0, 1, . . . , n, hence

B = Ω, reinforces the result in Proposition 12. If all the stakes si, for i = 1, . . . , n, are non-zero,
since necessarily P (Ω) = 1, we get DG = D+

G and Proposition 12 specialises to the following
statement.
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Proposition 13 Let P : D → R be an unconditional coherent lower prevision. Let G be given by
G =

∑n
i=1 si

(
Xi−P (Xi)

)
−s0

(
X0−P (X0)

)
,with s0 ≥ 0, si > 0, for i = 1, . . . , n, {X0, X1, . . . ,

Xn} = DG ⊆ D, and assume that G is a WDB gain. Then P is dF -coherent on DG.

Thus a WDB implies that a coherent lower prevision is a dF -coherent prevision on DG.

4. Further Features of Weak Dutch Books

Which are the agent’s beliefs, with a WDB assessment, about suffering from a real Dutch Book
(meaning a loss, if the gain has a maximum of zero, or a uniformly negative loss, if it does not
achieve its supremum of zero)? In the simplest case, i.e. of a dF -coherent probability P , it was
shown in (Crisma, 2006, Section 9.5.4) that P (G < 0) = 0. The generalisation to (unconditional)
dF -coherent previsions has been investigated in Vicig (2010):

Proposition 14 Given a dF -coherent prevision P onD, let the WDB gainG be as in (2). Then (any
dF-coherent extension of) P is uniquely determined on certain events concerning G, and precisely:

(a) P (G ≤ −ε) = 0, ∀ε > 0;

(b) if in addition X1, . . . , Xn are all simple, we also have that P (G < 0) = 0.2

Thus, the results with precise previsions are rather reassuring. Take for instance case (b): al-
though the agent cannot get any positive reward, whatever happens, she/he does not even believe
that the bet will end up with a loss. However, the judgement on the potential vulnerability to Dutch
books of a WDB assessment depends crucially on the kind of imprecise prevision being assessed.

In fact, the following result holds with W -coherent lower/upper previsions:

Proposition 15 Given a W -coherent lower prevision P on D, let G,B be as in Definition 3 such
that G is a WDB gain. Then, for any W -coherent extension of P (still termed P )

(a) P (G|B ≤ −ε) = 0, ∀ε > 0;

(b) if DG is made of simple conditional gambles, P (G|B < 0) = 0.

Proposition 15, which includes also W -coherence for unconditional lower/upper previsions as
a special instance, is formally analogous to Proposition 14. Yet, it replaces precise with lower
previsions, as for the Dutch book evaluations. The upper probability of, say, (G|B < 0) in case (b)
may well be even 1, as shown in Corsato et al. (2017). One may wonder whether it is at least always
possible to put P (G|B < 0) = 0 or more generally (for an arbitrary G|B) P (G|B ≤ −ε) = 0, if
wished. The answer is negative even in an unconditional environment:

Proposition 16 Let P : D → R be an unconditional W -coherent lower prevision, and G defined
in Proposition 13, with si > 0 (i = 1, . . . , n) be a WDB gain. Then

(a) if DG = D, it is coherent to put P (G ≤ −ε) = 0, ∀ε > 0;

(b) otherwise this choice may be incoherent.

2. The dF -coherent extension of P is mentioned explicitly because (the indicators of) the events (G ≤ −ε) and
(G < 0) need not belong to D. Similar specifications will be omitted hereafter.
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We may conclude that the (conditional) p-box of a WDB gain G|B for a W -coherent P has
a special structure, as for its lower distribution function F (x) = P (G|B ≤ x), x ∈ R. F is a
single-step function, identically equal to 0 for any x < 0, to 1 for any x ≥ 0. On the contrary, the
upper distribution function F (x) = P (G|B ≤ x), x ∈ R, is essentially unconstrained and need not
coincide with F (x) if (G|B ≤ x) is a non-trivial event.

Weaker notions than (W -)coherence may allow for even weaker implications about the non-
occurrence of Dutch Books. In particular, in the case of centered convexity, the agent may have no
strong belief that a Dutch Book associated with the gain G will be avoided. In fact, examples may
be built to show that not even P (G ≤ −ε) may be forced to be zero.

Summing up, when an uncertainty assessment incurs a WDB the agent’s evaluation about avoid-
ing a real Dutch Book depends on the degree of precision of the consistency notion the assessment
satisfies. The self-protection offered by dF -coherence is maximal, whilst convexity does not ensure
that P (G ≤ −ε) may be consistently set to zero.

Another facet of WDBs is concerned with conditions for the gain supremum of zero to be
attained. Of course it is, if the gain involves only simple gambles, and in particular events. To
explore this issue in more general situations the next result proves to be useful.

Proposition 17 Let P : D → R be an unconditional W -coherent lower prevision and G as in
Definition 3, with Bi = Ω, for i = 0, 1, . . . , n. Let also G be a WDB gain. Then, for any event
E ∈ D with P (E) > 0, it holds that sup(G|E) = 0.

Now suppose that D includes some atom ω ∈ PG, the coarsest partition G is defined on. If P (ω) >
0, Proposition 17 implies (with E = ω) that

sup(G|ω) = G(ω) = 0,

hence G achieves its supremum (at least) at ω. More generally, it holds that

Corollary 18 Let P : D → R, G be as in Proposition 17. Let P ⊆ D be either PG or a partition
finer than PG, e ∈ P, ω ∈ PG be such that e⇒ ω and P (e) > 0. Then G(e) = G(ω) = 0.

Corollary 18 implies also that if supG is not achieved, then necessarily P (ω) = 0, ∀ω ∈ PG. Yet,
there may be some E ∈ D such that P (E) > 0, hence implying sup(G|E) = 0 by Proposition 17,
but E /∈ PG. Letting P = {ω ∈ PG : P (ω) > 0} and N = {ω ∈ PG : G(ω) = 0}, it is P ⊆ N ,
by Corollary 18. Thus the cardinality of P is a lower bound to that of the set of atoms where G
achieves the value of zero. However, it is interesting to note that other causes may be influencial
too. In the next example the number of such atoms depends on the choice of the stakes.

Example 2 Let D = {E1, E0,¬E0,¬E1 ∧ E0}, with E1 ∧ ¬E0 = ∅, P : D → R be the vacuous
lower probability and DG = {E1, E0}. It may be checked that maxG = max(s1(E1 − 0) −
s0(E0 − 0)) = 0 if s0 ≥ s1 > 0. Here PG = {E1,¬E0,¬E1 ∧ E0}, P = ∅, while there are
one or two atoms of PG where G attains its maximum of zero, according to whether, respectively,
s1 < s0 or s1 = s0. In fact G(E1) = s1 − s0 ≤ 0 iff s1 ≤ s0, in particular G(E1) = 0 iff s1 = s0,
G(¬E0) = 0, G(¬E1 ∧ E0) = −s0 < 0.

Testing Weak Dutch Books. If it is not known whether, given a coherent P , supG = 0 or not, we
can try to rule out the possibility of a WDB by checking the sign of G at some ω ∈ PG such that
P (ω) > 0 (if any). In fact:
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• if G(ω) > 0, then obviously supG > 0;

• if G(ω) < 0, then supG > 0 by Corollary 18.

This method is very simple, but allows no conclusion whenG(ω) = 0.3 In fact, it is clearly possible
that G(ω) = 0 and supG = 0, but even when G(ω) = 0 for all ω ∈ PG such that P (ω) > 0, supG
may be strictly positive.

5. Strict Consistency

As soon as the behavioural interpretation of de Finetti’s theory of subjective probabilities became
more widespread, the issue of whether WDBs could possibly be avoided was investigated. Thus, as
early as the mid-fifties of the last century Kemeny (1955) and Shimony (1955) proposed the most
immediate solution: rule out WDBs by redefining coherence. They referred to (precise) probabilities
only, replacing the condition supG ≥ 0 with supG > 0, for any admissible G 6= 0, which is what
is called strict coherence today. As well-known, strict coherence has non-negligible drawbacks,
like that of being confined to a denumerable environment. Alternative ways of tackling WDBs have
also been developed. We discuss in Corsato et al. (2017) that due to Wagner (2007) and based on
the interpretation of buying/selling prices in betting schemes, going back to Walley (1991), and
the one resorting to desirability concepts (see e.g. Quaeghebeur (2014)). Alternatively, Pedersen
(2014) introduces a qualitative version of strict coherence for comparing (not necessarily bounded,
unconditional) gambles.

However, little has been said about the role and properties of (some extended version of) strict
coherence with imprecise rather precise probabilities. It is relatively simple to extend the strict
coherence approach (Corsato et al. (2017)):

Definition 19 Let µ : D → R be a measure, whose consistency requires that sup(G|B) ≥ 0 for
any conditional gain G|B admissible according to certain rules. Then µ is strictly consistent if, for
each such G|B, either G|B = 0 or sup(G|B) > 0.

As for the issue of characterising strict consistency, the case of conditional coherence was hinted in
Williams (1975) and is tackled for W -coherent previsions in the next proposition.

Proposition 20 Let P : D → R be a W -coherent lower prevision. Suppose D is such that, for
any G|B( 6= 0) as in Definition 3, there exists ε > 0 such that (G|B ≤ −ε) is non-impossible and
belongs to D. Then, P is strictly W -coherent on D if and only if

P (A|B) > 0, for all events A|B ∈ D, A|B 6= ∅|B. (7)

Clearly, Proposition 20 concerns the special case of (unconditional) coherent lower previsions
too. For these previsions, (7) requires strict positivity (sP ) of any non-impossible event inD. It can
be seen that this again limits the effectiveness of strict coherence to denumerable settings. Turning to
another question, in today’s language the necessary and sufficient condition for strict dF -coherence
of a dF -coherent probability in Kemeny (1955) asks instead for strict normalisation (sN), i.e., that
P (E) < 1, for anyE 6= Ω. In the realm of dF -coherent probabilities, this is obviously equivalent to
(sP ). However, as often happens, the equivalence in a precise framework conceals a more complex

3. Alternatively, linear programming could potentially be employed in some special cases.

93



CORSATO ET AL.

situation in the field of imprecision. To see this, consider the following conditions for an uncertainty
measure µ on a domain D of events:

(sM) ∀E,F ∈ D, if E ⇒ F,E 6= F then µ(E) < µ(F ) (strict Monotonicity);

(sP ) ∀E ∈ D, if E 6= ∅ then µ(E) > 0 (strict Positivity);

(sN) ∀E ∈ D, if E 6= Ω then µ(E) < 1 (strict Normalisation).

Then, it holds that:

Proposition 21 Let A be an algebra of events (i.e., ∀E ∈ A, ¬E ∈ A, ∀E,F ∈ A, E ∧ F ∈ A),
and let P : A → R be a lower probability.

(a) If P is W -coherent, then (sM)⇔ (sP )⇒ (sN),
while (sN) implies neither of (sM), (sP ).

(b) If P is centered convex, then (sM)⇒ (sP )⇒ (sN),
while (sP ) does not imply (sM), nor does (sN) imply (sP ).

Proof Recall that ∅,Ω ∈ A and that for any E ∈ A, ∅ ⇒ E ⇒ Ω.
Proof of (a). (sM) ⇔ (sP ). Let (sM) hold, and let E ∈ A, E 6= ∅. We have P (E) >
P (∅) = 0. Assume now (sP ) is satisfied. Let E,F ∈ A such that E ⇒ F and E 6= F . We
have ¬E ∧ F ∈ A \ {∅}. Since then P (¬E ∧ F ) > 0 by (sP ), by superlinearity we get P (E) <
P (E) + P (¬E ∧ F ) ≤ P (F ).
(sP )⇒ (sN). By the previous step, it is equivalent to (sM)⇒ (sN), which holds: takingE 6= Ω,
by (sM) P (E) < P (Ω) = 1.
(sN) 6⇒ (sP ). Let us consider a non-trivial event E, A = {∅, E,¬E,Ω} and P : A → R given
by P (∅) = P (E) = 0, P (¬E) = ε, for some ε ∈ ]0, 1[, P (Ω) = 1. Then P is a coherent lower
probability on A satisfying (sN) but not (sP ) (nor its equivalent condition (sM)).

Proof of (b). (sM)⇒ (sP ): same as in the proof of (a).
(sP ) 6⇒ (sM). Can be shown by means of a (counter)example. For this, let ∅ 6= E ⇒ F 6= Ω,
E 6= F . Thus P = {E,¬E ∧ F,¬F} is a partition. Let A = A(P), and P = min{P1, P2 + 0.2},
where P1, P2 are defined in Table 1 (only the relevant events in A are displayed).

∅ E ¬E ∧ F ¬F F

P1 0 0.1 0.2 0.7 0.3
P2 0 0 0 1 0
P2 + 0.2 0.2 0.2 0.2 1.2 0.2

P 0 0.1 0.2 0.7 0.2

Table 1: Data for the (counter)example.

• P is centered convex onA (by Proposition 7), but not coherent: P (E)+P (¬E∧F ) > P (F ),
thus P does not comply with superadditivity.

• P satisfies (sP ) (on the events in P and hence, by monotonicity of convex lower previsions,
on all events in A).
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• P does not satisfy (sM): ¬E∧F ⇒ F (and ¬E∧F 6= F ), while P (¬E∧F ) = P (F ) = 0.2.

(sP ) ⇒ (sN). Let P (E) > 0, ∀E 6= ∅. Recall that a centered convex lower prevision avoids
sure loss (Pelessoni and Vicig (2005b)), and as such satisfies the inequality P (X) + P (µ −X) ≤
µ, ∀µ ∈ R (Walley, 1991, Section 2.4.7 (c)). Putting X = E, µ = 1, the inequality boils down to
P (E) + P (¬E) ≤ 1. This implies P (E) < 1 if E 6= Ω since then P (¬E) > 0 by assumption.
(sN) 6⇒ (sP ). Indeed the implication is not valid under the stronger assumption that P is coherent,
as proven in (a).

Comments. When µ = P , a dF -coherent probability, in (sM), (sP ), (sN) and P is defined on
an algebra A, then (sM)⇔ (sP )⇔ (sN), by normalisation and linearity of P .

We may summarise the situation in the next figure (only valid implications are displayed).

Figure 1: Comparison among the conditions (sM), (sP ), (sN) for either a dF -coherent probability in case
(a), or a lower probability which is coherent (b) or centered convex (c).

It is clear from Proposition 21 why Proposition 20 refers to strict positivity instead of strict
normalisation as in Kemeny (1955): even in an unconditional frame, strict positivity is tighter. To
put it differently, requiring (sN) does not prevent P from incurring a WDB: it suffices that there
is a possible E with P (E) = 0 to which the WDB gain G = −s0E ≤ 0 is associated. Instead,
(sM) could replace (sP ) on algebras, while on more general domains (sP ) is easier to work with.
However, (sM) remains the only relevant condition for strict convexity.

Interestingly, these relationships may change with upper probabilities. Thus, when P is a coher-
ent upper probability on an algebra A, (sN) and (sP ) exchange their roles. Using the conjugacy
relation P (E) = 1− P (¬E), we deduce that

(sM)⇔ (sN)⇒ (sP ), (sP ) 6⇒ (sM), (sP ) 6⇒ (sN).

6. Conclusions

In this paper the properties of assessments incurring WDBs have been explored by their degree
of consistency. The results point out a certain differentiation and a number of perhaps surprising
features of such assessments. By contrast, the more known special case of dF -coherent precise
probabilities often flattens these differences. The situation is similar for strict consistency, the gen-
eralisation of strict coherence that avoids WDBs, even though its domain of application remains
restricted even with W -coherence. Thus, in general WDBs are something to coexist with.
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Abstract
Imprecise Dirichlet Process-based tests (IDP-tests, for short) have been recently introduced in the
literature. They overcome the problem of deciding how to select a single prior in Bayesian hy-
pothesis testing, in the absence of prior information. They make use of a “near-ignorance” model,
that behaves a priori as a vacuous model for some basic inferences, but it provides non-vacuous
posterior inferences. We perform empirical studies regarding the behavior of IDP-tests for the par-
ticular case of Wilcoxon rank sum test. We show that the upper and lower posterior probabilities
can be expressed as tail probabilities based on the value of the U statistic. We construct an impre-
cise frequentist-based test that reproduces the same decision rule as the the IDP test. It considers
a neighbourhood around the U -statistic value. If all the values in the neighbourhood belong to the
rejection zone (resp. to the acceptance region), the null hypothesis is rejected (resp. accepted).
Otherwise, the judgement is suspended. This construction puts a step forward in the reconciliation
between frequentist and Bayesian hypothesis testing.
Keywords: Wilcoxon rank sum test; imprecise tests; one-sided test; frequentist test; Bayesian
test; IDP test; interval p-values

1. Introduction

The problem of reconciling Bayesian and frequentist techniques has been extensively treated in
the literature and seems to be still open. In the frequentist setting, the level of significance of the
outcome against the null hypothesis is determined in terms of the p-value. Notwithstanding the
“probability that the null hypothesis is true” has no meaning in this framework, but it has been ar-
gued that some practitioners attach such a meaning to the p-value (see Casella and Berger (1987)
for further discussion). Alternatively, under the Bayesian approach, evidence takes the form of the
posterior probability about the null hypothesis, based on the combination of prior evidence and the
evidence provided by the dataset. The relation between the p-value and the posterior probability of
the null hypothesis has been examined by different authors (see Berger and Selke (1987); Casella
and Berger (1987); DeGroot (1973); Pratt (1965); Shafer (1982); Jeffreys (1939) among many oth-
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ers). For two-sided tests, it has been noticed by several of them that the p-value tends to be smaller
than the posterior probability of the null hypothesis (see Berger and Selke (1987); Lindley (1957))
for some collections of priors, while for the one-sided testing problem situations can be found where
they are approximately equal (see Pratt (1965); Casella and Berger (1987)). In particular, Casella
and Berger (1987) prove that for some classes of reasonable and impartial priors, and under some
additional requirements about the distribution of X , the p-value coincides with the infimum of the
posterior probability of the null hypothesis. With respect to the large discrepancies between the
infimum for the posterior probability and the p-value in the two-sided problem observed in Berger
and Selke (1987), Casella and Berger (1987) question the impartiality of the priors considered by
the authors. The problem of selecting an appropriate prior (specially in those cases where no initial
information is available) has been a subject of study of many authors. One solution to this problem
has been proposed initially by Ferguson (1973) and afterwards by Rubin (1981) under the name of
Bayesian Bootstrap (BB). Notwithstanding, the BB model cannot be regarded as non-informative,
since it assigns zero probability to any set that does not include the observations. In order to over-
come this issue, Benavoli et al. (2015) introduced a new kind of test, by means of replacing a single
prior by a collection of priors based on the imprecise Dirichtlet process (IDP). The combination of
this near-to-ignorance prior information with our evidence obtained from the sample leads to a pair
of dual upper and lower posterior probabilities. The IDP-based test has the advantage of not decid-
ing when this decision is somehow prior-dependent. In other words, when the action that minimizes
the risk (expected loss) is not the same for all the prior probabilities, the IDP suspends its judgment.
The authors have exemplified their proposal with an IDP-based version of the well known Wilcoxon
rank sum test, also called the Mann-Withney-Wilcoxon test, or simply, the MWW test (Mann and
Whitney (1947); M.P. Fay (2010)).

Consider two random variables X and Y whose cdf’s satisfy FX(x) = FY (x + ∆), ∀x ∈ R.
The null hypothesis of the traditional MWW test is that P (X ≤ Y ) ≤ 0.5 against the alternative
hypothesis P (X ≤ Y ) > 0.5. When the distribution of X − Y is continuous, we can interpret a
significant Mann-Whitney-Wilcoxon test as showing that the median of the difference is negative
(Couso et al. (2015)). The IDP-based procedure will assign a pair of upper and lower probabilities
to the null hypothesis, P (H0|(~x, ~y)) and P (H0|(~x, ~y)), that encompass the collection of posterior
probabilities associated to the selected collection of priors. The authors propose the following
decision rule, for some threshold γ ∈ (0, 1):

• If both the upper and the lower posterior probabilities are on one side of the threshold γ, we
will either reject (left side) or accept (right side) the null hypothesis.

• Alternatively, if they satisfy the inequalities P (H0|(~x, ~y)) < γ ≤ P (H0|(~x, ~y)), then we are
in an indeterminate decision, i.e, we suspend our judgement.

After presenting their new proposal, the authors have performed some empirical comparisons
with respect to the Bayesian bootstrap-based test as well as with the traditional frequentist MWW
test, under different conditions for the shift parameter ∆. They suggest that when the IDP based test
is indeterminate, both the frequentist and the Boostrap Bayesian test behave as “random guessers”.
What they check in fact is that, for some values of ∆, the proportion of rejections under those
situations is nearly 50%, which coincides with the proportion of rejections of a randomized test
derived from the IDP test (the one called the 50/50 test by the authors) that returns the same response
as the IDP test when it is determinate, and a random answer otherwise.
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Our paper deepens the study about the relations between this new imprecise test and its prece-
dents. We will first empirically check that the p-value of the traditional MWW test coincides with
the posterior probability of the null hypothesis for the BB test. Afterwards, we will show that there
is a one-to-one correspondence between the upper (resp. the lower) posterior probability of the IDP
test and the p-value of the MWW test. Thus the outcome of the latter is univocally determined by
the upper (equivalently, by the lower) posterior probability of the former. In fact, upper and lower
posterior probabilities derived from the IDP-based approach can be calculated in terms of the cdf
of U + ε and U − ε, for some ε > 0, where U represents the MWW statistic. On the basis of this
relation, we construct an imprecise frequentist-based test whose performance mimics the one of the
IDP-based test. These findings help us to better understand the behaviour of the new IDP-based test,
and put a step forward in the reconciliation between the frequentist and Bayesian approaches in this
imprecise setting. In particular, this kind of imprecisiation over the set of priors seems to produce
similar effects on the decision mechanism as an imprecisiation of data around the observations.

2. Preliminaries

The Mann-Withney U test (also called Wilcoxon rank sum or Mann-Whitney-Wilcoxon test) is
used to check whether or not it is equally likely that a randomly selected value from one population
will be less than or greater than a randomly selected value from a second one, assuming that both
selections are independent from each other.

Consider two independent samples containing n1 and n2 elements respectively from each pop-
ulation. The U statistic is calculated as the sum of the ranks of the elements contained in the first
sample, with the minimum value n1(n1 + 1)/2 subtracted. In other words, it counts the number of
items (xi, yj) such that xi is less than or equal to yj ,

U =

n1∑

i=1

n2∑

j=1

I[Xi,∞)(Yj).

Under the assumption P (X ≤ Y ) = 0.5, the expectation and the variance of U are respectively:

µ0 =
n1 n2

2
σ20 =

n1 n2(n1 + n2)

12
.

Let us consider the one-sided test of H0 : θ ≤ 0.5 against H1 : θ > 0.5, where θ = P (X ≤ Y ).
The rejection region of the Mann-Whitney U test of size α is defined in terms of U as follows:

Rα =

{
(~x, ~y) :

U(~x, ~y)− µ0
σ0

> zα

}
,

where zα = Φ−1(1 − α) is the quantile 1 − α of the distribution N(0, 1). Alternatively, it can be
defined as:

Rα = {~x, ~y) : p(~x, ~y) < α} ,
where

p(~x, ~y) = 1− Φ

(
U(~x, ~y)− µ0

σ0

)

denotes the p-value of the sample, i.e.,

p(~x, ~y) = inf{α ∈ (0, 1) : (~x, ~y) ∈ Rα}.
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Under the Bayesian approach, the problem of hypothesis testing is seen as a decision problem
where the possible actions are a = 0 (accept H0) and a = 1 (reject H0). We start from a prior
distribution over the set parametric space Θ = [0, 1], determined by a density function π : Θ→ R+.
A loss function ` : Θ × {0, 1} → R links the action to the unknown value of the parameter
θ = P (X ≤ Y ): when the true state of nature is θ ∈ Θ and we take the action a ∈ {0, 1} we incur
in a loss `(θ, a) determined as follows:

a = 0 a = 1

θ ≤ 0.5 0 K0

θ ≥ 0.5 K1 0

The decision rule d that minimizes the posterior expected loss is the one defined as follows:

• d(~x, ~y) = 1 if P (H0|(~x, ~y)) < K0
K0+K1

• d(~x, ~y) = 0 otherwise,

where P (H0|(~x, ~y)) denotes the posterior probability of the null hypothesis calculated as fol-
lows:

P (H0|(~x, ~y)) =

∫ 0.5

−∞
L(~x, ~y; θ)π(θ) dθ,

and L(~x, ~y; θ) represents the likelihood function.
The Dirichlet process was proposed by Ferguson (1973) as a second-order probability (in our

context, a probability on the space of joint probability distributions for (X,Y )). Since every joint
distribution determines a specific value for θ = P (X ≤ Y ), a Dirichlet process determines a (prior)
probability distribution over the parametric space, Θ. But how do we choose this prior in case
of lack of information? Rubin (1981) addressed this problem by means of selecting the so-called
Bayesian bootstrap. It is the Bayesian analogue to the Efron’s bootstrap Efron (1979). Instead of
simulating the sampling distribution of a statistic estimating a parameter, it simulates the posterior
distribution of the parameter. This choice nevertheless seems controversial (see Rubin (1981) and
Benavoli et al. (2015) for detailed discussions), since it cannot be seen as a representation of a
lack of knowledge. In fact, the Bayesian bootstrap assigns probability one to the collection of
observations (see Rubin (1981)). To overcome this issue, Benavoli et al. (2015) proposed to use
the imprecise Dirichlet process (IDP). It is considered as a prior near-ignorance model. In fact, it
corresponds to a set of priors that generates vacuous prior probabilities and therefore, leading to an
infimum and a supremum for the (prior) expectations of θ = P (X ≤ Y ) respectively equal to 0 and
1. This collection of priors leads to a collection of posterior probabilities for H0 and H1, given the
dataset, whose bounds we will respectively denoted by P (H0|(~x, ~y)) and P (H0|(~x, ~y)). To perform
the hypothesis test H0 : θ ≤ 0.5 against H1 : θ > 0.5, they compare each of these bounds with
γ = K0

K0+K1
and consider the following decision rule:

• dI(~x, ~y) = 1 if P (H0 : (~x, ~y)) < K0
K0+K1

• dI(~x, ~y) = 0 if P (H0 : (~x, ~y)) > K0
K0+K1

• dI(~x, ~y) =? otherwise,

where “0”, “1” and “?” respectively denote “accept H0”, “reject H0” and “no decision’.
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3. Relations between p-value, posterior probability and upper and lower posterior
probabilities

3.1 Formal relations between p-value and Bayesian posterior probability

As mentioned in the Introduction, different authors have studied the relations between the frequen-
tist p-value and the Bayesian posterior probability of the null hypothesis. Casella and Berger (1987)
studied this relation for one-sided tests under some additional conditions: In particular, when the
underlying distribution is assumed to be symmetric and it satisfies the property of monotone likeli-
hood ratio (MLR), then the p-value coincides with the infimum of the set of posterior probabilities
for H0, for several reasonable collections of priors.

We can prove an additional result relating the p-value and the posterior probability of the null
hypothesis derived from any prior. It requires a MLR condition but it does not require any symmetry
about the underlying distribution.

Definition 1 The set of distributions {Pθ : θ ∈ Θ} has a monotone likelihood ratio (MLR) with
respect to a statistic T if we can represent the likelihood ratio as

L(~x, ~y; θ1)

L(~x, ~y; θ2)
= gθ1,θ2(T (~x, ~y)),

where gθ1,θ2 is strictly increasing for every pair θ1 > θ2.

Now we will prove that, when the family of distributions satisfies the MLR property with respect
to some statistic T , the posterior probability associated to a one-sided-test is increasing wrt T :

Lemma 2 Let us suppose that the set of distributions {Pθ : θ ∈ Θ} has a monotone likelihood ratio
(MLR) with respect to a statistic T and let us consider the test H0 : θ ≤ θ0 against H1 : θ > θ0.
Then the posterior probability P (H0|~x) can be expressed as an increasing function of T (~x), i.e.:

T (~x) < T (~x′)⇒ P (H0|~x) < P (H0|~x′).

The following result is well known in the literature:

Theorem 3 Assume the set of distributions {Pθ : θ ∈ Θ} has a monotone likelihood ratio (MLR)
with respect to a statistic T . Let us consider the one-sided test H0 : θ ≤ θ0 against H1 : θ > θ0.
Then the test δ : Rn → {0, 1} defined as follows:

δ(~x) =

{
0 if T (~x) ≤ c
1 if T (~x) > c

is a uniformly most powerful (UMP) test (among all the tests of size αc = Pθ0(T > c)).

We deduce the following result:

Theorem 4 Let us suppose that the set of distributions {Pθ : θ ∈ Θ} has a monotone likelihood
ratio (MLR) with respect to a statistic T and that the cdf of T is strictly increasing for some θ0.
Let us consider the test H0 : θ ≤ θ0 against H1 : θ > θ0. Let us consider the family of UMP
tests associated to the rejection regions {Rα : α ∈ (0, 1)}, each of them defined as Rα = {~x :
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T (~x) > cα}, with Pθ0(T > cα) = α. Let us consider the p-value associated to this family of tests
as follows:

p(~x) = inf{α : ~x ∈ Rα} = Pθ0(T > T (~x)), ∀ ~x. (1)

Let us consider an arbitrary prior over Θ. Then there exists a (one-to-one) strictly increasing
function h : [0, 1] → [0, 1] linking the posterior probability of H0 and the p-value as P (H0|x) =
g(p(~x)), ∀ ~x, and therefore

p(~x) < p(~x′)⇔ P (H0|~x) < P (H0|~x′).

As a consequence we can state the following corollary:

Corollary 5 Let us suppose that the set of distributions {Pθ : θ ∈ Θ} has a monotone likelihood
ratio (MLR) with respect to a statistic T and that the cdf of T is strictly increasing for some θ0. Let
us consider the test H0 : θ ≤ θ0 against H1 : θ > θ0. Let us consider the family of UMP tests
associated to the rejection regions {Rα : α ∈ (0, 1)}, each of them defined as Rα = {~x : T (~x) >
cα}, with Pθ0(T > cα) = α. Let us consider an arbitrary prior over Θ, an arbitrary pair of loss
values K0 and K1, and the Bayesian test associated to it. Then there exists a UMP frequentist test
that coincides with it, the size of it being an increasing function of γ = K0

K0+K1
.

According to the above result, under the condition of MLR, and regardless the prior distribution
we select, there exists a one-to-one correspondence between γ and α. This is to say, if we set an
arbitrary prior, there exists a bijection h : [0, 1] → [0, 1] such that the Bayesian test associated
to γ = K0

K0+K1
coincides with the UMP test of size α = h(γ). The next section deals with the

particular case of the MWW and its variations considered in Benavoli et al. (2015). In that particular
case, this one-to-one correspondence is the identity, i.e., the p-value coincides with the posterior
probability of the null hypothesis. Furthermore, we empirically show that the upper and lower
posteriors can be also calculated as strictly increasing functions of the p-value.

3.2 Relations between the p-value and the pair of upper and lower posterior probabilities:
an empirical study

Benavoli et al. (2015) have developed an empirical study in order to compare their IDP-based test
with the MWW frequentist test and the DP-based test obtained as the prior strength goes to zero
(called the Bayesian Bootstrap Dirichlet Process test -the BB-DP test, for short-). They have con-
sidered a Monte Carlo experiment in which n1, n2 observations from X, and Y respectively are
generated, where X ≡ N(0, 1) and Y ≡ N(∆, 1), and ∆ ranges from −1.5 to 1.5. For each value
of ∆, they have performed 20000 Monte Carlo runs. They first compare the performance of the IDP
test and the BB-DP test. They consider three different options for the loss quotient γ = 1, γ = 0.1
and γ = 0.05. They conclude that, in all those cases where the first of them is determinate, both
of them return the same answer, the difference between them focussing only on those samples for
which the first one is indeterminate. In a second round of experiments, they compare the IDP test
with the frequentist MWW test. They select the significance level α = 0.05 in order to construct
the frequentist test, and γ = 0.05 in order to define the IDP test. Again, the frequentist test returns
the same answer when the IDP test is determinate. They also compute the proportion of rejections
of the MWW among those samples for which the IDP test is indeterminate. They observe that such
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a proportion increases with respect to ∆. As an example, for n1 = n2 = 10 and ∆ = 0.9, the IDP
is indeterminate in 30% of the runs, and the MWW test rejects the null hypothesis 50% of them.
As it returns the same proportion of rejections as a 50/50 randomized test derived from the IDP test
and they conclude that the MWW test “guesses at random” 30% of the times. Let us nevertheless
notice that the MWW does not return a random answer from a given sample.

In this section, we deepen this study, with the aim of providing further insight about the behavior
of the three tests (BB-DP, IDP and MWW) in practice. On one side, the p-value of the (frequentist)
MWW test coincides with the posterior probability of the null hypothesis for the BB-DP, as we
empirically show:
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The posterior probability of the BB test depends on a bootstrap-based computation, and there-
fore small differences between the values of the posterior probability may occur if we launch the
algorithm repeated times for the same sample (~x, ~y), the average of those posterior probabilities
being the p-value. Consequently, the MWW test of size α = 0.05 coincides with the BB-DP test
for γ = 0.05.

Let us now examine the relation between the frequentist test and the IDP test. Since the p-value
of the MWW coincides with the posterior probability of the BB test, we know that it is always
bounded by the upper and lower posterior probabilities associated to the IDP test, P (H0|(~x, ~y))
and P (H0|(~x, ~y)). Therefore, we can write P (H0|(~x, ~y)) = p(~x, ~y) + δ(~x, ~y) and P (H0|(~x, ~y)) =
p(~x, ~y)− δ′(~x, ~y), with δ(~x, ~y) > 0 and δ′(~x, ~y) > 0 for every pair of samples (~x, ~y).

Let us now recall an empirical result from Benavoli et al. (2015) about the distribution of the p-
values over the collection of samples for which the IDP is indeterminate, i.e., those pairs of samples
(~x, ~y) satisfying the inequalities P (H0|(~x, ~y)) < γ < P (H0|(~x, ~y)). The figure illustrates the
distribution of the p-values for ∆ = 0.5 and n1 = n2 = 20 and γ = 0.05:
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Figure 3: Power as a function of the difference of the medians ∆ for the case n1 = n2 = 10 (left) and n1 = n2 = 20 (right)
with γ = 0.05.

case n1= n2= 20 (Figure 3, right) it is evident that the performance of the MWW and 50/50 tests
practically coincide. Since it can be verified experimentally that when the IDP is determinate
the two tests return the same results, this again suggests that when the IDP is indeterminate we
have equal probability that p< 0.05 or p> 0.05, as it is shown in Figure 4. The IDP test is able
to isolate some instances in which also the MWW test is issuing a random answer. Note that, for
∆= 0.5, the maximum percentage of runs in which the IDP test is indeterminate is large, about
18%; this means that MWW is issuing a random answer in 18% of the cases.
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Figure 4: Distribution of MWW p-values in the IDP indeterminate cases for n1 = n2 = 20, γ = 0.05 and ∆= 0.5.

The results for the case n1 = n2 = 10 (Figure 3, left) lead to similar conclusions. The
performance of the MWW and 50/50 tests (almost) coincide. The 50/50 test is slightly better for
∆≤ 0.9 and slightly worse for ∆> 0.9. ∆= 0.9 is the value which corresponds to the maximum
indeterminacy of the IDP, i.e. 30%. Thus, for ∆= 0.9, MWW is guessing at random in 30% of
the runs.

It is worth analyzing also the case ∆ = 0. We know that in this case the frequentist test
is calibrated, i.e., when γ = 0.05 the percentage of correct answers is 95% (although it can be
noticeably larger for small values of n1, n2 since the discreteness of theMWWstatistic originates
a gap between the chosen γ and the actual significance of the MWW test). Table 1 shows the
accuracy for ∆= 0. The performance of the MWW and 50/50 tests are similar also in this case.
The difference is about 1% (for n1 = n2 = 10) and 0.5% (for n1 = n2 = 20).

According to the above notation, these are the samples satisfying the following inequalities:

p(~x, ~y)− δ′(~x, ~y) < 0.05 < p(~x, ~y) + δ(~x, ~y)

or, equivalently
0.05− δ(~x, ~y) < p(~x, ~y) < 0.05 + δ′(~x, ~y).

According to the above graph, we observe that the p-values are all of them in a neighbourhood of
0.05, and therefore δ and δ′ take small values.

In order to get further information, we have computed and plotted, for every sample (~x, ~y), the
upper and lower posterior probabilities from the IDP against the corresponding p-value, for different
values of ∆ and different sample sizes. Due to length restrictions, we just include the graphs for a
specific choice of both sample sizes. In particular we have selected n1 = n2 = 10:
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According to the above simulations, P (H0|(~x, ~y)) and P (H0|(~x, ~y)) can be written as functions
of the p-value. For other sample sizes we have observed a similar shape of the graph, although the
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difference P (H0|(~x, ~y)) − P (H0|(~x, ~y)) is well known to decrease with respect to both sample
sizes.

Furthermore, these two functions do not depend on the particular choice of ∆. Notwithstanding,
it is well known that the p-value follows a uniform distribution over the unit interval when ∆ = 0,
and as far as we get far away from ∆ = 0, the distribution of the p-values tends to concentrate over
an extreme of the interval (the left side extreme for positive values of ∆ and the right extreme for
negative valued of ∆). The pair of upper and lower posterior probabilities also concentrate over the
same extremes of the intervals for big values of ∆.

Let us now analyse some features of this functional relation. The p-value (which coincides with
the posterior probability of the BB-DP test) is always bounded by P (H0|(~x, ~y)) and P (H0|(~x, ~y)),
but it does not coincide with their half sum in general. On the other hand, when we plot their
difference against the p-value, we observe that it increases from 0 to 0.5 and decreases from 0.5 to
1.

According to Equation 1, the p-value of a pair of samples (~x, ~y) can be expressed p(~x, ~y) =
G0(U(~x, ~y)), with G0 = 1− F0, where U denotes the MWW statistic and F0 denotes the cdf of U
under the assumption θ = 0.5. The cdf F0 corresponds to a unimodal distribution, and symmetric
around µ0. In other words, the density function f0 is increasing on (−∞, µ0) and decreasing on
(µ0,∞). Let us now consider g1(u) = G0(u− ε)−G0(u) and g2(u) = G0(u)−G0(u+ ε). Both
functions are increasing on (−∞, µ0) and decreasing on (µ0,∞). Therefore we easily deduce that:

If either U(~x, ~y) < U(~x′, ~y′) < µ0 or U(~x, ~y) > U(~x′, ~y′) > µ0, then

g1(U(~x, ~y)) < g1(U(~x′, ~y′)) and g2(U(~x, ~y)) < g1(U(~x′, ~y′)).

According to our Monte Carlo simulations, this is exactly what happens with the differences
P (H0|(~x, ~y))− P (H0|(~x, ~y)) and P (H0|(~x, ~y))− P (H0|(~x, ~y)), i.e.:

If U(~x, ~y) < U(~x′, ~y′) < µ0 or U(~x, ~y) > U(~x′, ~y′) > µ0, then

P (H0|(~x, ~y))− P (H0|(~x, ~y)) < P (H0|(~x′, ~y′))− P (H0|(~x′, ~y′)) and

P (H0|(~x, ~y))− P (H0|(~x, ~y)) < P (H0|(~x′, ~y′))− P (H0|(~x′, ~y′)).

Therefore, it seems that the difference P (H0|(~x, ~y))− P (H0|(~x, ~y)) is increasing with respect
to U(~x, ~y) on (−∞, µ0) and decreasing on (µ0,∞). Something similar happens with the difference
P (H0|(~x, ~y))− P (H0|(~x, ~y)).

Since P (H0|(~x, ~y)) coincides with p(~x, ~y) = G0(U(~x, ~y)) then we can deduce that there is a
strictly increasing relation between P (H0|(~x, ~y)) and P (U(~x, ~y) − ε), for an arbitrary but fixed ε
and the same happens with P (H0|(~x, ~y)) and P (U(~x, ~y) + ε). We have examined the nature of this
strictly increasing (one-to-one) correspondence, and we have observed that it is in fact the identity.
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This opens a door to the reconciliation between the Bayesian and the frequentist approaches also
in the imprecise framework, following the path of Casella and Berger (1987) for the precise case.
On one hand, there is a one-to-one correspondence between the upper (resp. the lower) posterior
probability of the IDP test and the p-value of the MWW test. Furthermore, we can easily construct
an imprecise test that relies on the MWW U-statistic and that mimics the behavior of the IDP test.
Let us take an arbitrary α and let us define the new imprecise test as follows:

δ(~x, ~y) =





0 if U(~x, ~y) ≤ cα − ε
1 if U(~x, ~y) > cα + ε
? otherwise,

(2)

where cα is such that Pθ0(U > cα) = α.
According to our simulations, for a specific choice of γ = K0

K0+K1
and the triple (s, n1, n2),

there exists ε = g(s, n1, n2) such that the above imprecise test for α = γ coincides with the IDP
test. Furthermore, the upper and lower posterior probabilities of the null hypothesis do respectively
coincide with G0(U(~x, ~y) + ε) and G0(U(~x, ~y)− ε).

3.3 Conclusions and future directions

We have constructed an imprecise “frequentist” test that mimics the behavior of the so-called IDP
test. It basically works as follows: it calculates the interval of values (U(~x, ~y) − ε, U(~x, ~y) + ε)
and it inherently considers the collection of samples (~x′, ~y′) such that U(~x, ~y) − ε < U(~x′, ~y′) <
U(~x, ~y) + ε. If all of them are either in the rejection or the acceptance zone of the frequentist test,
then the decision is clear. Otherwise, the outcome of the test is indeterminate. Thus, we conclude
that, at least for the MWW test, the kind of “imprecisiation” over the set of priors considered in the
IDP-based test may produce similar effects on the decision mechanism as an imprecisiation around
the statistic values.
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Let us notice that, in this specific case where the statistic is based on the ranks of the observa-
tions, but not on their numerical values, the statistic is not continuous with respect to those numerical
values. Thus the following alternative test (see Perolat et al. (2015) for further discussion about it):

{
0 if p(~x′, ~y′) ≤ α, ∀ (~x′, ~y′) ∈ B(~x, ~y; δ)
1 if p(~x′, ~y′) > α, ∀ (~x′, ~y′) ∈ B(~x, ~y; δ)
? otherwise.

(3)

would produce different outcomes in practice, as we observe below:
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Notwithstanding, for other frequentist tests, different from MWW, based on continuous statistics
the variation proposed in Equation 3, could report similar results as the one provided in Equation
2, for adequate selections of ε and δ. For those cases, it seems that the kind of imprecisiation over
the set of priors considered in the IDP-based test may produce similar effects on the decision mech-
anism as an imprecisiation around the sample values. Let us remind the reader that our empirical
comparison in this paper refers to the case where the frequentist test completely coincides with the
Bayesian one. But this may be not the case for other tests where the MLR condition is not satisfied.

In those cases we might directly compare the IDP-based test with an imprecise version of the
Bayesian test as follows:

{
0 if P (H0|~x′, ~y′) ≤ γ, ∀ (~x′, ~y′) ∈ B(~x, ~y; δ)
1 if P (H0|~x′, ~y′) > γ, ∀ (~x′, ~y′) ∈ B(~x, ~y; δ)
? otherwise.

(4)

Such a comparison could shed further light about the behaviour of IDP-based tests in practice.
We conjecture that they could lead to similar decision rules. If our conjecture is true, this alternative
procedure would lead to equivalent but computationally more efficient algorithms. On the other side,
it would reflect that the kind of imprecisiation over the priors considered by this almost-ignorance
model produces similar effects in the decision procedure as an imprecisiation around the sample
values.
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Abstract
An evenly convex credal set is a set of probability measures that is evenly convex; that is, a set that is
an intersection of open halfspaces. An evenly convex credal set can for instance encode preference
judgments through strict and non-strict inequalities such as P(A) > 1/2 and P(A) ≤ 2/3. This
paper presents an axiomatization of evenly convex sets from preferences, where we introduce a
new (and very weak) Archimedean condition.
Keywords: Credal sets, sets of probability measures, preference axioms, convexity.

1. Introduction

The goal of this note is to show that relatively simple axioms on preference orderings can be used
to characterize evenly convex sets of probability measures; that is, sets that are intersections of open
halfspaces. Such sets allow assessments such as P(A) ≥ 1/2 and 1/4 < P(B) ≤ 3/4; that is, strict
and non-strict inequalities can be expressed on probability values.

A preference ordering is a binary relation � on gambles; a gamble is a function X that yields a
real number X(ω) for each state ω, and X � Y is understood as “X is preferred to Y ”.

If a preference ordering is only a partial order, then, subject to a few additional conditions, it can
be represented by a set of probability measures (Giron and Rios, 1980; Seidenfeld et al., 1990; Wal-
ley, 1991; Williams, 1975). Typically such axiomatizations of sets of probability measures focus on
a single maximal closed convex set of probability measures. It seems that the only existing axiom-
atization that allows for open sets of probability measures sets has been given by Seidenfeld et al.
(1995), using a more general setting where utilities are also derived, and a proof technique based
on transfinite induction. Their representation result may require sets of state-dependent utilities to
represent preferences; for this reason it may be a little difficult to grasp the geometric content of a
preference profile. One wonders whether it is possible to capture assessments such as P(A) > 1/2
with some intuitive construction.

Section 4 presents a concise axiomatization for evenly convex sets of probability measures. We
use a new Archimedean condition, and emphasize the use of separating hyperplanes as much as
possible, hopefully producing results that can be appreciated with moderate effort.

2. Preference orderings, sets of desirable gambles, and credal sets

In this section we present some basic concepts and results used throughout. Because some results
here are in essence well-known, only very short proof sketches are mentioned for them.

Consider a finite set Ω containing n states {ω1, . . . , ωn}. An event is a subset of Ω; a gamble is
a function X : Ω→ <. A gamble can be viewed as a n-dimensional vector. A probability measure
over Ω is entirely specified by a n-dimensional vector with non-negative elements that add up to
one. Given such a vector p that induces a probability measure P, and a gamble X , the expected
value of X , denoted by EP[X], is simply the inner product X · p.
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All sets we consider are subsets of <n; throughout we assume the Euclidean topology. For a set
A, clA is the closure of A and relintA is the relative interior of A. A cone A is a set such that if
X ∈ A then λX ∈ A for λ > 0 (the origin may not be in A). An exposed ray of a convex cone is
an exposed face that is a half-line emanating from the origin (recall that an exposed face is a face
that is equal to the set of points achieving the maximum of some linear function).

Most results in this paper deal with the representation of preferences:1

Definition 1 A preference ordering � is a strict partial order over pairs of gambles.

Absence of preference between X and Y is indicated by X 6∼ Y . If X � 0, X is desirable; if
X 6∼ 0, X is neutral.

We always assume two additional properties:

Monotonicity: If X(ω) > Y (ω) for all ω ∈ Ω, then X � Y ;

Cancellation: For all α ∈ (0, 1], X � Y iff αX + (1− α)Z � αY + (1− α)Z.

The following representation obtains:2

Proposition 2 If a preference ordering � satisfies monotonicity and cancellation, then there is a
convex coneD, not containing the origin but containing the interior of the positive octant, such that
X � Y iff X − Y ∈ D.

Cones that encode preference orderings have received attention in the literature for some time
(Giron and Rios, 1980; Seidenfeld et al., 1990; Williams, 1975; Walley, 1991). In fact, the literature
on sets of desirable gambles (Miranda and Zaffalon, 2010; Quaeghebeur, 2014; Walley, 2000) em-
ploys cones of gambles to model preferences, often assuming admissibility: if X(ω) ≥ 0 for all ω
and X(ω) > 0 for some ω, then X � 0. We do not assume admissibility here; indeed, admissibility
cannot be satisfied in general if preferences are to be encoded by expectation with respect to prob-
ability measures (when probability values may be equal to zero). In any case, we use the term set
of desirable gambles to refer to a convex cone D constructed as in Proposition 2. This proposition
allows one to freely switch between preference orderings and sets of desirable gambles; we find the
former to be more intuitive so we mostly employ them in the remainder of this paper.

One might think that any convex cone of gambles can be represented by a set of probability
measures as follows: X ∈ D iff EP[X] > 0 for all P in some set K of probability measures. This
is not possible. Consider the set of desirable gambles depicted in Figure 1 (left). All gambles in
the interior of D satisfy X(ω1)P(ω1) + X(ω2)P(ω2) > 0 for P(ω1) = P(ω2) = 1/2. No other
pair of probability values (or sets of pairs of probability values) can similarly represent the interior
of D. But even this probability measure cannot represent the fact that half-border is in D; for this
half-border, f(ω1)P(ω1) + f(ω2)P(ω2) = 0. Thus some condition on boundaries is needed.

Conditions on boundaries of sets of desirable gambles inevitably focus on what “makes sense”
concerning limiting behavior. For instance, Aumann (1962) has proposed the following condition:

1. A strict partial order is a binary relation that is irreflexive and transitive, an equivalence is a binary relation that is
reflexive, transitive, and symmetric (a binary relation � is irreflexive when X �X if false for every X; it is transitive
when X �X and Y � Z imply X � Z; it is symmetric when X � Y implies Y �X) (Fishburn, 1970, Section 2.3).

2. Proof sketch: Applying cancellation, X � Y iff X/2−Y/2 � Y/2−Y/2 iff X − Y � 0. Now if X � 0 and
Y � 0, then 0 � −Y (as X � Y iff −Y � −X), and by transitivity we get X + Y � 0. For any λ ∈ (0, 1),
X � 0 iff λX � 0 by cancellation. Finite induction leads to: X � 0 implies λX � 0 for λ > 0, so we have the
cone (monotonicity implies this cone contains every positive gamble; irreflexivity eliminates the origin).
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X(ω1)

X(ω2)

D
X(ω1)

X(ω2)

X1 X2 D

Figure 1: Left: a cone D; one bordering ray (thick line from the origin) belongs to D, while the
other bordering ray does not belong to D. Right: to understand the effect of Auman’s
continuity condition, take a similar cone D; the gamble X2 is inside D and the gamble
X1 is in the border, so the segment between X1 and X2 is in D, implying that X1 � 0
or X1 6∼ 0 by Aumann’s continuity condition; the same reasoning could be repeated for
−X1, hence the border must be open because X1 � 0 and −X1 � 0 cannot happen.

Aumann’s continuity: If αX + (1− α)Y � Z for all α > 0, then either Y � Z or Y 6∼ Z.

If the interior of the set of desirable gambles is an open halfspace, Auman’s continuity condition
forces the set of desirable gambles to be open (see Figure 1 (right)). In general, if the interior of
the set of desirable gambles is strictly smaller than a halfspace, Aumann’s continuity condition does
not imply that D is entirely open; it only implies that each gamble in the boundary of D is either
desirable or neutral.

If the continuity condition is strengthened so that D is assumed open (Seidenfeld et al., 1990;
Walley, 1991), then it is possible to find a representation of preference orderings through probabil-
ities. Walley imposes openness by basically requiring that X � 0 implies X − ε � 0 for some ε
(Walley, 1991, Section 3.7.8, D7). Another possibility could be to require that (note that limits of
sequences of gambles are always assumed pointwise):

Open continuity If Xi � 0 is false for every i, and X = limiXi, then X � 0 is false.

Here is the representation result under the assumption of openness:3

Proposition 3 If a set of desirable gamblesD is open, then it can be represented by a closed convex
set K of probability measures, in the sense that X ∈ D iff EP[X] > 0 for all P ∈ K.

A set of probability measures is called a credal set (Levi, 1980). There is a significant disad-
vantage in assuming that a set of desirable gambles is open; namely, the representing credal set is

3. Proof sketch: Copy the proof of Theorem 11, except Part 5 (note that in Part 1 one might choose to replace Theorem
7 by some appropriate separating hyperplane theorem (Klee Jr., 1955)). Now to show that K is closed, show that
the complement of the cone C in the proof of Theorem 11 is open: If p 6∈ C, then there is X ∈ D such that
X · p ≤ 0, and also X − ε ∈ D for some ε > 0 (as D is open by assumption). Consider the closed halfspace
H = {q : (X − ε) · q ≤ 0}; this halfspace is disjoint from C. Also, p is inH but not in its boundary (there is a ball
around p insideH for any radius smaller than |(X − ε) · p|/||X − ε||). So the complement of C is open as desired.
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necessarily closed. Hence one cannot say that a coin is biased simply by stating P(Heads) > 1/2.
It seems that the only existing condition in the literature that can accept such assessments has been
proposed by Seidenfeld et al. (1995). Their condition has two parts, but only one is necessary:

SSK-continuity If Xi � Yi for every i, and limi Yi � Z, then limiXi � Z, whenever limits exist.

The other part of the original condition by Seidenfeld, Schervish and Kadane can actually be
derived from the previous conditions:

Proposition 4 Suppose a preference ordering � satisfies cancellation and SSK-continuity. If Xi �
Yi for every i, and W � limiXi, then W � limi Yi.

Proof The assumptions imply Xi−Yi � 0 and then−Yi � −Xi for every i; similarly,− limXi =
lim−Xi � −W , so by SSK-continuity, lim−Yi � −W and then W � limYi.

In fact we might simplify SSK-continuity even more in the presence of cancellation:

Proposition 5 Suppose � is a preference ordering satisfying cancellation. Suppose that if Xi � Yi
and limi Yi � 0 then limiXi � 0. Then � satisfies SSK-continuity.

Proof If {Xi} → X , {Yi} → Y ,Xi � Yi and Y � Z then {Xi−Z} → X−Z, {Yi−Z} → Y −Z,
Xi−Z � Yi−Z and Y −Z � 0; if the property assumed in the statement is true, then X −Z � 0
so X � Z as desired.

If a preference ordering satisfies SSK-continuity, and {Xi} → X , {Yi} → Y , and Xi � Yi,
then either X � Y or X 6∼ Y (for suppose otherwise that Y � X; SSK-continuity says that
if Xi � Yi and Y = limi Yi � X then limiXi � X , hence X � X , a contradiction). Thus we
have that SSK-continuity conveys Aumann’s continuity condition. We will return to SSK-continuity
when we examine whether it implies even convexity (it does not).

3. Evenly convex sets and evenly convex cones

An evenly convex set A is an intersection of open halfspaces (Fenchel, 1952). Hence an open
convex set is evenly convex; also a closed convex set is evenly convex as it is an infinite intersection
of halfspaces. For any set A, its evenly convex hull ecoA is the intersection of all evenly convex
sets containing A; so ecoA is the intersection of all open halfspaces that contain A. Note that
coA ⊆ ecoA, where coA is the convex hull of A.

There are many characterizations of evenly convex sets (Daniilidis and Martinez-Legaz, 2002;
Goberna et al., 2003; Klee, 1968). In particular, we will use the following result in the proof of
Theorem 9 (Daniilidis and Martinez-Legaz, 2002, Corollary 6): a convex set A is evenly convex
iff for every X0 ∈ clA\A, and every {Xi}i≥1 ⊂ A, and every {λi}i≥1 such that λi > 0, we have
X0 − limi λi(Xi −X0) 6∈ A whenever the limit exists.

IfA is evenly convex, then if X ∈ A and Y ∈ clA we have αX + (1−α)Y ∈ A for α ∈ (0, 1)
(Fenchel, 1952, Section 3.5). Consequently:

Lemma 6 Suppose A is evenly convex and 0 6∈ A. If X and −X belong to clA, then neither is in
A.
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Proof IfX ∈ A, then−X ∈ clA impliesX/2+(−X)/2 = 0 ∈ A, a contradiction; henceX 6∈ A.
By similar reasoning, −X 6∈ A.

We then obtain the following separation property, that is used later:

Theorem 7 Suppose A is an evenly convex cone such that 0 6∈ A. If X 6∈ A, then there is p such
that X · p ≤ 0 and Y · p > 0 for all Y ∈ A.

Proof Part 1) Suppose X ∈ clA, but X 6∈ A. Because A is evenly convex, there is p and β such
that X · p = β and Y · p > β for all Y ∈ A (Goberna et al., 2003, Proposition 3.1(ii)). If β > 0,
then for any Y in a neighborhood of 0 we have εY · p < β for some ε > 0; this is a contradiction
because some such Y is inA, and for this Y we must have εY ·p > β. Hence β ≤ 0. We now show
that actually β = 0.

For Y ∈ A, Y · p > β = X · p, hence (Y −X) · p > 0. Because X is in the boundary of A,
there is a gamble Y in a neighborhood of X that belongs toA; define q = Y −X , and note that the
segment from Y to X (excluding X) is in A (Fenchel, 1952, Section 3.5). That is, there is q such
that q · p > 0 and (X + εq) · p > β for ε > 0 in a neighborhood of 0. Now for any λ > 0 we have
λ(X+ εq) ∈ A. That is, λ(X+ εq) ·p > β, so X ·p > β/λ− εq ·p. Again use X ·p = β, to obtain
β > β/λ− εq · p. Consequently, we have both β ≤ 0 and β > −εq · p/(1− 1/λ); take say λ = 2
to obtain the constraint β > −ε(2q · p). These conditions can only be satisfied for ε > 0 if β = 0.

Part 2) Now suppose instead that X 6∈ clA. Consider the cone B = {λX : λ ≥ 0}. Using
an appropriate separation result (Klee Jr., 1955, Theorem 2.5), we know that there is p such that
Y · p > 0 for Y ∈ clA\(clA ∩ −clA), Y ′ · p = 0 for Y ′ ∈ (clA ∩ −clA) ∪ (B ∩ −B), Y ′′ · p ≤ 0
for Y ′′ ∈ B\(B ∩ −B). Clearly B ∩ −B contains just the zero gamble. Now note that clA ∩ −clA
does not intersect A (if Y ∈ clA ∩ −clA, then Y ∈ clA and −Y ∈ clA, so both are not in A by
Lemma 6). Hence there is p such that X · p ≤ 0 and Y · p > 0 for Y ∈ A.

4. Evenly convex sets of desirable gambles and evenly convex credal sets

In this section we consider preference orderings that can be represented by evenly convex sets of
desirable gambles; such preference orderings can also be represented by evenly convex credal sets.
This will allow us to consider assessments such as 1/4 ≤ P(Heads) < 1/2.

4.1 Evenly convex sets of desirable gambles

We introduce the following condition:

Even continuity If Xi � 0 for every i, and Y � 0 is false, then limi(λiY −Xi) � 0 is false for
any sequence of λi > 0 such that the limit exists.

Even though the condition is somewhat long, it is quite reasonable: one cannot take an undesir-
able gamble Y and make it desirable, not even in the limit, by multiplying it by a positive number
and subtracting from it a desirable gamble.4

4. One might consider a weaker condition (as suggested by a reviewer): If Xi � 0 and not Y � 0, then not limi(Y −
Xi) � 0. But this is implied by SSK-continuity: if Xi � 0, then if Y � limiXi then Y � 0 by SSK-continuity,
implying that if Xi � 0, then if not Y � 0 then not Y � limiXi.
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To make later results more concise, we introduce the following definition:

Definition 8 A preference ordering � is coherent when it satisfies monotonicity, cancellation, and
even continuity.

We then obtain:

Theorem 9 If a preference ordering � is coherent, then there is an evenly convex cone D of gam-
bles, not containing the origin but containing the interior of the positive octant, such that X � Y
iff X − Y ∈ D.

Proof Take the set of desirable gambles produced by Proposition 2.
For a fixed Y ∈ clD\D (hence Y 6∈ D) andXi ∈ D for every i, and λi > 0, compute λ′i = 1+λi

and X ′i = λiXi. Clearly λ′i > 0 and X ′i ∈ D. By even continuity, limi(λ
′
iY − X ′i) 6∈ D; hence

limi((1 + λi)Y − λiXi) 6∈ D, and then Y − limi λi(Xi − Y ) 6∈ D. Thus D is evenly convex
(Daniilidis and Martinez-Legaz, 2002, Corollary 6).

Note that coherence implies Aumann’s continuity condition:

Proposition 10 Suppose a preference ordering� is coherent. If αX+(1−α)Y � Z for all α > 0,
then either Y � Z or Y 6∼ Z.

Proof If Xi � 0 for every i, then the fact that ¬(0 � 0) and even continuity imply ¬(−X � 0) for
X = limiXi. Now, if αX + (1 − α)Y � Z, then take αi = 1/2i and Xi = αi(X − Z) + (1 −
αi)(Y − Z); hence Xi � 0, implying that ¬(Z − Y � 0), so either Y � Z or Y 6∼ Z.

4.2 Evenly convex credal sets

Evenly convex sets of desirable gambles can be nicely represented by evenly convex sets of proba-
bility measures, as described by the next theorem. In the next proof and later we use the nonempty
cone

C = {p : X · p > 0,∀X ∈ D}.

Theorem 11 If a preference ordering � is coherent, then there is a unique maximal evenly convex
credal set K such that X � Y iff for all P ∈ K we have EP[X] > EP[Y ].

Proof Part 1) For anyX 6∈ D, there is p such thatX ·p ≤ 0 and Y ·p > 0 for all Y ∈ D by Theorem
7. So C is nonempty, and in fact it is a cone (if p′ and p′′ satisfy the constraints, then so does λp′ for
λ > 0 and p′ + p′′). Hence if X 6∈ D then ∃p ∈ C : X · p ≤ 0; equivalently, if ∀p ∈ C : X · p > 0,
then X ∈ D.

Part 2) By construction, if X ∈ D then X · p > 0 for all p ∈ C; using this and Part 1,
X ∈ D ⇔ ∀p ∈ C : X · p > 0.

Part 3) We now show that C is equivalent to a set of probability measures K. Denote by 1 a vector
of ones, and 1i a vector whose ith element is 1 and all other elements are zero. By monotonicity,
1 · p > 0 for all p ∈ C, so

∑
i pi > 0. Also, for every p ∈ C: (1i + ε) · p > 0 for every ε > 0;

hence pi + ε
∑

j pj > 0 for every ε, implying that pi ≥ 0 (if pi < 0 then for ε < −pi/
∑

j pj we
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have pi + ε
∑

j pj < 0, a contradiction). Hence we can normalize each p in C, thus obtaining a set
of probability measures K that is a representation for D: X ∈ D ⇔ ∀P ∈ K : EP[X] > 0.

Part 4) Take the set K that is equal to the intersection of C and the unitary simplex
∑

i pi = 1:
If p belongs to this intersection, it is normalized so p ∈ K; and if p ∈ K, then p ∈ C and also it is
normalized so it belongs to the unitary simplex. Hence K is the intersection of two convex sets, so
K is convex.

Part 5) The cone C is defined as the intersection of open halfspaces, hence by definition it is
evenly convex. And K is the intersection of those open halfspaces and the unitary simplex (itself
the intersection of open halfspaces), hence K is evenly convex.

Part 6) To show that K is the unique maximal credal set that represents �, suppose there is K′

that represents �, and P′ ∈ K′ but P′ 6∈ K. If P′ 6∈ K, then by the definition of K we must have
some X ∈ D such that EP′ [X] ≤ 0. However, because K′ represents �, for any X ∈ D we must
have EP[X] > 0 for all P ∈ K′; that is, EP′ [X] > 0. Hence we get a contradiction, implying that
no representing credal set can contain probability measures outside of K.

In fact many sets of probability measures may encode the same ordering. For instance, if a
representing K is a closed set, then the set of its extreme points extK is an equivalent representation
for �; that is, X � Y ⇔ ∀P ∈ extK : EP[X] > EP[Y ].

Theorem 12 Suppose � is a coherent preference ordering, and the credal set K has been built as
in the proof of Theorem 11. A credal set K′ represents � iff ecoK′ = K.

Proof We need only to consider preferences with respect to the zero gamble.
Take a credal set K′ such that ecoK′ = K. Clearly if X � 0 then ∀P ∈ K : EP[X] > 0 then

∀P ∈ K′ : EP[f ] > 0 as K′ ⊆ ecoK′. Now suppose ∀P ∈ K′ : EP[X] > 0. Consider that ecoK′

is the set of all p such that Y · p > 0 for all Y such that for all q ∈ K′ we have Y · q > 0. As
X satisfies the last set of inequalities, then X · p > 0 for all p ∈ ecoK′, hence EP[X] > 0 for all
P ∈ K, and then X � 0. Hence K′ represents �.

Now suppose K′ represents �. Then its elements must satisfy the constraints X · p > 0 for all
X ∈ D. Suppose K′ also satisfies a nontrivial constraint Y · p > α for some Y and α; that is, there
is p′ that satisfies all other constraints but such that Y · p′ ≤ α. Because every p is a probability
measure, (Y −α) · p > 0 is an equivalent constraint. Hence (Y −α) · p > 0 for all p ∈ K′; because
K′ represents �, Y − α is a desirable gamble. However there is p′ ∈ K such that (Y − α) · p′ ≤ 0,
implying Y − α 6∈ D, a contradiction. So there is no additional nontrivial strict linear inequality
that distinguishes K′ and K, and consequently they share the same evenly convex hull.

This theorem shows that if two evenly convex sets are different, then they represent distinct
preference orderings. Figure 2 shows several different credal sets that have the same evenly convex
hull, and hence represent the same coherent preference ordering.

4.3 A bit of duality

Additional insight can be obtained by investigating the duality between clD and clC. As C is
nonempty, clC = {p : ∀X ∈ D : X · p ≥ 0}; hence clC is by definition the dual cone5 of D,

5. Given a convex set A, its polar set is A◦ = {p : ∀X ∈ A : X · p ≤ 1} (Brondsted, 83); if A is a convex cone its
polar set is equal to its polar cone, defined as {p : ∀X ∈ A : X · p ≤ 0} (because any inequality with right hand
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Figure 2: Five credal sets with the same evenly convex hull (the first credal set is evenly convex).
Filled dots, thick lines and darker (orange) regions are in the credal sets.

denoted by D? (Boyd and Vandenberghe, 2004, Section 2.6). Then (clC)? is just the closure of D,
as clD = D?? (Brondsted, 83, Theorem 6.2). Also, if a cone F ⊂ D (say a proper face of D), then
D? ⊂ F?, and if we have several cones {Di}i, then (∪iDi)

? = ∩D?
i (Lay, 1982, Theorem 23.3).

It is also possible to establish a connection between the faces of clD and clC. The following
definition is necessary: for any face F of a closed convex cone A, define its dual face F4 =
A? ∩ F⊥ (Stoer and Witzgall, 1970, Section 2.13), where the superscript ⊥ denotes orthogonal
complement (that is, B⊥ = {p : ∀X ∈ B : X · p = 0}). If for two faces F1 and F2 of A we have
that F1 is a face of F2, then F42 is face of F41 (Tam, 1985, Proposition 2.4). In fact, if all faces of
A are exposed, then the mapping between faces of A and its dual is one-to-one and onto, in such a
way that F1 is a face of F2 iff F42 is face of F41 (Tam, 1985, Corollary 2.6). In particular if clD is
generated by a finite number of gambles, then all its faces are exposed and the mapping is indeed
one-to-one and onto the faces of clC (Stoer and Witzgall, 1970, Theorem 2.13.2). Of course, this
applies similarly to faces of clC and its dual.

We can further refine these connections between D and C. For instance, if a face of clD does
intersect D, its dual face does not intersect C:

Theorem 13 If F is a face of clD, and F ∩ D 6= ∅, then F4 ∩ C = ∅.

Proof Suppose F ∩ D 6= ∅. Pick X ∈ F ∩ D. For any p ∈ F⊥ we must have X · p = 0, so p
cannot be in C; hence F⊥ ∩ C = ∅ and consequently F4 ∩ C = D? ∩ F⊥ ∩ C = ∅.

The converse can be shown for finitely generated faces:6

Theorem 14 If F is a finitely generated face of clD, and F ∩ D = ∅, then F4 ∩ C 6= ∅.
Proof We have that F is the conic hull of a finite set of gambles {X1, . . . , Xn}. Suppose that
no element of F⊥ = {p : ∀X ∈ F : X · p = 0} belongs to C. Then for each p ∈ C there is
at least a X ∈ F such that X · p > 0. Write X as

∑
i αiXi (where all αi ≥ 0) to obtain that∑

i αiXi · p > 0; if we have Xi · p ≥ 0 for all Xi, then it must be that Xi · p > 0 for at least
one Xi. (To conclude that Xi · p ≥ 0 for all Xi, reason as follows. As any Y ∈ F is in the
boundary of D, for all such Y we have, for all p ∈ C and all ε > 0, that (Y + ε) · p > 0. So for
all Y ∈ F and all p ∈ C we must have Y · p ≥ 0 to satisfy Y · p > −ε∑i pi for all ε > 0.)
Consequently the convex combination Z =

∑n
i=1Xi/n must satisfy Z · p > 0 for all p ∈ C, and

then Z ∈ D. But Z must belong to F , so Z cannot be in D by assumption. Hence there must be an
element ofF⊥ in C; this proves the theorem asF⊥∩C = F⊥∩C∩clC = F⊥∩C∩D? = F4∩C.

side larger than zero is redundant). The dual cone is simply the mirror image of the polar cone: A? = −A◦. Also,
A◦◦ = {X : ∀p ∈ A◦ : X · p ≤ 0} = {X : ∀ − p ∈ −A◦ : X · p ≤ 0} = {X : ∀p ∈ A? : X · p ≥ 0} = A??.

6. Whether or not Theorem 14 holds for general faces is an open question.
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4.4 Back to SSK-continuity

Note that SSK-continuity is satisfied by coherent preference orderings:

Proposition 15 If � is a coherent preference ordering, then SSK-continuity holds.

Proof Take {Xi} → X and {Yi} → Y such that Xi � Yi. Take the representing credal set
K; any probability measure P ∈ K satisfies EP[Xi − Yi] > 0, so limi EP[Xi − Yi] ≥ 0; then
EP[limiXi] ≥ EP[limi Yi] as the state space is finite, hence EP[X] ≥ EP[Y ]. If additionally
Y � Z, then EP[Y ] > EP[Z] for every P ∈ K, so EP[X] > EP[Z] for every P ∈ K, and then
X � Z as desired.

The natural question is whether SSK-continuity implies even continuity. It does not; but to
appreciate the matter, it is interesting to note that SSK-continuity implies even continuity in an
important case. Start by considering a consequence of SSK-continuity that is quite reasonable as a
property of preferences:

Proposition 16 Suppose � is a preference ordering satisfying monotonicity and SSK-continuity. If
αW + (1− α)X � Y � 0 for α ∈ (0, 1], then X � 0.

Proof Take αi = 1/2i, Xi = αiW + (1−αi)X and Yi = Y . As Xi � Yi, {Xi} → X , {Yi} → Y ,
and Y � 0, SSK-continuity implies X � 0 as desired.

This result leads to:

Proposition 17 Suppose� is a preference ordering satisfying monotonicity, cancellation, and SSK-
continuity, with representing set of desirable gambles D. If X ∈ D and Y ∈ clD, then αX + (1−
α)Y ∈ D for α ∈ (0, 1).

Proof Take X ∈ D, Y ∈ clD, α ∈ (0, 1), and Z = αX + (1 − α)Y . For some δ > 0
we have Y + δ ∈ relintD by monotonicity; hence β(Y + δ) + (1 − β)Y ∈ D for β ∈ (0, 1]
(Rockafellar, 1970, Theorem 6.1). Note that Y = γZ − αγX where γ = (1 − α)−1; thus
β(γZ − αγX + δ) + (1 − β)(γZ − αγX) � 0. Hence β(γZ + δ) + (1 − β)(γZ) � αγX
for β ∈ (0, 1]. By assumption X � 0, so αγX � 0; by Proposition 16, we obtain γZ � 0, hence
Z ∈ D as desired.

As noted by (Fenchel, 1952, Section 3.5), a cone A whose closure is the intersection of finitely
many closed halfspaces is evenly convex iff it satisfies: if X ∈ A and Y ∈ clA, then the segment
between X and Y is in A. Hence:

Theorem 18 Suppose � is a preference ordering satisfying monotonicity, cancellation, and SSK-
continuity, with representing set of desirable gambles D. If the closure of D is the intersection of
finitely many closed halfspaces, then D is evenly convex.

That is, SSK-continuity produces even convexity of the set of desirable gambles, and therefore
of the representing credal set, when only finitely many assessments affect preferences. However, in
general SSK-continuity does not enforce even convexity of sets of desirable gambles.
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Figure 3: The set B in Example 1, viewed from point (1, 1, 1).

To understand how this is possible, take a coherent preference ordering �′ and its representing
set of desirable gambles D′. Suppose D′ contains a non-exposed but extreme ray R0 that goes
through gamble X0 (that is, R0 = {λX0 : λ > 0}). Define D′′ = D′\R0; this is still a convex set
(hence a convex cone) containing the positive octant. We can then define a preference ordering �′′
as X �′′ Y iff X − Y ∈ D′′. Note that D′′ is not an evenly convex set, but �′′ built as described
satisfies SSK-continuity as we argue in the remainder of this section. However, before we plunge
into the arguments, consider a concrete example:

Example 1 Suppose Ω = {ω1, ω2, ω3}; a gamble is a triple of numbers (x1, x2, x3), meaning
(X(ω1), X(ω2), X(ω3)). Consider B as the union of the open circle with center (1/4, 1/4, 1/2)
and radius

√
3/2 drawn on the simplex consisting of x1 + x2 + x3 = 1, and the closed polygon

with four vertices (3/4, 3/4,−1/2), (−1/4,−1/4, 3/2), (−2, 3/2, 3/2), (−1, 5/2,−1/2), and take
X0 = (−1/4,−1/4, 3/2), a non-exposed extreme point of B. Figure 3 depicts the set B. Take the
cone D′′ as the set of all rays emanating from the origin and going through points of B except X0.
This cone D′′ produces a preference ordering that satisfies SSK-continuity. �

We now show that the preference ordering �′′ induced by D′′ satisfies SSK-continuity.
As the cone D′ is evenly convex, we can build its representing credal set K′. By construction

X �′′ 0 implies that for all P ∈ K′ we have EP[X] > 0; also by construction X �′′ 0 implies
X 6∈ R0. Also, if for all P ∈ K′ we have EP[X] > 0 and X 6∈ R0, then X �′′ 0. That is, we have
the representation: X �′′ 0⇔ (X 6∈ R0) ∧ (∀P ∈ K′ : EP[X] > 0).

By Proposition 5, we need to show that {Xi} → X , {Yi} → Y , Xi �′′ Yi, Y �′′ 0 imply
X �′′ 0. If Y ∈ R0, then Y �′′ 0 is false and there is nothing to prove; hence assume that Y 6∈ R0.
We distinguish two cases: X 6∈ R0 and X ∈ R0.

Take X 6∈ R0. To prove that X �′′ 0, note that EP[Xi − Yi] > 0 for every P ∈ K′, so
limi EP[Xi − Yi] ≥ 0 and therefore EP[X] ≥ EP[Y ] for P ∈ K′. Thus EP[X] ≥ EP[Y ] > EP[0] =
0 and then EP[X] > 0 for every P ∈ K′, implying X �′′ 0 as desired.

Now take X ∈ R0; note that X is in an extreme ray of clD′. In the next paragraph we show that
if {Xi} → X , {Yi} → Y , Xi �′′ Yi, then Y �′′ 0 must be false. Hence it is irrelevant to consider
X ∈ R0 as the premise of SSK-continuity is never satisfied in this case, and the proof is finished.

To conclude we show that, if A is a convex cone, {Xi} → X , {Yi} → Y , Xi − Yi ∈ A, and
X belongs to an extreme ray of clA but X 6∈ A, then Y 6∈ A. We have that Y ∈ clA and, as
Xi − Yi ∈ A for every i, X − Y ∈ clA (the closure is the set of limiting points). So we have both
Y and X − Y in clA. If Y 6= λX , then X/2 is the convex combination Y/2 + (X − Y )/2 of two
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X(ω2)
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X(ω1)

X(ω2)
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X(ω1)

X(ω2)

A

X −A

X

Figure 4: A closed convex coneA (left), the conesA and−A (middle), and the conesA andX−A
for X in an extreme ray of A (right).

points not in the ray containing X , a contradiction with the assumption that X is in an extreme ray
of clA. So Y = λX for some λ, and then Y 6∈ A. (This result is illustrated by Figure 4: Y must
belong to the closure of A and to the closure of X − A, so it belongs to the line from the origin
through X .)

5. Conclusion

We have presented a few axioms on preference orderings that, together, imply a representation
through evenly convex credal sets. This representation lets one handle assessments of strict inequal-
ity for probabilities, and go beyond what can be done with closed convex credal sets. The main idea
is to adopt a novel Archimedean condition (even continuity) that implies even convexity. A similar
representation can be obtained using SSK-continuity in many, but not all, cases.

Future work should look at natural and similar extensions, as well as to conditioning and inde-
pendence. It should also be possible to use our proposed Archimedean condition to obtain general
sets of probabilities, mimicking results by Seidenfeld et al. (2010).
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Abstract
We define the independent natural extension of two local models for the general case of infinite
spaces, using both sets of desirable gambles and conditional lower previsions. In contrast to Mi-
randa and Zaffalon (2015), we adopt Williams-coherence instead of Walley-coherence. We show
that our notion of independent natural extension always exists—whereas theirs does not—and that
it satisfies various convenient properties, including factorisation and external additivity.

Keywords: independent natural extension; epistemic independence; Williams-coherence; infinite
spaces; external additivity; factorisation; sets of desirable gambles; conditional lower previsions.

1. Introduction

When probabilities are imprecise, in the sense that they are only partially specified, it is no longer
clear what it means for two variables to be independent (Couso et al., 1999). One approach is to
apply the standard notion of independence to every element of some set of probability measures.
The alternative, called epistemic independence, is to define independence as mutual irrelevance, in
the sense that receiving information about one of the variables will not effect our uncertainty model
for the other. The advantage of this intuitive alternative is that it has a much wider scope: since
epistemic independence is expressed in terms of uncertainty models instead of probabilities, it can
easily be applied to a variety of such models, including non-probabilistic ones; we here consider
sets of desirable gambles and conditional lower previsions.

When an assessment of epistemic independence is combined with local uncertainty models,
it leads to a unique corresponding joint uncertainty model that is called the independent natural
extension. If the variables involved can take only a finite number of values, this independent natural
extension always exists, and it then satisfies various convenient properties that allow for the design
of efficient algorithms (de Cooman et al., 2011; de Cooman and Miranda, 2012). If the variables
involved take values in an infinite set, the situation becomes more complicated. On the one hand,
for the specific case of lower probabilities, Vicig (2000) managed to obtain results that resemble the
finite case. On the other hand, for the more general case of lower previsions, Miranda and Zaffalon
(2015) recently found that the independent natural extension may not even exist.

Our present contribution generalises the results of Vicig (2000) to the case of conditional lower
previsions, using sets of desirable gambles as an intermediate step. The key technical difference
with Miranda and Zaffalon (2015) is that we use Williams-coherence instead of Walley-coherence.
This difference turns out to be crucial because our notion of independent natural extension always
exists. Furthermore, as we will see, it satisfies the same convenient properties that are known to
hold in the finite case, including factorisation and external additivity.
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Proofs are provided in the appendix of the arXiv version of this paper (De Bock, 2017), which
had to be omitted from the published version because of the page limit constraint.

2. Preliminaries and Notation

We use N to denote the natural numbers without zero and let N0 := N∪{0}. R is the set of real
numbers and Q is the set of rational numbers. Sign restrictions are imposed with subscripts. For
example, we let R>0 be the set of positive real numbers and let Q≥0 be the set of non-negative
rational numbers. The extended real numbers are denoted by R := R∪{−∞,+∞}.

For any non-empty set X , the power set of X —the set of all subsets of X —is denoted by
P(X ), and we let P /0(X ) := P(X ) \ { /0} be the set of all non-empty subsets of X . Elements
of P(X ) are called events. A set of events B ⊆P(X ) is called a field if it is non-empty and
closed with respect to complements and finite intersections and unions. If it is also closed with
respect to countable intersections and unions, it is called a sigma field. A partition of X is a set
B ⊆P /0(X ) of pairwise disjoint non-empty subsets of X whose union is equal to X . We also
adopt the notational trick of identifying X with the set of atoms {{x} : x ∈X }, which allows us
to regard X as a partition of X .

A bounded real-valued function on X will be called a gamble on X . The set of all gambles
on X is denoted by G (X ), the set of all non-negative gambles on X is denoted by G≥0(X ), and
we let G>0(X ) := G≥0(X ) \ {0} be the set of all non-negative non-zero gambles. For any set of
gambles A ⊆ G (X ), we let

posi(A ) :=

{
n

∑
i=1

λi fi : n ∈ N,λi ∈ R>0, fi ∈A

}
(1)

and
E (A ) := posi(A ∪G>0(X )) . (2)

Indicators are a particular type of gamble. For any A ∈P(X ), the corresponding indicator IA of A
is a gamble in G (X ), defined for all x ∈X by IA(x) := 1 if x ∈ A and IA(x) := 0 otherwise.

Finally, for any B ⊆P /0(X ), we will also require the notion of a non-negative B-measurable
gamble, which we define as a uniform limit of simple B-measurable gambles.

Definition 1 Let B ⊆P /0(X ). We call g ∈ G≥0(X ) a simple B-measurable gamble if there are
c0 ∈ R≥0, n ∈ N0 and, for all i ∈ {1, . . . ,n}, ci ∈ R≥0 and Bi ∈B, such that g = c0 +∑n

i=1 ciIBi .

Definition 2 Let B ⊆P /0(X ). A gamble g ∈ G≥0(X ) is B-measurable if it is a uniform limit of
non-negative simple B-measurable gambles, in the sense that there is a sequence {gn}n∈N of simple
B-measurable gambles in G≥0(X ) such that limn→+∞ sup |g−gn|= 0.

Readers that are familiar with the concepts of simple and measurable functions that are com-
mon in measure theory will observe some similarities. However, there are also some important
differences. On the one hand, our definitions are more restrictive: we only consider bounded non-
negative functions, Definition 1 requires that the coefficients ci are non-negative, and Definition 2
considers uniform limits instead of pointwise limits. On the other hand, our definitions are more
general because we allow for B to be any subset of P /0(X ). Nevertheless, if B∪{ /0} is a sigma
field, we have the following equivalence.

122



INDEPENDENT NATURAL EXTENSION FOR INFINITE SPACES: WILLIAMS-COHERENCE TO THE RESCUE

Proposition 3 Consider any B ⊆P /0(X ) such that B∗ := B∪{ /0} is a sigma field. Then for any
g ∈ G≥0(X ), g is B∗-measurable in the measure-theoretic sense (Nielsen, 1997, Definition 10.1) if
and only if it is B-measurable in the sense of Definition 2.

The proof of this result is based on the following sufficient condition for B-measurability, which
provides a convenient tool for establishing the B-measurability of a given function. In particular, it
implies that every non-negative gamble is P /0(X )-measurable.

Proposition 4 Let B ⊆P /0(X ) and g ∈ G≥0(X ). If, for all r ∈ Q≥0, the set {x ∈X : g(x) ≥ r}
is a finite union of pairwise disjoint events in B∪{X , /0}, then g is B-measurable.

Corollary 5 Every g ∈ G≥0(X ) is P /0(X )-measurable.

3. Modelling Uncertainty

A subject’s uncertainty about a variable X that takes values x in some non-empty set X can be
mathematically represented in various ways. The most popular such method is perhaps probability
theory, but it is by no means the only one, nor is it the most general one. In order for our results to
have a broader scope, we here adopt the frameworks of sets of desirable gambles and conditional
lower previsions.

The main aim of this section is to provide an overview of the basic technical aspects of these
frameworks, as these will be essential to the rest of the paper. Notably, we do not impose any
constraints on the cardinality of X : it may be finite, countably infinite or uncountably infinite.
Connections with other—perhaps better known—models for uncertainty, including probability the-
ory, will be discussed briefly at the end.

The basic idea behind sets of desirable gambles is to model a subject’s uncertainty about X by
considering his attitude towards gambles—bets—on X . In particular, we consider the gambles
f ∈ G (X ) that he finds desirable, in the sense that he is willing to engage in a transaction where,
once the actual value x ∈X of X is known, he will receive a—possibly negative—reward f (x) in
some linear utility scale. Even more so, he prefers these desirable gambles over the status quo, that
is, over not conducting any transaction at all. A set of desirable gambles is called coherent if it
satisfies the following rationality requirements.

Definition 6 A coherent set of desirable gambles D on X is a subset of G (X ) such that, for any
two gambles f ,g ∈ G (X ) and any non-negative real number λ ∈ R>0:

D1: if f ≥ 0 and f 6= 0, then f ∈D;

D2: if f ∈D then λ f ∈D;

D3: if f ,g ∈D , then f +g ∈D;

D4: if f ≤ 0, then f /∈D .

Despite their simplicity, sets of desirable gambles offer a surprisingly powerful framework for mod-
elling uncertainty; see for example (Walley, 2000) and (Quaeghebeur, 2014). For our present pur-
poses though, all we need for now is Definition 6.
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Conditional lower previsions also model a subject’s uncertainty about X by considering his
attitude towards gambles on X . However, in this case, instead of considering sets of gambles, we
consider the prices at which a subject is willing to buy these gambles. Let

C (X ) := G (X )×P /0(X )

be the set of all pairs ( f ,B), where f is a gamble on X and B is a non-empty subset of X —an
event. A conditional lower prevision is then defined as follows.

Definition 7 A conditional lower prevision P on C ⊆ C (X ) is a map

P : C → R : ( f ,B)→ P( f |B).

For any ( f ,B) in the domain C , the lower prevision P( f |B) of f conditional on B is interpreted as
a subject’s supremum price µ for buying f , under the condition that the transaction is called off
when B does not happen—if x /∈ B. In other words, P( f |B) is the supremum value of µ for which
he is willing to engage in a transaction where he receives f (x)−µ if x ∈ B and zero otherwise, and
furthermore prefers this transaction to the status quo.

It is also possible to consider conditional upper previsions P( f |B), which are interpreted as
infimum selling prices. However, since selling f for µ is equivalent to buying − f for −µ , we have
that P( f |B) = −P(− f |B). For that reason, we will mainly focus on conditional lower previsions.
Unconditional lower previsions correspond to the special case where B = X for all ( f ,B) ∈ C ; we
then use the shorthand notation P( f ) := P( f |X ) and call P( f ) the lower prevision of f . Similarly,
we refer to P( f ) := P( f |X ) as the upper prevision of f .

Because of their interpretation in terms of buying prices for gambles, a particularly intuitive
way to obtain a conditional lower prevision P is to derive it from a set of gambles D . In particular,
for every D ⊆ G (X ), we let

PD( f |B) := sup{µ ∈ R : [ f −µ]IB ∈D} for all ( f ,B) ∈ C (X ). (3)

A conditional lower prevision is then called coherent if can be derived from a coherent set of desir-
able gambles in this way.

Definition 8 A conditional lower prevision P on a domain C ⊆ C (X ) is coherent if there is a
coherent set of desirable gambles D on X such that P coincides with PD on C .

This definition of coherence is heavily inspired by the work of Williams (1975, 2007). The
only two minor differences are that our rationality axioms on D are slightly different from his, and
that we do not impose any structure on the domain C . Nevertheless, when the domain C satisfies
the structural constraints in (Williams, 2007), Definition 8 is equivalent to that of Williams. More
generally, as the following result establishes, it is equivalent to the structure-free notion of Williams-
coherence that was developed by Pelessoni and Vicig (2009).

Proposition 9 A conditional lower prevision P on C ⊆ C (X ) is coherent if and only if it is real-
valued and, for all n ∈ N0 and all choices of λ0, . . . ,λn ∈ R≥0 and ( f0,B0), . . . ,( fn,Bn) ∈ C :

sup
x∈B

( n

∑
i=1

λiIBi(x)[ fi(x)−P( fi|Bi)]−λ0IB0(x)[ f0(x)−P( f0|B0)]
)
≥ 0, (4)

where we let B := ∪n
i=0Bi.
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The advantage of this alternative characterisation is that it is expressed directly in terms of lower
previsions. Nevertheless, we consider Equation (4) to be less intuitive than Definition 8, which is
why we prefer the latter.

From a mathematical point of view, Definition 8 also has the advantage that it allows for simple
and elegant proofs of some well-known results. For example, it follows trivially from our definition
of coherence that the domain of a coherent conditional lower prevision can be arbitrarily extended
while preserving coherence, whereas deriving this result directly from Equation 4 is substantially
more involved; see for example the proof of (Pelessoni and Vicig, 2009, Proposition 1). Further-
more, our definition also allows for a very natural derivation of the so-called natural extension of
P, that is, the most conservative extension of P to C (X ). In particular, instead of having to derive
this natural extension directly, Definition 8 allows us to rephrase this problem into a closely related
yet simpler question: what is the smallest coherent set of desirable gambles D on X such that PD

coincides with P on C ? The answer turns out to be surprisingly simple.

Proposition 10 Consider a coherent conditional lower prevision P on C ⊆ C (X ) and let

AP :=
{
[ f −µ]IB : ( f ,B) ∈ C ,µ < P( f |B)

}
and E (P) := E (AP). (5)

Then E (P) is a coherent set of desirable gambles on X and PE (P) coincides with P on C . Further-
more, for any other coherent set of desirable gambles D on X such that PD coincides with P on
C , we have that E (P)⊆D .

Abstracting away some technical details, the reason why this result holds should be intuitively
clear. First, since conditional lower previsions are interpreted as called-off supremum buying prices,
we see that the gambles in AP should be desirable. Combined with D1–D3, the desirability of the
gambles in E (P) then follows.

Since smaller sets of desirable gambles lead to more conservative—pointwise smaller—lower
previsions, we conclude that the natural extension of P is given by

E( f |B) := PE (P)( f |B) for all ( f ,B) ∈ C (X ). (6)

The following proposition provides a formal statement of this result.

Proposition 11 Let P be a coherent conditional lower prevision on C ⊆C (X ). Then E, as defined
by Equation (6), is the pointwise smallest coherent conditional lower prevision on C (X ) that
coincides with P on C .

All in all, we conclude that Definition 8 provides an intuitive as well as mathematically con-
venient characterisation of Williams-coherence that is furthermore equivalent to the structure-free
version of Pelessoni and Vicig (2009). From a technical point of view, this equivalence will not be
important further on, since all of our arguments will be based on the connection with sets of desirable
gambles. From a practical point of view though, this equivalence is highly important, because the
Williams-coherent conditional lower previsions that are considered in (Pelessoni and Vicig, 2009)
are well-known to include as special cases a variety of other uncertainty models, including expecta-
tions, lower expectations, probabilities, lower probabilities and belief functions; lower probabilities,
for example, can be obtained by restricting the domain of P to indicators. For that reason, all of
our results can be immediately applied to these special cases as well. A detailed treatment of these
special cases, however, does not fit within the page constraints of this contribution, and therefore
falls beyond the scope our present work.
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4. Epistemic Independence

Having introduced our main tools for modelling uncertainty, the next step towards developing a
notion of independent natural extension is to agree on what we mean by independence. Within the
context of lower previsions, there are basically two main options.

The first approach, which we will not consider here, is to interpret lower previsions as lower
expectations, that is, as tight lower bounds on the expectations that correspond to some set of prob-
ability measures, and to then impose the usual notion of independence on each of the probability
measures in that set. This approach has the advantage of being familiar, but is restricted in scope
because it can only be applied to uncertainty models that are expressed in terms of probabilities.

The second approach, which is the one that we will adopt here, is to regard independence as
an assessment of mutual irrelevance. In particular, we say that X1 and X2 are independent if our
uncertainty model for X1 is not affected by conditioning on information about X2, and vice versa.
This definition can easily be applied to a probability measure, and then yields the usual notion of
independence. However, and that is what makes this approach powerful and intuitive, it can just
as easily be applied to lower previsions, sets of desirable gambles, or any other type of uncertainty
model. This type of independence is usually referred to as epistemic independence. The aim of
this section is to formalize this concept for the case of two variables, in terms of sets of desirable
gambles and conditional lower previsions.

Consider two variables X1 and X2 where, for every i ∈ {1,2}, Xi takes values xi in a non-empty
set Xi that may be uncountably infinite, and let X := (X1,X2) be the corresponding joint variable
that takes values x := (x1,x2) in X1×X2. In this context, whenever convenient, we will identify
B ∈P /0(X1) with B×X2 and B ∈P /0(X2) with X1×B. Similarly, for any i ∈ {1,2}, we will
identify f ∈ G (Xi) with its cylindrical extension to G (X1×X2), defined by

f (x1,x2) := f (xi) for all x = (x1,x2) ∈X1×X2.

In order to make this explicit, we will then often denote this cylindrical extension by f (Xi). In this
way, for example, for any f ∈ G (X2) and B∈P(X1), we can write f (X2)IB(X1) to denote a gamble
in G (X1×X2) whose value in (x1,x2) is equal to f (x2) if x1 ∈ B and equal to zero otherwise. Using
these conventions, for any set of gambles D on X1×X2, we define the marginal models

marg1(D) := { f ∈ G (X1) : f (X1) ∈D} and marg2(D) := { f ∈ G (X2) : f (X2) ∈D}

and, for any events B1 ∈P /0(X1) and B2 ∈P /0(X2), the conditional models

marg1(DcB2) := { f ∈ G (X1) : f (X1)IB2(X2) ∈D}
and

marg2(DcB1) := { f ∈ G (X2) : f (X2)IB1(X1) ∈D}.

Conditioning and marginalisation both preserve coherence: if D is a coherent set of desirable gam-
bles on X1×X2, then marg1(D) and marg1(DcB2) are coherent sets of desirable gambles on X1,
and marg2(D) and marg2(DcB1) are coherent sets of desirable gambles on X2.

That being said, let us now recall our informal definition of epistemic independence, which was
that the uncertainty model for X1 is not affected by conditioning on information about X2, and vice
versa. In the context of sets of desirable gambles, this can now be formalized as follows:

marg1(D |B2) = marg1(D) and marg2(D |B1) = marg2(D).
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The only thing that is left to specify are the conditioning events B1 and B2 for which we want this
condition to hold. We think that the most intuitive approach is to impose this for every B1 ∈P /0(X1)
and B2 ∈P /0(X2), and will call this epistemic subset-independence. However, this is not what is
usually done. The conventional approach, which we will refer to as epistemic value-independence,
is to focus on singleton events of the type B1 = {x1} and B2 = {x2}; see for example (Walley, 1991)
and (de Cooman and Miranda, 2012). We believe this conventional approach to be flawed and will
argue against it further on. Until then, we postpone this debate by adopting a very general approach
that subsumes the former two as special cases. In particular, for every i ∈ {1,2}, we simply fix
a generic set of conditioning events Bi ⊆P /0(Xi). Epistemic value-independence corresponds to
choosing Bi =Xi, whereas epistemic subset-independence corresponds to choosing Bi =P /0(Xi).

For sets of desirable gambles, this leads us to the following definition.

Definition 12 Let D be a coherent set of desirable gambles on X1×X2. Then D is epistemically
independent if, for any i and j such that {i, j}= {1,2}:

margi(DcB j) = margi(D) for all B j ∈B j.

For coherent lower previsions, as a prerequisite for defining epistemic independence, we require
that the domain C ⊆ C (X1×X2) is independent, by which we mean that for any i and j such that
{i, j}= {1,2}, any pair ( fi,Bi) ∈ C (Xi) and any event B j ∈B j:

( fi,Bi) ∈ C ⇔ ( fi,Bi∩B j) ∈ C . (7)

Other than that, we impose no restrictions on C ; its elements ( f ,B) ∈ C are for example not re-
stricted to the types that appear in Equation (7). As a result, the following definition of epistemic
independence is applicable beyond the context of lower previsions. For example, by restricting the
domain to indicators, we obtain a notion of epistemic independence that applies to conditional lower
probabilities. A detailed discussion of these special cases, however, is left as future work.

Definition 13 Let C ⊆ C (X1×X2) be an independent domain. A coherent conditional lower
prevision P on C is then epistemically independent if, for any i and j such that {i, j}= {1,2}:

P( fi|Bi) = P( fi|Bi∩B j) for all ( fi,Bi) ∈ C and B j ∈B j.

Another important feature of this definition is that B j is not only irrelevant to unconditional local
lower previsions of the form P( fi)—in the sense that P( fi) = P( fi|B j)—but also to conditional
local lower previsions such as P( fi|Bi)—in the sense that P( fi|Bi) = P( fi|Bi ∩B j). This type of
irrelevance is called h-irrelevance; see Cozman (2013) and De Bock (2015). Note, however, that
this feature is optional within our framework; it only appears when C is sufficiently large. If Bi =Xi

for all ( fi,Bi) ∈ C , our definition reduces to the simple requirement that P( fi) = P( fi|B j).

5. The Independent Natural Extension

All of that being said, we are now finally ready to introduce our central object of interest, which
is the independent natural extension. Basically, the question to which this concept provides an
answer is always the same: given two local uncertainty models and an assessment of epistemic
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independence, what then should be the corresponding joint model? The answer, however, depends
on the specific framework that is being considered.

Within the framework of sets of desirable gambles, the local uncertainty models are coherent
sets of desirable gambles. In particular, for each i ∈ {1,2}, we are given a coherent set of desirable
gambles Di on Xi. The aim is to combine these local models with an assessment of epistemic
independence to obtain a coherent set of desirable gambles D on X1×X2. The first requirement
on D , therefore, is that it should have D1 and D2 as its marginals, in the sense that margi(D) = Di

for all i ∈ {1,2}. The second is that D should be epistemically independent. If both requirements
are met, D is called an independent product of D1 and D2. The most conservative among these
independent products is called the independent natural extension.

Definition 14 An independent product of D1 and D2 is an epistemically independent coherent set
of desirable gambles D on X1×X2 that has D1 and D2 as its marginals.

Definition 15 The independent natural extension of D1 and D2 is the smallest independent product
of D1 and D2.

If all we know is that D is epistemically independent and has D1 and D2 as its marginal models,
then the safest choice for D—the only choice that does not require any additional assessments—is
their independent natural extension, provided of course that it exists. In order to show that it always
does, we let

D1⊗D2 := E (A1→2∪A2→1) , (8)
with

A1→2 := { f2(X2)IB1(X1) : f2 ∈D2,B1 ∈B1∪{X1}} (9)
and

A2→1 := { f1(X1)IB2(X2) : f1 ∈D1,B2 ∈B2∪{X2}} . (10)

The following result establishes that D1⊗D2 is the independent natural extension of D1 and D2.

Theorem 16 D1⊗D2 is the independent natural extension of D1 and D2.

Similar concepts can be defined for conditional lower previsions as well. In that case, the local
uncertainty models are coherent conditional lower previsions. In particular, for every i ∈ {1,2}, we
are given a coherent conditional lower prevision Pi on some freely chosen local domain Ci⊆C (Xi).
The aim is now to construct an epistemically independent coherent conditional lower prevision P
on C ⊆ C (X1×X2) that has P1 and P2 as its marginals, in the sense that P coincides with P1 and
P2 on their local domain: P( fi|Bi) = Pi( fi|Bi) for all i ∈ {1,2} and ( fi,Bi) ∈ Ci. As before, a model
that meets these criteria is then called an independent product, and the most conservative among
them is called the independent natural extension. Clearly, in order for these notions to make sense,
the global domain C must at least include the local domains C1 and C2 and must furthermore be
independent in the sense of Equation (7). The definitions and results below take this for granted.

Definition 17 An independent product of P1 and P2 is an epistemically independent coherent con-
ditional lower prevision on C that has P1 and P2 as its marginals.

Definition 18 The independent natural extension of P1 and P2 is the point-wise smallest indepen-
dent product of P1 and P2.
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Here too, if all we know is that P is epistemically independent and has P1 and P2 as its
marginal models, then the safest choice for P—the only choice that does not require any addi-
tional assessments—is the independent natural extension, provided that it exists. The following
result establishes that it does, by showing that it is a restriction of the operator P1⊗P2, defined by

(P1⊗P2)( f |B) := PD( f |B) for all ( f ,B) ∈ C (X1×X2), with D = E (P1)⊗E (P2). (11)

Theorem 19 The independent natural extension of P1 and P2 is the restriction of P1⊗P2 to C .

Interestingly, as can be seen from this result, the choice of the joint domain C does not affect the
resulting independent natural extension, in the sense that any C that includes ( f ,B) will lead to the
same value of (P1⊗P2)( f |B). For that reason, we will henceforth assume without loss of generality
that C = C (X1×X2).

6. On the Choice of Conditioning Events

The fact that the existence results in the previous section are valid regardless of the choice of B1
and B2 should not be taken to mean that this choice does not affect the model. In some cases, it
most definitely does. In the remainder of this contribution, we will study the extend to which it
does, and how it affects the properties of the resulting notion of independent natural extension.

As a first observation, we note that larger sets of conditioning events correspond to stronger
assessments of epistemic independence, and therefore lead to more informative joint models. For
example, as can be seen from Equations (8)–(10), adding events to B1 and B2 leads to a larger—
more informative—set of desirable gambles D1⊗D2. Similarly, as can be seen from Equation (11),
it leads to a joint lower prevision that is higher—and therefore again more informative. There is
one important exception to this observation though, which occurs when we add conditioning events
that are a finite disjoint union of other conditioning events. In that case, the resulting notion of
independent natural extension does not change.

Proposition 20 For each i ∈ {1,2}, let B′i be a superset of Bi that consists of finite disjoint unions
of events in Bi. Replacing B1 by B′1 and B2 by B′2 then has no effect on the resulting independent
natural extension D1⊗D2 or P1⊗P2.

As a particular case of this result, it follows that if Bi is a finite partition of Xi, we can replace
it by the generated algebra—minus the empty event. As an even more particular case, if X1 and
X2 are finite, we find that epistemic value- and subset-independence lead to the same notion of
independent natural extension. For that reason, in the finite case, it does not really matter which of
these two types of epistemic independence is adopted.

In the infinite case though, the difference does matter, and the debate between epistemic value-
and subset-independence remains open. For lower previsions, Miranda and Zaffalon (2015) recently
adopted epistemic value-independence in combination with Walley-coherence. Unfortunately, they
found that the corresponding notion of independent natural extension does not always exist. They
also considered the combination of epistemic value-independence with Williams-coherence, and
argued that the resulting model was too weak. For the case of lower probabilities, Vicig (2000)
adopted epistemic subset-independence in combination with Williams-coherence, showed that the
corresponding independent natural extension always exists, and proved that it satisfies factorisation
properties. Our results so far can be regarded as a generalisation of the existence results of Vicig
(2000). As we are about to show, his factorisation results can be generalised as well.
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7. Factorisation and External Additivity

When X1 and X2 are finite, the independent natural extension of two lower previsions P1 and P2
is well-known to satisfy the properties of factorisation and external additivity (de Cooman et al.,
2011). Factorisation, on the one hand, states that

(P1⊗P2)(gh) = P1(gP2(h)) =

{
P1(g)P2(h) if P2(h)≥ 0
P1(g)P2(h) if P2(h)≤ 0,

(12)

where g is a non-negative gamble on X1, h is a gamble on X2 and P1(g) :=−P1(−g). By symmetry,
the role of 1 and 2 can of course be reversed. External additivity, on the other hand, states that

(P1⊗P2)( f +h) = P1( f )+P2(h) (13)

where f and h are gambles on X1 and X2, respectively.
Compared to the properties that are satisfied by the joint expectation of a product measure of

two precise probability measures, these notions of factorisation and external additivity are rather
weak. For example, for a precise product measure, additivity is not ‘external’, in the sense that f
and h do not have to be defined on separate variables, nor does factorisation require g to be non-
negative. Nevertheless, even in this weaker form, these properties remain of crucial practical im-
portance. For example, in the context of credal networks—Bayesian networks whose local models
are imprecise—they turned out to be the key to the development of efficient inference algorithms;
see for example de Cooman et al. (2010), De Bock and de Cooman (2014) and De Bock (2015).
Any notion of independent natural extension that aims to extend such algorithms to infinite spaces,
therefore, should preserve some suitable version of Equations (12) and (13).

The aim of this section is to study the extent to which these equations are satisfied by the notion
of independent natural extension that was developed in this paper. As we will see, the answer ends
up being surprisingly positive.

For all i ∈ {1,2}, let Pi be a coherent conditional lower prevision on Ci ⊆ C (Xi), let E i be its
natural extension to C (Xi), and let Bi be a subset of P /0(Xi). The independent natural extension
of P1 and P2 then satisfies the following three properties, the first of which implies the other two as
special cases.

Theorem 21 Let {i, j}= {1,2}. For any f ∈ G (Xi), h ∈ G (X j) and Bi-measurable g ∈ G≥0(Xi),
we then have that

(P1⊗P2)( f +gh) = E i
(

f +gE j(h)
)
.

Corollary 22 (Factorisation) Let {i, j}= {1,2}. For any h ∈ G (X j) and any g ∈ G≥0(Xi) that is
Bi-measurable, we then have that

(P1⊗P2)(gh) = E i
(
gE j(h)

)
=

{
E i(g)E j(h) if E j(h)≥ 0;
E i(g)E j(h) if E j(h)≤ 0.

Corollary 23 (External additivity) For any f ∈ G (X1) and h ∈ G (X2), we have that

(P1⊗P2)( f +h) = E1( f )+E2(h).
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In each of these results, if the local domains C1 and C2 are sufficiently large—that is, if they include
the gambles that appear in the statement of the results—it follows from Proposition 11 that E i and
E j can be replaced by Pi and P j, respectively, and similarly for E i and Pi.

That being said, let us now go back to the question of whether or not Equations (12) and (13)
can be generalised to the case of infinite spaces. For the case of external additivity, it clearly follows
from Corollary 23 that the answer is fully positive. Furthermore, this conclusion holds regardless
of our choice for B1 and B2; they can even be empty. For factorisation, the answer does depend
on B1 and B2. If we adopt epistemic subset-independence—that is, if we choose B1 = P /0(X1)
and B2 = P /0(X2)—it follows from Corollaries 5 and 22 that the answer is again fully positive,
because P /0(Xi)-measurability then holds trivially. If B1∪{ /0} and B2∪{ /0} are sigma fields, the
answer remains fairly positive as well, because Proposition 3 then implies that it suffices for g to be
measurable in the usual, measure-theoretic sense. If we adopt epistemic value-independence—that
is, if we choose B1 = X1 and B2 = X2—it is necessary for g to be Xi-measurable, which is a
rather strong requirement that easily fails. For that reason, we think that for the case of infinite
spaces, when it comes to choosing between epistemic value- and subset-independence, the latter
should be preferred over the former.

8. Conclusions and Future Work

The main conclusion of this work is that by combining Williams-coherence with epistemic subset-
independence, we obtain a notion of independent natural extension that always exists, and that fur-
thermore satisfies factorisation and external additivity. For weaker types of epistemic independence,
including epistemic value-irrelevance, the existence result and the external additivity property re-
main valid, but factorisation then requires measurability conditions.

We foresee several lines of future research. The first, which we expect to be rather straightfor-
ward, is to extend our results from the case of two variables to that of any finite number of variables.
Next, these extended versions of our results could then be used to develop efficient algorithms for
credal networks whose variables take values in infinite spaces, by suitably adapting existing algo-
rithms for the finite case. On the more technical side, it would be useful to see whether our results
can be extended to the case of unbounded functions. Finally, for variables that take values in Eu-
clidean space, B1 and B2 could be restricted to the Lebesgue measurable events. Combined with an
assessment of continuity, we think that this could lead to the development of a notion of independent
natural extension that includes sigma additive product measures as a special case.
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Abstract
We use the martingale-theoretic approach of game-theoretic probability to incorporate imprecision
into the study of randomness. In particular, we define a notion of computable randomness asso-
ciated with interval, rather than precise, forecasting systems, and study its properties. The richer
mathematical structure that thus arises lets us better understand and place existing results for the
precise limit. When we focus on constant interval forecasts, we find that every infinite sequence of
zeroes and ones has an associated filter of intervals with respect to which it is computably random.
It may happen that none of these intervals is precise, which justifies the title of this paper. We
illustrate this by showing that computable randomness associated with non-stationary precise fore-
casting systems can be captured by a stationary interval forecast, which must then be less precise:
a gain in model simplicity is thus paid for by a loss in precision.
Keywords: computable randomness; imprecise probabilities; game-theoretic probability; interval
forecast; supermartingale; computability.

1. Introduction

This paper documents the first steps in our attempt to incorporate indecision and imprecision into
the study of randomness. Consider a infinite sequence ω = (z1, . . . ,zn, . . .) of zeroes and ones; when
do we call it random? There are many notions of randomness, and many of them have a number of
equivalent definitions (Ambos-Spies and Kucera, 2000; Bienvenu et al., 2009). We focus here on
computable randomness, mainly because its focus on computability—rather than, say, the weaker
lower semicomputability—has allowed us in this first attempt to keep the mathematical nitpicking
at arm’s length. Randomness of a sequence ω is typically associated with a probability measure
on the sample space of all infinite sequences, or—what is equivalent—with a forecasting system
γ that associates with each finite sequence of outcomes (x1, . . . ,xn) the (conditional) expectation
γ(x1, . . . ,xn) for the next (as yet unknown) outcome Xn+1. The sequence ω is then called comput-
ably random when it passes a (countable) number of computable tests of randomness, where the
collection of randomness tests depends of the forecasting system γ . An alternative but equivalent
definition, going back to Ville (1939), sees each forecast γ(x1, . . . ,xn) as a fair price for—and there-
fore a commitment to bet on—the as yet unknown next outcome Xn+1. The sequence ω is then
computably random when there is no computable strategy for getting infinitely rich by exploiting
the bets made available by the forecasting system γ along the sequence, without borrowing. Tech-
nically speaking, all computable non-negative supermartingales should remain bounded on ω , and
the forecasting system γ determines what a supermartingale is.

It is this last, martingale-theoretic approach which seems to lend itself most easily to allowing
for imprecision in the forecasts, and therefore in the definition of randomness. As we explain in Sec-
tions 2 and 3, an ‘imprecise’ forecasting system γ associates with each finite sequence of outcomes
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(x1, . . . ,xn) a (conditional) expectation interval γ(x1, . . . ,xn) for the next (as yet unknown) outcome
Xn+1, whose lower bound represents a supremum acceptable buying price, and whose upper bound
a infimum acceptable selling price for Xn+1. This idea rests firmly on the common ground between
Walley’s (1991) theory of coherent lower previsions and Shafer and Vovk’s (2001) game-theoretic
approach to probability that we have established in recent years, through our research on impre-
cise stochastic processes (De Cooman and Hermans, 2008; De Cooman et al., 2016). This allows
us to associate supermartingales with an imprecise forecasting system, and therefore in Section 5
to extend the existing notion of computable randomness to allow for interval, rather than precise,
forecasts—we discuss computability in Section 4. We show in Section 6 that our approach allows
us to extend some of Dawid’s (1982) well-known work on calibration, as well as an interesting
‘limiting frequencies’ or computable stochasticity result.

We believe the discussion becomes really interesting in Section 7, where we look at stationary
interval forecasts to extend the classical account of randomness. That classical account typically
considers a forecasting system with stationary expectation forecast 1/2—corresponding to flipping
a fair coin. As we have by now come to expect from our experience with imprecise probability
models, a much more interesting mathematical picture appears when allowing for interval forecasts
than the rather simple case of precise forecasts would lead us to suspect. In the precise case, a given
sequence may not be (computably) random for any stationary forecast, but in the imprecise case
there is always a set filter of intervals that a given sequence is computably random for. Furthermore,
as we show in Section 8, this filter may not have a smallest element, and even when it does, this
smallest element may be a non-vanishing interval: randomness may be inherently imprecise.

In order to comply with the page limit, proofs are omitted; we refer the reader to the appendix
of (De Cooman and De Bock, 2017), an extended version of this paper that is available on arXiv.

2. A single interval forecast

The dynamics of making a single forecast can be made very clear by considering a simple game,
with three players, namely Forecaster, Sceptic and Reality.

Game: single forecast of an outcome X
In a first step, Forecaster specifies an interval bound I = [p, p] for the expectation of an as yet
unknown outcome X in {0,1}—or equivalently, for the probability that X = 1. We interpret this
interval forecast I as a commitment, on the part of Forecaster, to adopt p as a supremum buying
price and p as a infimum selling price for the gamble (with reward function) X. This is taken to mean
that the second player, Sceptic, can now in a second step take Forecaster up on any (combination)
of the following commitments:

(i) for any p∈ [0,1] such that p≤ p, and any α ≥ 0 Forecaster must accept the gamble α[X− p],
leading to an uncertain reward −α[X− p] for Sceptic;1

(ii) for any q ∈ [0,1] such that q ≥ p, and any β ≥ 0 Forecaster accepts the gamble β [q−X],
leading to an uncertain reward −β [q−X] for Sceptic.

Finally, in a third step, the third player, Reality, determines the value x of X in {0,1}. �

Elements x of {0,1} are called outcomes, and elements p of the real unit interval [0,1] are
called (precise) forecasts. We denote by C the set of non-empty closed subintervals of the real unit

1. Because we allow p ≤ p rather than p < p, we actually see p as a maximum buying price, rather than a supremum
one. We do this because it does not affect the conclusions, but simplifies the mathematics. Similarly for q≥ p.
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Figure 1: Gambles f available to Sceptic when (a) Forecaster announces I ∈ C with p < p; and
when (b) Forecaster announces I ∈ C with p = p =: r.

interval [0,1]. Any element I of C is called an interval forecast. It has a smallest element min I
and a greatest element max I, so I = [min I,max I]. We will use the generic notation I for such an
interval, and p := min I and p := max I for its lower and upper bounds, respectively.

After Forecaster announces a forecast interval I, what Sceptic can do is essentially to try and
increase his capital by taking a gamble on the outcome X. Any such gamble can be considered as a
map f : {0,1}→R, and can therefore be represented as a vector ( f (1), f (0)) in the two-dimensional
vector space R2; see also Figure 1. f (X) is then the increase in Sceptic’s capital after the game has
been played, as a function of the outcome variable X. Of course, not every gamble f (X) on the
outcome X will be available to Sceptic: which gambles he can take is determined by Forecaster’s
interval forecast I. In their most general form, they are given by f (X) = −α[X− p]− β [q−X],
where α and β are non-negative real numbers, p≤ p and q≥ p. If we consider the so-called lower
expectation (functional) E I associated with an interval forecast I, defined by

EI( f ) = min
p∈I

Ep( f ) = min
p∈I

[
p f (1)+(1− p) f (0)

]
=

{
Ep( f ) if f (1)≥ f (0)

Ep( f ) if f (1)≤ f (0)
(1)

for any gamble f : {0,1}→ R, and similarly, the upper expectation (functional) E I , defined by

E I( f ) = max
p∈I

Ep( f ) =

{
Ep( f ) if f (1)≥ f (0)
Ep( f ) if f (1)≤ f (0)

=−E I(− f ), (2)

then it is not difficult to see that the cone of gambles f (X) that are available to Sceptic after Fore-
caster announces an interval forecast I is completely determined by the condition EI( f ) ≤ 0, as
depicted by the blue regions in Figure 1. The functionals E I and E I are easily shown to have the
following properties, typical for the more general lower and upper expectation operators defined on
more general gamble spaces (Walley, 1991; Troffaes and De Cooman, 2014):
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Proposition 1 Consider any forecast interval I ∈ C . Then for all gambles f ,g on {0,1}, µ ∈ R
and non-negative λ ∈ R:

C1. min f ≤ E I( f )≤ E I( f )≤max f ; [bounds]
C2. EI(λ f ) = λE I( f ) and E I(λ f ) = λE I( f ); [non-negative homogeneity]
C3. EI( f +g)≥ E I( f )+E I(g) and E I( f +g)≤ E I( f )+E I(g); [super/subadditivity]
C4. EI( f +µ) = E I( f )+µ and E I( f +µ) = EI( f )+µ . [constant additivity]

3. Interval forecasting systems and imprecise probability trees

We now consider a sequence of repeated versions of the forecast game in the previous section, where
at each stage k ∈ N, Forecaster presents an interval forecast Ik = [p

k
, pk] for the unknown outcome

variable Xk. This effectively allows Sceptic to choose any gamble fk(Xk) such that E Ik( f ) ≤ 0.
Reality then chooses a value xk for Xk, resulting in a gain, or increase in capital, fk(xk) for Sceptic.

We call (x1,x2, . . . ,xn, . . .) an outcome sequence, and collect all possible outcome sequences in
the set Ω := {0,1}N. We collect the finite outcome sequences (x1, . . . ,xn) in the set Ω♦ := {0,1}∗ =⋃

n∈N0
{0,1}n. Finite sequences s in Ω♦ and infinite sequences ω in Ω are the nodes—called situ-

ations—and paths in an event tree with unbounded horizon, part of which is depicted below.
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In this repeated game, Forecaster will only provide interval forecasts Ik after observing the actual
sequence (x1, . . . ,xk−1) that Reality has chosen. This is the essence of so-called prequential fore-
casting (Dawid, 1982, 1984; Dawid and Vovk, 1999). But for technical reasons, it will be useful to
consider the more involved setting where a forecast Is is specified in each of the possible situations
s ∈Ω♦; see the figure below.
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Indeed, we can use this idea to generalise the notion of a forecasting system (Vovk and Shen, 2010).

Definition 2 (Forecasting system) A forecasting system is a map γ : Ω♦→C , that associates with
any situation s in the event tree a forecast γ(s) ∈ C . With any forecasting system γ we can associate
two real-valued maps γ and γ on Ω♦, defined by γ(s) :=minγ(s) and γ(s) :=maxγ(s) for all s∈Ω♦.
A forecasting system γ is called precise if γ = γ . Γ denotes the set C Ω♦

of all forecasting systems.
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Specifying such a forecasting system requires imagining in advance all moves that Reality could
make, and devising in advance what forecasts to give in each imaginable situation s. In the precise
case, that is typically what one does when specifying a probability measure on the so-called sample
space Ω—the set Ω of all paths.

Since in each situation s the interval forecast Is = γ(s) corresponds to a local lower expect-
ation E Is

, we can use the argumentation in our earlier papers (De Cooman and Hermans, 2008;
De Cooman et al., 2016) on stochastic processes to let the forecasting system γ turn the event tree
into a so-called imprecise probability tree, with an associated global lower expectation, and a cor-
responding notion of ‘(strictly) almost surely’. In what follows, we briefly recall how to do this; for
more context, we also refer to the seminal work by Shafer and Vovk (2001).

For any path ω ∈ Ω, the initial sequence that consists of its first n elements is a situation in
{0,1}n that is denoted by ωn. Its n-th element belongs to {0,1} and is denoted by ωn. As a
convention, we let its 0-th element be the initial situation ω0 = ω0 =�. We write that sv t, and say
that the situation s precedes the situation t, when every path that goes through t also goes through
s—so s is a precursor of t.

A process F is a map defined on Ω♦. A real process is a real-valued process: it associates a real
number F(s) ∈ R with every situation s ∈ Ω♦. With any real process F , we can always associate a
process ∆F , called the process difference. For every situation (x1, . . . ,xn) with n∈N0, ∆F(x1, . . . ,xn)
is a gamble on {0,1} defined by ∆F(x1, . . . ,xn)(xn+1) := F(x1, . . . ,xn+1)− F(x1, . . . ,xn) for all
xn+1 ∈ {0,1}. In the imprecise probability tree associated with a given forecasting system γ , a
submartingale M for γ is a real process such that Eγ(x1,...,xn)(∆M(x1, . . . ,xn)) ≥ 0 for all n ∈ N0
and (x1, . . . ,xn) ∈ {0,1}n. A real process M is a supermartingale for γ if −M is a submartingale,
meaning that Eγ(x1,...,xn)(∆M(x1, . . . ,xn)) ≤ 0 for all n ∈ N0 and (x1, . . . ,xn) ∈ {0,1}n: all super-
martingale differences have non-positive upper expectation, so supermartingales are real processes
that Forecaster expects to decrease. We denote the set of all submartingales for a given forecasting
system γ by Mγ—whether a real process is a submartingale depends of course on the forecasts in
the situations. Similarly, the set Mγ :=−Mγ is the set of all supermartingales for γ .

It is clear from the discussion in Section 2 that the supermartingales are effectively all the
possible capital processes K for a Sceptic who starts with an initial capital K (�), and in each
possible subsequent situation s selects a gamble fs = ∆K (s) that is available there because Fore-
caster specifies the interval forecast Is = γ(s) and because E Is( fs) = Eγ(s)(∆K (s)) ≤ 0. If Reality
chooses outcomes s = (x1, . . . ,xn), then Sceptic ends up with capital K (x1, . . . ,xn) = K (�) +

∑n−1
k=0 ∆K (x1, . . . ,xk)(xk+1). A non-negative supermartingale M is non-negative in all situations,

which corresponds to Sceptic never borrowing any money. We call test supermartingale any non-
negative supermartingale M that starts with unit capital M(�) = 1. We collect all test supermartin-
gales for γ in the set Tγ

.
In the context of probability trees, we call variable any function defined on the sample space Ω.

When this variable is real-valued and bounded, we call it a gamble on Ω. An event A in this context
is a subset of Ω, and its indicator IA is a gamble on Ω assuming the value 1 on A and 0 elsewhere.
The following expressions define lower and upper expectations on such gambles g on Ω:

Eγ(g) :=sup
{

M(�) : M ∈Mγ and limsup
n→+∞

M(ωn)≤ g(ω) for all ω ∈Ω
}

(3)

Eγ
(g) := inf

{
M(�) : M ∈Mγ

and liminf
n→+∞

M(ωn)≥ g(ω) for all ω ∈Ω
}
=−Eγ(g). (4)
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They satisfy coherence properties similar to those in Proposition 1. We refer to extensive discus-
sions elsewhere (De Cooman et al., 2016; Shafer and Vovk, 2001) about why these expressions are
interesting and useful. For our present purposes, it may suffice to mention that for precise fore-
casts, they lead to models that coincide with the ones found in measure-theoretic probability theory
(Shafer and Vovk, 2001, Chapter 8). In particular, when all Is = {1/2}, they coincide with the usual
uniform (Lebesgue) expectations on measurable gambles.

We call an event A ⊆ Ω null if Pγ
(A) := Eγ

(IA) = 0, or equivalently Pγ(Ac) := Eγ(IAc) = 1,
and strictly null if there is some test supermartingale T ∈ Tγ

that converges to +∞ on A, meaning
that limn→+∞ T (ωn) = +∞ for all ω ∈ A. Any strictly null event is null, but null events need not
be strictly null (Vovk and Shafer, 2014; De Cooman et al., 2016). Because it is easily checked that
Pγ

( /0) = Pγ( /0) = 0 , the complement Ac of a (strictly) null event A is never empty. As usual, any
property that holds, except perhaps on a (strictly) null event, is said to hold (strictly) almost surely.

4. Basic computability notions

We recall a few notions and results from computability theory that are relevant to the discussion.
For a much more extensive treatment, we refer for instance to the books by Pour-El and Richards
(1989) and Li and Vitányi (1993).

A computable function φ : N0 → N0 is a function that can be computed by a Turing machine.
All further notions of computability that we will need, build on this basic notion. It is clear that it
in this definition, we can replace any of the N0 with any other countable set.

We start with the definition of a computable real number. We call a sequence of rational numbers
rn computable if there are three computable functions a,b,σ from N0 to N0 such that b(n)> 0 and
rn = (−1)σ(n) a(n)

b(n) for all n ∈ N0, and we say that it converges effectively to a real number x if there
is some computable function e : N0 → N0 such that n ≥ e(N)⇒ |rn− x| ≤ 2−N for all n,N ∈ N0.
A real number is then called computable if there is a computable sequence of rational numbers that
converges effectively to it. Of course, every rational number is a computable real.

We also need a notion of computable real processes, or in other words, computable real-valued
maps F : Ω♦ → R defined on the set Ω♦ of all situations. Because there is an obvious comput-
able bijection between N0 and Ω♦, whose inverse is also computable, we can in fact identify real
processes and real sequences, and simply import, mutatis mutandis, the definitions for computable
real sequences common in the literature (Li and Vitányi, 1993, Chapter 0). Indeed, we call a net
of rational numbers rs,n computable if there are three computable functions a,b,s from Ω♦×N0 to
N0 such that b(s,n) > 0 and rs,n = (−1)σ(s,n) a(s,n)

b(s,n) for all s ∈ Ω♦ and n ∈ N0. We call a real pro-
cess F : Ω♦→R computable if there is a computable net of rational numbers rs,n and a computable
function e : Ω♦×N0→N0 such that n≥ e(s,N)⇒ |rs,n−F(s)| ≤ 2−N for all s∈Ω♦ and n,N ∈N0.
Obviously, it follows from this definition that in particular F(t) is a computable real number for any
t ∈Ω♦: fix s = t and consider the sequence rt,n that converges to F(s) as n→+∞. Also, a constant
real process is computable if and only if its constant value is.

The following definitions are now obvious. A gamble f on {0,1} is called computable if both
its values f (0) and f (1) are computable real numbers. An interval forecast I = [p, p] ∈ C is called
computable if both its lower bound p and upper bound p are computable real numbers. A forecasting
system γ is called computable if the associated real processes γ and γ are.
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5. Random sequences in an imprecise probability tree

We will now associate a notion of randomness with a forecasting system γ—or in other words, with
an imprecise probability tree. In what follows, we will often consider computable test supermartin-
gales. These computable test supermartingales for a forecasting system are countable in number,
because the computable processes are (Li and Vitányi, 1993; Vovk and Shen, 2010).

Definition 3 (Computable randomness) Consider any forecasting system γ : Ω♦→C . We call an
outcome sequence ω computably random for γ if all computable test supermartingales T remain
bounded above on ω , meaning that there is some B ∈ R such that T (ωn) ≤ B for all n ∈ N, or
equivalently, that supn∈N T (ωn) < +∞. We then also say that the forecasting system γ makes ω
computably random. We denote by ΓC(ω) := {γ ∈ Γ : ω is computably random for γ} the set of all
forecasting systems for which the outcome sequence ω is computably random.

Computable randomness of an outcome sequence means that there is no computable strategy that
starts with capital 1 and avoids borrowing, and allows Sceptic to increase his capital without bounds
by exploiting the bets on these outcomes that are made available to him by Forecaster’s specification
of the forecasting system γ . When the forecasting system γ is precise and computable, our notion of
computable randomness reduces to the classical notion of computable randomness (Ambos-Spies
and Kucera, 2000; Bienvenu et al., 2009).

The (computable) vacuous forecasting system γv assigns the vacuous forecast γv(s) := [0,1] to
all situations s ∈Ω♦. The following proposition implies that no ΓC(ω) is empty.

Proposition 4 All paths are computably random for the vacuous forecasting system: γv ∈ ΓC(ω)
for all ω ∈Ω.

More conservative (or imprecise) forecasting systems have more computably random sequences.

Proposition 5 Let ω be computably random for a forecasting system γ . Then ω is also computably
random for any forecasting system γ∗ such that γ ⊆ γ∗, meaning that γ(s)⊆ γ∗(s) for all s ∈Ω♦.

6. Consistency results

We first show that any Forecaster who specifies a forecasting system is consistent in the sense that
he believes himself to be well calibrated: in the imprecise probability tree generated by his own
forecasts, (strictly) almost all paths will be computably random, so he is sure that Sceptic will not
be able to become infinitely rich at his expense, by exploiting his—Forecaster’s—forecasts. This
also generalises the arguments and conclusions in a paper by Dawid (1982).

Theorem 6 Consider any forecasting system γ : Ω♦ → C . Then (strictly) almost all outcome se-
quences are computably random for γ in the imprecise probability tree that corresponds to γ .

This result is quite powerful, and it guarantees in particular that:

Corollary 7 For any sequence of interval forecasts (I1, . . . , In, . . .) there is a forecasting system
given by γ(x1, . . . ,xn) := In+1 for all (x1, . . . ,xn) ∈ {0,1}n and all n ∈ N0, and associated impre-
cise probability tree such that (strictly) almost all—and therefore definitely at least one—outcome
sequences are computably random for γ in the associated imprecise probability tree.
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The following weaker consistency result deals with limits (inferior and superior) of relative fre-
quencies, taken with respect to a so-called selection process S : Ω♦→ {0,1}. It is a counterpart in
our more general context of the notions of computable stochasticity or Church randomness in the
precise case with I = {1/2} (Ambos-Spies and Kucera, 2000).

Theorem 8 (Church randomness) Let γ : Ω♦→C be any computable forecasting system, let ω =
(x1, . . . ,xn, . . .) ∈ Ω be any outcome sequence that is computably random for γ , and let f be any
computable gamble on {0,1}. If S : Ω♦ → {0,1} is any computable selection process such that
∑n

k=0 S(x1, . . . ,xk)→+∞, then also

liminf
n→+∞

∑n−1
k=0 S(x1, . . . ,xk)

[
f (xk+1)−Eγ(x1,...,xk)( f )

]

∑n−1
k=0 S(x1, . . . ,xk)

≥ 0.

7. Constant interval forecasts

We now introduce a significant simplification. For any interval I ∈C , we let γ I be the corresponding
stationary forecasting system that assigns the same interval forecast I to all nodes: γ I(s) := I for all
s ∈ Ω♦. In this way, with any outcome sequence ω , we can associate the collection of all interval
forecasts for which the corresponding stationary forecasting system makes ω computably random:

CC(ω) := {I ∈ C : γ I ∈ ΓC(ω)}= {I ∈ C : γ I makes ω computably random}.

As an immediate consequence of Propositions 4 and 5, we find that this set of intervals is non-empty
and increasing.

Proposition 9 (Non-emptiness) For all ω ∈Ω, [0,1]∈CC(ω), so any sequence of outcomes ω has
at least one stationary forecast that makes it computably random: CC(ω) 6= /0.

Proposition 10 (Increasingness) Consider any ω ∈ Ω and any I,J ∈ C . If I ∈ CC(ω) and I ⊆ J,
then also J ∈ CC(ω).

Theorem 8 implies the following property. However, quite remarkably, and seemingly in contrast
with Theorem 8, it does not require any computability assumptions on the (stationary) forecasts.

Corollary 11 (Church randomness) Consider any outcome sequence ω = (x1, . . . ,xn, . . .) in Ω
and any stationary interval forecast I = [p, p]∈CC(ω) that makes ω computably random. Then for
any computable selection process S : Ω♦→{0,1} such that ∑n

k=0 S(x1, . . . ,xk)→+∞:

p ≤ liminf
n→+∞

∑n−1
k=0 S(x1, . . . ,xk)xk+1

∑n−1
k=0 S(x1, . . . ,xk)

≤ limsup
n→+∞

∑n−1
k=0 S(x1, . . . ,xk)xk+1

∑n−1
k=0 S(x1, . . . ,xk)

≤ p.

The following proposition can of course be straightforwardly extended to any finite number of
interval forecasts, and guarantees, together with Proposition 10, that CC(ω) is a set filter.

Proposition 12 For any ω ∈Ω and any two interval forecasts I and J: if I ∈CC(ω) and J ∈CC(ω)
then I∩ J 6= /0, and I∩ J ∈ CC(ω).
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This result also tells us that the collection CC(ω) of closed subsets of the compact set [0,1] has the
finite intersection property, and its intersection is therefore a non-empty closed interval:

⋂
CC(ω) =

[p
C
(ω), pC(ω)]. Propositions 10 and 12 guarantee that all intervals [p

C
(ω)− ε1, pC(ω)+ ε2] in C

with ε1,ε2 > 0 belong to CC(ω). But we will see in the next section that this does not generally
hold for ε1 = 0 and/or ε2 = 0. For this reason, we now define the following two subsets of [0,1]:

LC(ω) := {min I : I ∈ CC(ω)} and UC(ω) := {max I : I ∈ CC(ω)}.

Then Proposition 10 guarantees that LC(ω) is a decreasing set, and that UC(ω) is increasing. They
are therefore both subintervals of [0,1]. Obviously, p

C
(ω) = supLC(ω) and pC(ω) = infUC(ω). On

the one hand clearly LC(ω) = [0, p
C
(ω)) or LC(ω) = [0, p

C
(ω)], and on the other hand UC(ω) =

(pC(ω),1] or UC(ω) = [pC(ω),1]. Proposition 12 easily allows us to give the following simple
description of the set CC(ω) in terms of LC(ω) and UC(ω):

I ∈ CC(ω)⇔
(

min I ∈ LC(ω) and max I ∈UC(ω)
)
.

A trivial example is given by:

Proposition 13 If the sequence ω is computable with infinitely many zeroes and ones, then CC(ω)=
{[0,1]}, and therefore LC(ω) = {0}, UC(ω) = {1}, p

C
(ω) = 0 and pC(ω) = 1.

At the other extreme, there are the sequences ω that are computably random for some precise
stationary forecasting system γ{p}, with p∈ [0,1]. They are amongst the random sequences that have
received most attention in the literature, thus far. For any such sequence, CC(ω) = {I ∈ C : p ∈ I},
LC(ω) = [0, p] and UC(ω) = [p,0], and therefore also p

C
(ω) = pC(ω) = p.

We show in the next section that, in between these extremes of total imprecision and maximal
precision, there lies a—to the best of our knowledge—previously uncharted realm of sequences,
with similar (and even in some sense ‘larger’) unpredictability than the ones traditionally called
‘computably random’, for which LC(ω) and UC(ω) need not always be closed, and more import-
antly, for which 0 < p

C
(ω) < pC(ω) < 1. This is what we mean when we claim that ‘computable

randomness is inherently imprecise’.

8. Randomness is inherently imprecise

Our work on imprecise Markov chains (De Cooman et al., 2016) has taught us that in some cases, we
can very efficiently compute tight bounds on expectations in non-stationary precise Markov chains,
by replacing them with their stationary imprecise versions. Similarly, in statistical modelling, when
learning from data sampled from a distribution with a varying (non-stationary) parameter, it seems
hard to estimate the exact time sequence of its values. But we may be more successful in learning
about its (stationary) interval range. This idea was also considered earlier by Fierens et al. (2009),
when they argued for a frequentist interpretation of imprecise probability models based on non-
stationarity.

In this section, we exploit this idea, by showing that randomness associated with non-stationary
precise forecasting systems can be captured by a stationary forecasting system, which must then be
less precise: we gain simplicity of representation, but pay for it by losing precision.

We begin with a simple example. Consider any p and q in [0,1] with p ≤ q, and any outcome
sequence ω = (x1, . . . ,xn, . . .) that is computably random for the forecasting system γp,q that is
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defined by

γp,q(z1, . . . ,zn) :=

{
p if n is odd
q if n is even

for all (z1, . . . ,zn) ∈Ω♦.

We know from Corollary 7 that there is at least one such outcome sequence. It turns out that the
stationary forecasting systems that make such ω computably random have a simple characterisation:

Proposition 14 Consider any ω that is computably random for the forecasting system γp,q. Then
for all I ∈ C , I ∈ CC(ω)⇔ [p,q]⊆ I.

Its proof relies on a very simple argument involving Corollary 11. This result implies in particular
also that LC(ω) = [0, p], UC(ω) = [q,1], p

C
(ω) = p and pC(ω) = q.

Next, we turn to a more complicated example, where we look at sequences that are ‘nearly’
computably random for the stationary precise forecast 1/2, but not quite. This example was inspired
by the ideas involving Hellinger-like divergences in a beautiful paper by Vovk (2009).

Consider the following sequence {pn}n∈N of precise forecasts:

pn :=
1
2
+(−1)nδn, with δn := e−

1
n+1

√
e

1
n+1 −1 for all n ∈ N,

converging to 1/2. Observe that the sequence δn is decreasing towards its limit 0 and that δn ∈ (0, 1/2)
and pn ∈ (0,1), for all n ∈ N. Now consider any outcome sequence ω = (x1, . . . ,xn, . . .) that is
computably random for the precise forecasting system γ∼1/2 that is defined by

γ∼1/2(z1, . . . ,zn−1) := pn for all n ∈ N and (z1, . . . ,zn−1) ∈Ω♦.

We know from Corollary 7 that there is at least one such outcome sequence. It turns out that the
stationary forecasting systems that make such ω computably random have a simple characterisation:

Proposition 15 Consider any ω that is computably random for the forecasting system γ∼1/2. Then
for all I ∈ C , I ∈ CC(ω) if and only if min I < 1/2 and max I > 1/2.

This result implies in particular that LC(ω) = [0, 1/2), UC(ω) = (1/2,1] and p
C
(ω) = pC(ω) = 1/2.

9. Conclusion

Even with the limited number of examples we have been able to examine in this paper, it becomes
apparent that incorporating imprecision in the study of randomness allows for much more math-
ematical structure to arise, which we would argue lets us better understand and place the existing
results in the precise limit.

In our argumentation that ‘randomness is inherently imprecise’, we are well aware that we are
restricting ourselves to stationary forecasts. Our examples in Section 8 all involve sequences that
are computably random for a precise non-stationary forecasting system, but no longer computably
random for any stationary precise variant. To make our claim irrefutable, we would have to show
that there are sequences that are computably random for forecasting systems more precise than
the vacuous one, but not for any (computable) precise forecasting system. Or in other words, that
there is ‘randomness’ or ‘unpredictability’ that cannot be ‘explained’ by any non-stationary (com-
putable) precise forecasting system. We will of course keep this challenge foremost in our minds.
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Nevertheless, the examples in Section 8 do indicate that it is in some ways possible to replace an
‘explanation’ by a complex non-stationary precise forecasting model by a(n infinite filter of) more
imprecise stationary one(s).

This work may seem promising, but we are well aware that it is only a humble beginning. We
see many extensions in many directions. First of all, we want to find out if our approach can also
be used to find interval versions of Martin-Löf and Schnorr randomness (Ambos-Spies and Kucera,
2000; Bienvenu et al., 2009) with similarly interesting properties and conclusions. Secondly, our
preliminary exploration suggests that it will be possible to formulate equivalent randomness defin-
itions in terms of randomness tests, rather than supermartingales, but this needs to be checked in
much more detail. Thirdly, the approach we follow here is not prequential: we assume that our
Forecaster specifies an entire forecasting system γ , or in other words an interval forecast in all pos-
sible situations (x1, . . . ,xn), rather than only interval forecasts in those situations z1, . . . ,zn of the
sequence ω = (z1, . . . ,zn, . . .) whose potential randomness we are considering. The prequential ap-
proach, which we eventually will want to come to, looks at the randomness of a sequence of interval
forecasts and outcomes (I1,z1, I2,z2, . . . , In,zn, . . .), where each Ik is an interval forecast for the as
yet unknown Xk, which is afterwards revealed to be zk, without the need of specifying forecasts in
situations that are never reached; see the paper by Vovk and Shen (2010) for an account of how
this works for precise forecasts. Fourthly, we need to connect our work with earlier approaches
to associating imprecision with randomness (Walley and Fine, 1982; Fierens et al., 2009; Fierens,
2009; Gorban, 2016). And finally, and perhaps most importantly, we believe this research could be
a very early starting point for an approach to statistics that takes imprecise or set-valued parameters
more seriously, when learning from finite amounts of data.
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Abstract
Imprecise continuous-time Markov chains are a robust type of continuous-time Markov chains that
allow for partially specified time-dependent parameters. Computing inferences for them requires the
solution of a non-linear differential equation. As there is no general analytical expression for this
solution, efficient numerical approximation methods are essential to the applicability of this model.
We here improve the uniform approximation method of Krak et al. (2016) in two ways and propose
a novel and more efficient adaptive approximation method. For ergodic chains, we also provide a
method that allows us to approximate stationary distributions up to any desired maximal error.

Keywords: Imprecise continuous-time Markov chain; lower transition operator; lower transition
rate operator; approximation method; ergodicity; coefficient of ergodicity.

1. Introduction

Markov chains are a popular type of stochastic processes that can be used to model a variety of
systems with uncertain dynamics, both in discrete and continuous time. In many applications,
however, the core assumption of a Markov chain—i.e., the Markov property—is not entirely justified.
Moreover, it is often difficult to exactly determine the parameters that characterise the Markov chain.
In an effort to handle these modelling errors in an elegant manner, several authors have recently
turned to imprecise probabilities (Škulj and Hable, 2013; Hermans and de Cooman, 2012; Škulj,
2015; Krak et al., 2016; De Bock, 2017).

As Krak et al. (2016) thoroughly demonstrate, making inferences about an imprecise continuous-
time Markov chain—determining lower and upper expectations or probabilities—requires the solution
of a non-linear vector differential equation. To the best of our knowledge, this differential equation
cannot be solved analytically, at least not in general. Krak et al. (2016) proposed a method to
numerically approximate the solution of the differential equation, and argued that it outperforms
the approximation method that Škulj (2015) previously introduced. One of the main results of this
contribution is a novel approximation method that outperforms that of Krak et al. (2016).

An important property—both theoretically and practically—of continuous-time Markov chains
is the behaviour of the solution of the differential equation as the time parameter recedes to infinity.
If regardless of the initial condition the solution converges, we say that the chain is ergodic. We
show that in this case the approximation is guaranteed to converge as well. This constitutes the
second main result of this contribution and serves as a motivation behind the novel approximation
method. Furthermore, we also quantify a worst-case convergence rate for the approximation. This
unites the work of Škulj (2015), who studied the rate of convergence for discrete-time Markov chains,
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and De Bock (2017), who studied the ergodic behaviour of continuous-time Markov chains from a
qualitative point of view. One of the uses of our worst-case convergence rate is that it allows us to
approximate the limit value of the solution up to a guaranteed error.

In order to comply with the page limit, we do not provide any proofs for our statements. We refer
the interested reader to the appendix of (Erreygers and De Bock, 2017), an extended version of this
contribution that is available on arXiv.

2. Mathematical Preliminaries

Throughout this contribution, we denote the set of real, non-negative real and strictly positive real
numbers by R, R≥0 and R>0, respectively. The set of natural numbers is denoted by N, if we include
zero we write N0 := N ∪ {0}. For any set S, we let |S| denote its cardinality. If a and b are two real
numbers, we say that a is lower (greater) than b if a ≤ b (a ≥ b), and that a is strictly lower (greater)
than b if a < b (a > b).

2.1 Gambles and Norms

We consider a finite state space X , and are mainly concerned with real-valued functions on X . All of
these real-valued functions on X are collected in the set L(X ), which is a vector space. If we identify
the state space X with {1, . . . , |X |}, then any function f ∈ L(X ) can be identified with a vector: for
all x ∈ X , the x-component of this vector is f(x). A special function on X is the indicator IA of an
event A. For any A ⊆ X , it is defined for all x ∈ X as IA(x) = 1 if x ∈ A and IA(x) = 0 otherwise.
In order not to obfuscate the notation too much, for any y ∈ X we write Iy instead of I{y}. If it is
required from the context, we will also identify the real number γ ∈ R with the map γ from X to R,
defined as γ(x) = γ for all x ∈ X .

We provide the set L(X ) of functions with the standard maximum norm ‖·‖, defined for all
f ∈ L(X ) as ‖f‖ := max {|f(x)| : x ∈ X}. A seminorm that captures the variation of f ∈ L(X )
will also be of use; we therefore define the variation seminorm ‖f‖v := max f −min f . Since the
value ‖f‖v /2 occurs often in formulas, we introduce the shorthand notation ‖f‖c := ‖f‖v /2.

2.2 Non-Negatively Homogeneous Operators

An operator A that maps L(X ) to L(X ) is non-negatively homogeneous if for all µ ∈ R≥0 and all
f ∈ L(X ), A(µf) = µAf . The maximum norm ‖·‖ for functions induces an operator norm:

‖A‖ := sup{‖Af‖ : f ∈ L(X ), ‖f‖ = 1}.

If for all µ ∈ R and all f, g ∈ L(X ), A(µf + g) = µAf +Ag, then the operator A is linear. In that
case, it can be identified with a matrix of dimension |X | × |X |, the (x, y)-component of which is
[AIy](x). The identity operator I is an important special case, defined for all f ∈ L(X ) as If := f .

Two types of non-negatively homogeneous operators play a vital role in the theory of imprecise
Markov chains: lower transition operators and lower transition rate operators.

Definition 1 An operator T from L(X ) to L(X ) is called a lower transition operator if for all
f ∈ L(X ) and all µ ∈ R≥0:

L1: Tf ≥ min f ; L2: T (f + g) ≥ Tf + Tg; L3: T (µf) = µTf.
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Every lower transition operator T has a conjugate upper transition operator T , defined for all
f ∈ L(X ) as Tf := −T (−f).

Definition 2 An operator Q from L(X ) to L(X ) is called a lower transition rate operator if for any
f, g ∈ L(X ), any µ ∈ R≥0, any γ ∈ R and any x, y ∈ X such that x 6= y:

R1: Qγ = 0; R2: Q(f + g) ≥ Qf +Qg; R3: Q(µf) = µQf ; R4: [QIx](y) ≥ 0.

The conjugate lower transition rate operator Q is defined for all f ∈ L(X ) as Qf := −Q(−f).
As will become clear in Section 3, lower transition operators and lower transition rate operators

are tightly linked. For instance, we can use a lower transition rate operator to construct a lower
transition operator. One way is to use Eqn. (1) further on. Another one is given in the following
proposition, which is a strengthened version of (De Bock, 2017, Proposition 5).

Proposition 3 Consider any lower transition rate operator Q and any δ ∈ R≥0. Then the operator
(I + δQ) is a lower transition operator if and only if δ

∥∥Q
∥∥ ≤ 2.

We end this section with the first—although minor—novel result of this contribution. The norm
of a lower transition rate operator is essential for all the approximation methods that we will discuss.
The following proposition supplies us with an easy formula for determining it.

Proposition 4 Let Q be a lower transition rate operator. Then
∥∥Q
∥∥ = 2 max{

∣∣[QIx](x)
∣∣ : x ∈ X}.

Example 1 Consider a binary state space X = {0, 1} and two closed intervals [q
0
, q0] ⊂ R≥0 and

[q
1
, q1] ⊂ R≥0. Let

Qf := min

{[
q0(f(1)− f(0))
q1(f(0)− f(1))

]
: q0 ∈ [q

0
, q0], q1 ∈ [q

1
, q1]

}
for all f ∈ L(X ).

Then one can easily verify that Q is a lower transition rate operator.
Krak et al. (2016) also consider a running example with a binary state space, but they let

X := {healthy,sick}. We here identify healthy with 0 and sick with 1. In (Krak et al.,
2016, Example 18), they propose the following values for the transition rates: [q

0
, q0] := [1/52, 3/52]

and [q
1
, q1] := [1/2, 2]. It takes Krak et al. a lot of work to determine the exact value of the norm of

Q, see (Krak et al., 2016, Example 19). We simply use Proposition 4:
∥∥Q
∥∥ = 2 max{3/52, 2} = 4.

3. Imprecise Continuous-Time Markov Chains

For any lower transition rate operator Q and any f ∈ L(X ), Škulj (2015) has shown that the
differential equation

d

dt
T tf = QT tf. (1)

with initial condition T 0f := f has a unique solution for all t ∈ R≥0. Later, De Bock (2017) proved
that the time-dependent operator T t itself satisfies a similar differential equation, and that it is a
lower transition operator. Finding the unique solution of Eqn. (1) is non-trivial. Fortunately, we can
approximate this solution, as by (De Bock, 2017, Proposition 10)

T t = lim
n→∞

(
I +

t

n
Q

)n
. (2)
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Example 2 In the simple case of Example 1, we can use Eqn. (2) to obtain analytical expressions
for the solution of Eqn. (1). Assume that q

0
+ q1 > 0 and fix some t ∈ R≥0. Then

[T tf ](0) = f(0) + q
0
h(t) and [T tf ](1) = f(1)− q1h(t) for all f ∈ L(X ) with f(0) ≤ f(1),

where h(t) := ‖f‖v (q
0

+ q1)−1
(
1− e−t(q0+q1)). The case f(0) ≥ f(1) yields similar expressions.

For a linear lower transition rate operator Q—i.e., if it is a transition rate matrix Q—Eqn. (2)
reduces to the definition of the matrix exponential. It is well-known—see (Anderson, 1991)—
that this matrix exponential Tt = etQ can be interpreted as the transition matrix at time t of a
time-homogeneous or stationary continuous-time Markov chain: the (x, y)-component of Tt is the
probability of being in state y at time t if the chain started in state x at time 0. Therefore, it follows
that the expectation of the function f ∈ L(X ) at time t ∈ R≥0 conditional on the initial state x ∈ X ,
denoted by E(f(Xt)|X0 = x), is equal to [Ttf ](x).

As Eqn. (2) is a non-linear generalisation of the definition of the matrix exponential, we can
interpret T t as the non-linear generalisation of the matrix exponential Tt = etQ. Extending this
parallel, we might interpret T t as the non-linear generalisation of the transition matrix—i.e., as the
lower transition operator—at time t of a generalised continuous-time Markov chain. In fact, Krak
et al. (2016) prove that this is the case. They show that—under some conditions on Q—[T tf ](x)
can be interpreted as the tightest lower bound for E(f(Xt)|X0 = x) with respect to a set of—not
necessarily Markovian—stochastic processes that are consistent with Q. Krak et al. (2016) argue
that, just like a transition rate matrix Q characterises a (precise) continuous-time Markov chain, a
lower transition rate operator Q characterises a so-called imprecise continuous-time Markov chain.

The main objective of this contribution is to determine T tf for some f ∈ L(X ) and some
t ∈ R>0. Our motivation is that, from an applied point of view on imprecise continuous-time Markov
chains, what one is most interested in are tight lower and upper bounds on expectations of the form
E(f(Xt)|X0 = x). As explained above, the lower bound is given by E(f(Xt)|X0 = x) = [T tf ](x).
Similarly, the upper bound is given by E(f(Xt)|X0 = x) = −[T t(−f)](x). Note that the lower
(or upper) probability of an event A ⊆ X conditional on the initial state x is a special case of a
lower (or upper) expectation: P(Xt ∈ A|X0 = x) = E(IA(Xt)|X0 = x) and similarly for the upper
probability. Hence, for the sake of generality we can focus on T tf and forget about its interpretation.
As in most cases analytically solving Eqn. (1) is infeasible or even impossible, we resort to methods
that yield an approximation up to some guaranteed maximal error.

4. Approximation Methods

Škulj (2015) was, to the best of our knowledge, the first to propose methods that approximate the
solution T tf of Eqn. (1). He proposes three methods: one with a uniform grid, a second with an
adaptive grid and a third that is a combination of the previous two. In essence, he determines a step
size δ and then approximates T t+δf with eδQT tf , where Q is a transition rate matrix determined
fromQ and T tf . One drawback of this method is that it needs the matrix exponential eδQ, which—in
general—needs to be approximated as well. Škulj (2015) mentions that his methods turn out to be
quite computationally heavy, even if the uniform and adaptive methods are combined.

We consider two alternative approximation methods—one with a uniform grid and one with an
adaptive grid—that both work in the same way. First, we pick a small step δ1 ∈ R≥0 and apply the
operator (I + δ1Q) to the function g0 = f , resulting in a function g1 := (I + δ1Q)f . Recall from

148



ICTMCS: EFFICIENT COMPUTATIONAL METHODS WITH GUARANTEED ERROR BOUNDS

Proposition 3 that if we want (I + δ1Q) to be a lower transition operator, then we need to demand
that δ1

∥∥Q
∥∥ ≤ 2. Next, we pick a (possibly different) step δ2 ∈ R≥0 such that δ2

∥∥Q
∥∥ ≤ 2 and apply

the lower transition operator (I + δ2Q) to the function g1, resulting in a function g2 := (I + δ2Q)g1.
If we continue this process until the sum of all the small steps is equal to t, then we end up with an
approximation for T tf . More formally, let s := (δ1, . . . , δk) denote a sequence in R≥0 such that, for
all i ∈ {1, . . . , k}, δi

∥∥Q
∥∥ ≤ 2. Using this sequence s we define the approximating lower transition

operator
Φ(s) := (I + δkQ) · · · (I + δ1Q).

What we are looking for is a convenient way to determine the sequence s such that the error
‖T tf − Φ(s)f‖ is guaranteed to be lower than some desired maximal error ε ∈ R>0.

4.1 Using a Uniform Grid

Krak et al. (2016) provide one way to determine the sequence s. They assume a uniform grid, in the
sense that all elements of the sequence s are equal to δ. The step size δ is completely determined
by the desired maximal error ε, the time t, the variation norm of the function f and the norm of
Q; (Krak et al., 2016, Proposition 8.5) guarantees that the actual error is lower than ε. Algorithm 1
provides a slightly improved version of (Krak et al., 2016, Algorithm 1). The improvement is due to
Proposition 3: we demand that n ≥ t

∥∥Q
∥∥ /2 instead of n ≥ t

∥∥Q
∥∥.

Algorithm 1: Uniform approximation
Data: A lower transition rate operator Q, a function f ∈ L(X ), a maximal error ε ∈ R>0, and

a time point t ∈ R≥0.
Result: T tf ± ε

1 g0 ← f
2 if ‖f‖c = 0 or

∥∥Q
∥∥ = 0 or t = 0 then (n, δ)← (0, 0)

3 else
4 n←

⌈
max{t

∥∥Q
∥∥ /2, t2

∥∥Q
∥∥2 ‖f‖c /ε}

⌉

5 δ ← t/n
6 for i = 0, . . . , n− 1 do
7 gi+1 ← gi + δQgi
8 return gn

More formally, for any t ∈ R≥0 and any n ∈ N such that t
∥∥Q
∥∥ ≤ 2n, we consider the uniformly

approximating lower transition operator

Ψt(n) :=

(
I +

t

n
Q

)n
.

As a special case, we define Ψt(0) := I . The following theorem then guarantees that the choice of n
in Algorithm 1 results in an error ‖T tf −Ψt(n)f‖ that is lower than the desired maximal error ε.

Theorem 5 LetQ be a lower transition rate operator and fix some f ∈ L(X ), t ∈ R≥0 and ε ∈ R>0.
If we use Algorithm 1 to determine n, δ and g0, . . . , gn, then we are guaranteed that

‖T tf −Ψt(n)f‖ = ‖T tf − gn‖ ≤ ε′ := δ2
∥∥Q
∥∥2

n−1∑

i=0

‖gi‖c ≤ ε.
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Table 1: Comparison of the presented approximation methods, obtained using a naive, unoptimised
implementation of the algorithms in Python. N is the total number of iterations, Dε (Dε′)
is the average duration—in seconds, averaged over 50 independent runs—without (with)
keeping track of ε′, and εa is the actual error. The Python code is made available at
github.com/alexander-e/ictmc.

Method N Dε Dε′ ε′ × 103 εa × 103

Uniform 8,000 0.0345 0.0574 0.430 0.0335
Uniform 250 0.00171 0.0264 13.8 1.07

Adaptive with m = 1 3,437 0.0371 0.0428 1.000 0.108
Adaptive with m = 20 3,456 0.0143 0.0254 0.992 0.107

Uniform ergodic with m = 1 6,133 0.0264 0.0449 0.560 0.0437

Theorem 5 is an extension of (Krak et al., 2016, Proposition 8.5). We already mentioned that the
demand n ≥ t

∥∥Q
∥∥ can be relaxed to n ≥ t

∥∥Q
∥∥ /2. Furthermore, it turns out that we can compute

an upper bound ε′ on the error that is (possibly) lower than the desired maximal error ε. If we want
to determine this ε′ while running Algorithm 1, we simply need to add ε′ ← 0 to line 1 and insert
ε′ ← ε′ + δ2

∥∥Q
∥∥2 ‖gi‖c just before line 7.

Example 3 We again consider the simple case of Example 1 and illustrate the use of Theorem 5 with
a numerical example based on (Krak et al., 2016, Example 20). Krak et al. (2016) use Algorithm 1
to approximate T 1I1, and find that n = 8,000 guarantees an error lower than the desired maximal
error ε := 1× 10−3. As reported in Table 1, we use Theorem 5 to compute ε′. We find that
ε′ ≈ 0.430× 10−3, which is approximately a factor two smaller than the desired maximal error ε.

In this case, since we know the analytical expression for T 1I1 from Example 2, we can determine
the actual error εa = ‖T 1I1 −Ψ1(8000)I1‖. Quite remarkably, the actual error is approximately
3.35× 10−5, which is roughly 30 times smaller than the desired maximal error. This leads us to
think that the number of iterations used by the uniform method is too high. In fact, we find that using
as few as 250 iterations—roughly 8,000/30—already results in an actual error that is approximately
equal to the desired one: ‖T 1I1 −Ψ1(250)I1‖ ≈ 1.07× 10−3.

4.2 Using an Adaptive Grid

In Example 3, we noticed that the maximal desired error was already satisfied for a uniform grid that
was much coarser than that constructed by Algorithm 1. Because of this, we are led to believe that
we can find a better approximation method than the uniform method of Algorithm 1.

To this end, we now consider grids where, for some integer m, every m consecutive time steps in
the grid are equal. In particular, we consider a sequence δ1, . . . , δn in R≥0 and some k ∈ N such that
1 ≤ k ≤ m and, for all i ∈ {1, . . . , n}, δi

∥∥Q
∥∥ ≤ 2. From such a sequence, we then construct the

m-fold approximating lower transition operator:

Φm,k(δ1, . . . , δn) := (I + δnQ)k(I + δn−1Q)m · · · (I + δ1Q)m,

where if n = 1 only (I + δ1Q)k remains and if n = 2 only (I + δ2Q)k(I + δ1Q)m remains.
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The uniform approximation method of before is a special case of the m-fold approximating lower
transition operator; a more interesting method to construct an m-fold approximation is Algorithm 2.
In this algorithm, we re-evaluate the time step every m iterations, possibly increasing its length.

Algorithm 2: Adaptive approximation
Data: A lower transition rate operator Q, a gamble f ∈ L(X ), an integer m ∈ N, a tolerance

ε ∈ R>0, and a time period t ∈ R≥0.
Result: T tf ± ε

1 (g(0,m),∆, i)← (f, t, 0)

2 if ‖f‖c = 0 or
∥∥Q
∥∥ = 0 or t = 0 then (n, k)← (0,m)

3 else
4 while ∆ > 0 and

∥∥g(i,m)

∥∥
c
> 0 do

5 i← i+ 1

6 δi ← min{∆, 2/
∥∥Q
∥∥ , ε/(t

∥∥Q
∥∥2 ∥∥g(i−1,m)

∥∥
c
)}

7 if mδi > ∆ then
8 ki ← d∆/δie
9 δi ← ∆/ki

10 else ki ← m
11 g(i,0) ← g(i−1,m),∆← ∆− kiδi
12 for j = 0, . . . , ki − 1 do
13 g(i,j+1) ← g(i,j) + δiQg(i,j)

14 (n, k)← (i, ki)

15 return g(n,k)

From the properties of lower transition operators, it follows that for all i ∈ {2, . . . , n− 1},∥∥g(i−1,m)

∥∥
c
≤
∥∥g(i−2,m)

∥∥
c
. Hence, the re-evaluated step size δi is indeed larger than (or equal to)

the previous step size δi−1. The only exception to this is the final step size δn: it might be that the
remaining time ∆ is smaller than mδn, in which case we need to choose k and δn such that kδn = ∆.

Theorem 6 guarantees that the adaptive approximation of Algorithm 2 indeed results in an actual
error lower than the desired maximal error ε. Even more, it provides a method to compute an upper
bound ε′ of the actual error that is lower than the desired maximal error. Finally, it also states that
the adaptive method of Algorithm 2 needs at most an equal number of iterations than the uniform
method of Algorithm 1.

Theorem 6 Let Q be a lower transition rate operator, f ∈ L(X ), t ∈ R≥0, ε ∈ R>0 and m ∈ N.
We use Algorithm 2 to determine n and k, and if applicable also ki, δi and g(i,j). If ‖f‖c = 0,∥∥Q
∥∥ = 0 or t = 0, then

∥∥T tf − g(n,k)

∥∥ = 0. Otherwise, we are guaranteed that

‖T tf − Φm,k(δ1 . . . , δn)f‖ =
∥∥T tf − g(n,k)

∥∥ ≤ ε′ :=
n∑

i=1

δ2
i

∥∥Q
∥∥2

ki−1∑

j=0

∥∥g(i,j)

∥∥
c
≤ ε

and that the total number of iterations has an upper bound:
n∑

i=1

ki = (n− 1)m+ k ≤
⌈
max

{∥∥Q
∥∥ t/2, t2

∥∥Q
∥∥2 ‖f‖c /ε

}⌉
.
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Again, we can determine ε′ while running Algorithm 2. An alternate—less tight—version of ε′ can
be obtained by replacing the sum of

∥∥g(i,j)

∥∥
c

for j from 0 to ki − 1 by ki
∥∥g(i,0)

∥∥
c

= ki
∥∥g(i−1,m)

∥∥
c
.

Determining this alternative ε′ while running Algorithm 2 adds negligible computational overhead
compared to the ε′ of Theorem 6, as

∥∥g(i−1,m)

∥∥
c

is needed to re-evaluate the step size anyway.
The reason why we only re-evaluate the step size δ after every m iterations is twofold. First and

foremost, all we currently know for sure is that for all δ ∈ R≥0 such that δ
∥∥Q
∥∥ ≤ 2, all m ∈ N and

all f ∈ L(X ),
∥∥(I + δQ)mf

∥∥
c
≤ ‖f‖c. Re-evaluating the step size every m iterations is therefore

only justified if a priori we are certain that
∥∥(I + δiQ)mg(i−1,m)

∥∥
c
<
∥∥g(i−1,m)

∥∥
c
. We come back

to this in Section 5. A second reason is that there might be a trade-off between the time it takes
to re-evaluate the step size and the time that is gained by the resulting reduction of the number of
iterations. The following numerical example illustrates this trade off.

Example 4 Recall that in Example 3 we wanted to approximate T 1I1 up to a maximal desired error
ε = 1× 10−3. Instead of using the uniform method of Algorithm 1, we now use the adaptive method
of Algorithm 2 with m = 1. The initial step size is the same as that of the uniform method, but
because we re-evaluate the step size we only need 3,437 iterations, as reported in Table 1. We also
find that in this case ε′ = 1.00× 10−3, which is a coincidence. Nevertheless, the actual error of the
approximation is 0.108× 10−3, which is about ten times smaller than what we were aiming for.

However, fewer iterations do not necessarily imply a shorter duration of the computations.
Qualitatively, we can conclude the following from Table 1. First, keeping track of ε′ increases the
duration, as expected. Second, the adaptive method is faster than the uniform method, at least if we
choose m large enough. And third, both methods yield an actual error that is at least an order of
magnitude lower than the desired maximal error.

5. Ergodicity

Let Φm,k(δ1, . . . , δn)f be an approximation constructed using the adaptive method of Algorithm 2.
Re-evaluating the step size is then only justified if a priori we are sure that

1/2
∥∥(I + δiQ)mΦi−1f

∥∥
v

=
∥∥g(i,m)

∥∥
c
<
∥∥g(i−1,m)

∥∥
c

= 1/2 ‖Φi−1f‖v for all i ∈ {1, . . . , n− 1},

where Φ0 := I and Φi := (I + δiQ)mΦi−1. As (Φi−1f) ∈ L(X ), this is definitely true if we require
that

(∀δ ∈ {δ1, . . . , δn−1})(∀f ∈ L(X ))
∥∥(I + δQ)mf

∥∥
v
< ‖f‖v . (3)

In fact, since this inequality is invariant under translation or positive scaling of f , it suffices if

(∀δ ∈ {δ1, . . . , δn−1})(∀f ∈ L(X ) : 0 ≤ f ≤ 1)
∥∥(I + δQ)mf

∥∥
v
< 1.

Readers that are familiar with (the ergodicity of) imprecise discrete-time Markov chains—see
(Hermans and de Cooman, 2012) or (Škulj and Hable, 2013)—will probably recognise this condition,
as it states that the (weak) coefficient of ergodicity of (I + δQ)m should be strictly smaller than
1. For all lower transition operators T , Škulj and Hable (2013) define this (weak) coefficient of
ergodicity as

ρ(T ) := max {‖Tf‖v : f ∈ L(X ), 0 ≤ f ≤ 1} . (4)
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5.1 Ergodicity of Lower Transition Rate Operators

As will become apparent, whether or not combinations of m ∈ N and δ ∈ R≥0 exist such that
δ
∥∥Q
∥∥ ≤ 2 and ρ((I + δQ)m) < 1 is tightly connected with the behaviour of T tf for large t.

De Bock (2017) proved that for all lower transition rate operator Q and all f ∈ L(X ), the limit
limt→∞ T tf exists. An important case is when this limit is a constant function for all f .

Definition 7 (Definition 2 of (De Bock, 2017)) The lower transition rate operator Q is ergodic if
for all f ∈ L(X ), limt→∞ T tf exists and is a constant function.

As shown by De Bock (2017), ergodicity is easily verified in practice: it is completely determined
by the signs of [QIx](y) and [QIA](z), for all x, y ∈ X and certain combinations of z ∈ X and
A ⊂ X . It turns out that an ergodic lower transition rate operator Q does not only induce a
lower transition operator T t that converges, it also induces discrete approximations—of the form
(I + δkQ) · · · (I + δ1Q)—with special properties. The following theorem, which we consider to be
one of the main results of this contribution, highlights this.

Theorem 8 The lower transition rate operator Q is ergodic if and only if there is some n < |X |
such that ρ(Φ(δ1, . . . , δk)) < 1 for one (and then all) k ≥ n and one (and then all) sequence(s)
δ1, . . . , δk in R>0 such that δi

∥∥Q
∥∥ < 2 for all i ∈ {1, . . . , k}.

5.2 Ergodicity and the Uniform Approximation Method

Theorem 8 guarantees that the conditions that were discussed at the beginning of this section are
satisfied. In particular, if the lower transition rate operator is ergodic, then there is some n < |X | such
that ρ((I + δQ)m) < 1 for all m ≥ n and all δ ∈ R>0 such that δ

∥∥Q
∥∥ < 2. Consequently, if we

choosem ≥ |X |−1 then re-evaluating the step size δ will—except maybe for the last re-evaluation—
result in a new step size that is strictly greater than the previous one. Therefore, we conclude that
if the lower transition rate operator is ergodic, then using the adaptive method of Algorithm 2 is
certainly justified; it will result in fewer iterations, provided we choose a large enough m.

Another nice consequence of the ergodicity of a lower transition rate operator Q is that we can
prove an alternate a priori guaranteed upper bound for the error of uniform approximations.

Proposition 9 Let Q be a lower transition rate operator and fix some f ∈ L(X ), m,n ∈ N and
δ ∈ R>0 such that δ

∥∥Q
∥∥ < 2. If β := ρ((I + δQ)m) < 1, then

‖T tf −Ψt(n)‖ ≤ εe := mδ2
∥∥Q
∥∥2 ‖f‖c

1− βk
1− β ≤ εd :=

mδ2
∥∥Q
∥∥2 ‖f‖c

1− β ,

where t := nδ and k := dn/me. The same is true for β = ρ(Tmδ).

Interestingly enough, the upper bound εd is not dependent on t (or n) at all! This is a significant
improvement on the upper bound of Theorem 5, as that upper bound is proportional to t2.

By Theorem 8, there always is an m < |X | such that ρ((I + δQ)m) < 1 for all δ ∈ R>0

such that δ
∥∥Q
∥∥ < 2. Thus, given such an m, we can easily improve Algorithm 1. After we have

determined n and δ with Algorithm 1, we can simply determine the upper bound of Proposition 9.
If m(1 − βk) < n(1 − β) (or m < n(1 − β)), then this upper bound is smaller than the desired
maximal error ε, and we have found a tighter upper bound on the actual error. We can even go the
extra mile and replace line 4 with a method that looks for the smallest possible n ∈ N that yields
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mδ2
∥∥Q
∥∥2 ‖f‖c (1− βk) ≤ (1− β)ε,

where k = dn/me and δ = t/n—and therefore also β—are dependent of n. This method could yield a
smaller n, but the time we gain by having to execute fewer iterations does not necessarily compensate
the time lost by looking for a smaller n. In any case, to actually implement these improvements we
need to be able to compute β := ρ((I + δQ)m).

Example 5 For the simple case of Example 1, we can derive an analytical expression for ρ((I+δQ))

that is valid for all δ ∈ R≥0 such that δ
∥∥Q
∥∥ ≤ 2. Therefore, we can use Proposition 9 to a priori

determine an upper bound for the error. If we choose m = 1, then εe = 0.767× 10−3 and
εd = 1.79× 10−3. Note that εe < ε, so we can probably decrease the number of iterations n. As
reported in Table 1, we find that n = 6,133 still suffices, and that this results in an approximation
correct up to ε′ = 0.560× 10−3, roughly two times smaller than the desired maximal error ε. The
actual error is 0.0437× 10−3, roughly ten times smaller than ε.

5.3 Approximating the Coefficient of Ergodicity

Unfortunately, determining the exact value of ρ((I+δQ)m)—and of ρ(T ) in general—turns out to be
non-trivial and is often even impossible. Nevertheless, the following theorem gives some—actually
computable—lower and upper bounds for the coefficient of ergodicity.

Theorem 10 Let T be a lower transition operator. Then

ρ(T ) ≤ max
{

max{[T IA](x)− [T IA](y) : x, y ∈ X} : ∅ 6= A ⊂ X
}
, (5)

ρ(T ) ≥ max
{

max{[T IA](x)− [T IA](y) : x, y ∈ X} : ∅ 6= A ⊂ X
}
. (6)

The upper bound in Theorem 10 is particularly useful in combination with Proposition 9, as it allows
us to replace β := ρ((I + δQ)m) with a guaranteed upper bound. Of course, this only makes sense if
this upper bound is strictly smaller than one. The following proposition guarantees that, for ergodic
lower transition rate operators Q, this is always the case.

Proposition 11 Let Q be an ergodic lower transition rate operator. Then there is some n < |X |
such that, for all k ≥ n and δ1, . . . , δk in R>0 such that δi

∥∥Q
∥∥ < 2 for all i ∈ {1, . . . , k}, the upper

bound for ρ(Φ(δ1, . . . , δk)) that is given by Eqn. (5) is strictly smaller than one.

5.4 Approximating Limit Values

The results that we have obtained earlier in this section naturally lead to a method to approximate
T∞f := limt→∞ T tf up to some maximal error. This is an important problem in applications; for
instance, Troffaes et al. (2015) try to determine T∞f for an ergodic lower transition rate operator
that arises in their specific reliability analysis application. The method they use is rather ad hoc:
they pick some t and n and then determine the uniform approximation Ψt(n)f . As ‖Ψt(n)f‖v is
small, they suspect that they are close to the actual limit value. They also observe that Ψ2t(4n)f only
differs from Ψt(n)f after the fourth significant digit, which they regard as further empirical evidence
for the correctness of their approximation. While this ad hoc method seemingly works, the initial
values for t and n have to be chosen somewhat arbitrarily. Also, this method provides no guarantee
that the actual error is lower than some desired maximal error.

Theorem 8, Proposition 9, Theorem 10 and the following stopping criterion allow us to propose
a method that corrects these two shortcomings.
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Proposition 12 Let Q be an ergodic lower transition rate operator and let f ∈ L(X ), t ∈ R≥0

and ε ∈ R>0. Let s denote a sequence δ1, . . . , δk in R≥0 such that
∑k

i=1 δi = t and, for all
i ∈ {1, . . . , k}, δi

∥∥Q
∥∥ ≤ 2. If ‖T tf − Φ(s)f‖ ≤ ε/2 and ‖Φ(s)f‖c ≤ ε/2, then for all ∆ ∈ R≥0:

∣∣∣∣T t+∆f −
max Φ(s) + min Φ(s)

2

∣∣∣∣ ≤ ε and
∣∣∣∣T∞f −

max Φ(s) + min Φ(s)

2

∣∣∣∣ ≤ ε.

Without actually stating it, we mention that a similar—though less useful—stopping criterion can be
proved for non-ergodic transition rate matrices as well.

Our method for determining T∞f is now relatively straightforward. Let Q be an ergodic
lower transition rate operator and fix some f ∈ L(X ). We can then approximate T∞f up to any
desired maximal error ε ∈ R>0 as follows. First, we look for some m ∈ N and some—preferably
large—δ ∈ R>0 such that δ

∥∥Q
∥∥ < 2 and

2mδ2
∥∥Q
∥∥2 ‖f‖c ≤ (1− β)ε,

where β := ρ((I + δQ)m). From Theorem 8, we know that a possible starting point for m is |X |− 1.
If we do not have an analytical expression for ρ((I + δQ)m), then we know from Proposition 11 that
we can instead use the guaranteed upper bound of Theorem 10. If no suchm and δ exist—for instance
because the guaranteed upper bound on β is too conservative—then this method does not work. If on
the other hand we do find such an m and δ, then we can keep on running the iterative step (line 7) of
Algorithm 1 until we reach the first index i ∈ N such that ‖gi‖c ≤ ε/2. By Propositions 9 and 12, we
are now guaranteed that (max gi + min gi)/2 is an approximation of T∞f up to a maximal error ε.

Alternatively, we can fix a step size δ ourselves and use the method of Theorem 5 to compute ε′.
In that case, we simply need to run the iterative scheme until we reach the first index i such that
‖gi‖c ≤ ε′. By Proposition 12, we are then guaranteed that the error (max gi + min gi)/2 is an
approximation of T∞f up to a maximal error ε = 2ε′. The same is true if we replace ε′ by the error
εe that is used in Proposition 9.

Example 6 Using the analytical expressions of Example 2, we obtain T∞I1 ≈ 9.5238095× 10−3.
We want to approximate T∞I1 up to a maximum error ε := 1× 10−6. We observe that m = 1

and δ ≈ 3.485× 10−8 yield an εd that is lower than ε/2. After 196,293,685 iterations, the norm of the
approximation is sufficiently small, resulting in the approximation T∞I1 = (9.524± 0.001)× 10−3.
Alternatively, choosing δ = 1× 10−7 and continuing until ‖gi‖c ≤ ε′ yields the approximation
T∞I1 = (9.5242± 0.0008)× 10−3 after only 69,572,154 iterations.

Mimicking Troffaes et al. (2015), we also tried the heuristic method of increasing t and n until we
observe empirical convergence. After some trying, we find that t = 7 and n = 7 ·250 = 1750 already
yield an approximation with sufficiently small error: ‖T∞I1 −Ψ7(1750)I1‖ ≈ 7× 10−7 < ε. Note
however that for non-binary examples, where T∞f cannot be computed analytically, this heuristic
approach is unable to provide a guaranteed bound.

6. Conclusion

We have improved an existing method and proposed a novel method to approximate T tf up to any
desired maximal error, where T tf is the solution of the non-linear differential equation (1) that plays
an essential role in the theory of imprecise continuous-time Markov chains. As guaranteed by our
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theoretical results, and as verified by our numerical examples, our methods outperform the existing
method by Krak et al. (2016), especially if the lower transition rate operator is ergodic. For these
ergodic lower transition rate operators, we also proposed a method to approximate limt→∞ T tf up
to any desired maximal error.

For the simple case of a binary state space, we observed in numerical examples that there is a
rather large difference between the theoretically required number of iterations and the number of
iterations that are empirically found to be sufficient. Similar differences can—although this falls
beyond the scope of our present contribution—also be observed for the lower transition rate operator
that is studied in (Troffaes et al., 2015). The underlying reason for these observed differences remains
unclear so far. On the one hand, it could be that our methods are still on the conservative side, and
that further improvements are possible. On the other hand, it might be that these differences are
unavoidable, in the sense that guaranteed theoretical bounds come at the price of conservatism. We
leave this as an interesting line of future research. Additionally, the performance of our proposed
methods for systems with a larger state space deserves further inquiry.
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Abstract
Protecting sensitive micro data prior to publishing or passing the data itself on is a crucial aspect:
A trade-off between sufficient disclosure control and analyzability needs to be found. This paper
presents a starting point to evaluate the effect of k-anonymity microaggregated data in (generalized)
linear regression. Taking a rigorous imprecision perspective, microaggregated data are understood
inducing a set X of potentially true data. Based on this representation two conceptually different
approaches deriving estimations from the ideal likelihood are discussed. The first one picks a
single element of X, for instance by naively treating the microaggregated data as true ones or by
introducing a maximax approach taking the elements of X as nuisance parameters to be optimized.
The second one seeks, in the spirit of Partial Identification, the set of all maximum likelihood
estimators compatible with the elements of X, thus creating cautious estimators. As the simulation
study corroborates, the obtained sets of estimators of the latter approach are still precise enough to
be practically relevant.
Keywords: maximum likelihood estimation; generalized linear regression; microaggregation;
anonymization; partial identification.

1. Introduction

In recent years, more data are made available, for instance in the context of websites for marketing
purposes or also by institutions of Official Statistics1. These micro data usually contain sensitive
information of the units involved. As the combination of different disjoint data sources requires
lesser effort now, data obtained in one isolated context may be not revealing, however, the join of
multiple data sources may make the unit identifiable. Therefore, powerful anonymization techniques
for disclosure control, inducing an information reduction, are essential to protect the privacy and
strengthen the collected data quality. Scientific researchers have a diametrically opposite aim: They
desire a deeper understanding of the unit’s action and/or the social or economic processes involved,
hence the availability of minute information about the units under consideration is essential. As data
sources they may rely either on self-collected data or on such from a different source, for instance
Official Statistics or private companies. Henceforth a trade-off between granting sufficient privacy
while still ensuring data utility is required. In cases when the anonymization technique does not
provide sufficient information after its deployment, the availability of the data itself is reduced to
absurdity as the data provision might be scrapped entirely.

A well known concept in this setting is the so-called k-anonymity proposed by Sweeney (2002):
It guarantees that each value of each anonymized variable occurs at least k times. Hence, even if

1. The European Statistics Code of Practice explicitly encourages to make the collected data publicly available (cf.
Eurostat and European Statistical System (2011, principle 15))
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attackers know identifying aspects of one record within the micro data, they are unable to deduce
the actual value of the sensitive variable in question. One specific concept ensuring k-anonymity
is microaggregation, which belongs to the family of perturbative methods in statistical disclosure
control (e.g. Willenborg and de Waal (2001)), replacing individual records by a representative sub-
stitute, e.g. a group average. Initially developed to deal with just continuous variables, microag-
gregation is nowadays applicable to any measurement scale of the variable(s) to anonymize. How-
ever, in this paper the focus is on continuous variables. Microaggregation by a given technique is
herein understood as a mapping m, which by design maps several situations of the values to be mi-
croaggregated x onto the same microaggregation result in the image x̃. However, when analyzing
microaggregated data, one is interested in findings on the original data and therefore in the reverse
mapping which induces a set of compatible underlying data situations

X(x̃) = {x | m(x) = x̃} .

In literature, microaggregation techniques have been evaluated mostly in the light of disclosure
control, but few on the potential for analyses: To which extent are structures in the original data
inferable by looking at the anonymized data? This paper deals with linear regression, a standard
statistical model strategy which is commonly employed in econometrics, biometrics and social sci-
ences. As basis for further research it is considered in the broader framework of generalized linear
regression. In the standard case for precise observations the estimators for the structural parame-
ters are obtained when maximizing the likelihood with respect to those. In order to obtain concise
estimators in the case of microaggregated data, one could just ignore the nature of the data and use
them as-is or employ a maximax-like approach by maximizing the likelihood with respect to the
structure parameters and all compatible underlying data situations, suggested herein as first way
to proceed. By taking only such an optimistic instantiation of X the introduced imprecision is not
taken seriously. Therefore, in the spirit of Partial Identification (Manski, 2003) a more cautious
estimation approach is introduced by reporting the set of all maximum likelihood estimators based
on the elements of X. All findings are derived in case of a generic microaggregation and thus are
suitable for any microaggregation technique. However, it is also demonstrated how the estimation
is further improved when considering the specific masking microaggregation technique.

This paper is structured as follows: In section 2 a short overview of microaggregation as
anonymization technique and of generalized linear regression is given. In section 3 approaches to
obtain concise estimators are presented, while in section 4 the partial identification view is taken re-
sulting in sets-valued estimators. A simulation study in section 5 evaluates the theoretically obtained
results. The paper concludes with some remarks and an outlook for further research in section 6.

2. Microaggregation and (Generalized) Linear Regression

2.1 Basics of Microaggregation

The general idea of microaggregation is to replace the individual records by a representative substi-
tute of at least k individuals, in turn microaggregation in this sense then satisfies k-anonymity. Any
microaggregation technique may be represented as a two-step process.

Grouping: The individual records of the micro data are partitioned into clusters in a certain way
such that records within a cluster are similar and each cluster contains at least k ≥ 3 records.
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Aggregation: Each individual record within a cluster is replaced by the cluster’s characteristic
value, e.g. mean or median.

The choice on how to define similarity of observations and how to deal with multiple variables
allows for a variety of actual techniques. As minimal requirement the previously mentioned con-
cept of k-anonymity (Sweeney, 2002) needs to be fulfilled, guaranteeing that each value of each
anonymized variable occurs at least k times. In the simplest case of a single variable, neighboring
observations are grouped together and their values are replaced by their group mean. Thus without
knowledge about the original data, the membership to the employed groups in the first microaggre-
gation step are deducible as same values in the microaggregated data indicate membership to the
same group.

Microaggregation techniques relying on a sorting of variable(s) include Single-axis Sorting,
where the data are globally ordered according to single (external) sorting variable, and Individual
Ranking, in which for every variable to be microaggregated an independent Single-Axis sorting is
applied according to the ranks of itself. From the perspective of disclosure control it is seen critically
that regions for the underlying true records are deducible for both Individual Ranking and Single-
axis Sorting in cases when one of the variables to anonymize acts as the sorting variable.2 From the
analyst’s view those regions are exploitable when estimating statistical models as will be seen in the
following sections. Other microaggregation techniques do not rely on the concept of an underlying
sorting variable, but employ directly a multivariate clustering, e.g. Maximum Distance to Average
Vector (MDAV) by Domingo-Ferrer and Mateo-Sanz (2002), also providing natural regions.

As desired, the grouping and aggregation introduce imprecision, which means that several dif-
ferent data sets of the underlying true data will lead to the same microaggregated data set. In case
of inference on structures in the underlying true data one needs to account for this imprecision. In
this paper two conceptually different views are presented: The first, often implicitly found in the
literature without embedding into a formal framework, will prove characterizable as a maximax-like
approach, where the most plausible data situation(s) in the light of the estimation function are used
to obtain the parameter estimate(s). The second is the Partial Identification view, where instead
of an optimistic estimator, a set-valued one is reported, reflecting the imprecision in the input data
more accurately.

2.2 (Generalized) Linear Regression in a Nutshell

The two views are presented for the case of classical linear regression, in order to prepare its ex-
tension in the formulation of the generalized linear regression framework, which uses a maximum
likelihood approach for parameter estimation instead of the ordinary least squares. The basic set-
tings of the likelihood approach are briefly sketched now3: The aim of (generalized) linear regres-
sion is to model the dependency of p independent covariates X = (X1, . . . , Xq, . . . , Xp) on a re-
sponse variable Y , without claiming a causal relation in either direction. For each unit i = 1, . . . , n
the response yi and the covariates xi are observed, densely written as y = (y1, . . . , yi, . . . , yn)T

and x = (xT
1 , . . . ,x

T
i , . . . ,x

T
n )T . The dependency is modeled by means of a linear predictor

ηi = β0 + β1xi1 + . . .+ βpxip = (1,xi)β, which is in the context of generalized regression trans-
formed by a so-called response function4 h to model the conditional expectation E(Y |X), where

2. Rosemann et al. (2004) argues that in some practically relevant contexts it is negligible.
3. For further details see Fahrmeir et al. (2013, p. 301ff.)
4. h−1 is the so-called link function.
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the form of the conditional distribution is to be specified as a certain one from the exponential
family. Common choices lead to well-known models, e.g. a normal distribution for classical lin-
ear regression or a Bernoulli distribution for logistic regression; in the general formulation several
models are dealt with.

The parameters of interest β are estimated by maximizing the (log-)likelihood induced by the
modeling assumptions or equivalently by solving the equation system when setting the score func-
tion (derivate of the log-likelihood with respect to the parameters of interest) to zero. The score
function in classical linear regression for βq is obtainable to

s(βq) =
1

φ

n∑

i=1

xiq

(
yi − (1,xi)β

)
, (1)

where in the case q = 0 the value of xi0 is set to one.5

For a start only microaggregation of all of the covariates is covered in this work; a situation
common in social sciences, when the effect of several covariates, requiring anonymization, on a
response variable, for which anonymization is not required, is to be estimated. An extension of this
situation to mixtures of aggregation techniques employed for covariates of different scale is subject
to further research. It is believed that the findings presented herein may be adapted straightforwardly
to the case when only some covariates are microaggregated and the others are left as-is. Considering
a microaggregated response variable appears more difficult as conditional independence of the now
microaggregated yi’s in the likelihood does no longer hold. Moreover, it is believed that the actual
choice of microaggregation technique has a more severe impact on the quality of the estimation.

2.3 Common Structural Implications of Microaggregation

Before discussing microaggregation in the context of (generalized) linear regression, the structure
of microaggregation is recalled. To draw the distinction between the original values and its microag-
gregated counterparts, as briefly sketched in the introduction, the first are denoted by x, whereas
for the microaggregated values a tilde is placed above: x̃. A technique suitable for k-anonymity
is assumed with k as the fixed group size. For simplicity reasons within this paper it is further
assumed that the number of observation n is a multiple of k. Nonetheless, the proposed approach
may be straightforwardly generalized to the case when k is only a minimal group size. As a result
there are G = n/k distinct groups for each variable under microaggregation. As the microaggrega-
tion process involves grouping and averaging, depending on the actual technique chosen even per
variable, the notation for generic microaggregation described herein is severely affected. In order
to index an observation, a two level indexing in the superscript is utilized: The first place is taken
by the membership in a specific group and in the second place the index within this group is given.
To denote the grouping according to a specific microaggregated covariate, the group label is further
indexed by it. This means, x̃gr,jq corresponds to the microaggregated value of the qth covariate for
the jth observation in the gth group, when grouping is induced by the microaggregation of the rth

covariate. Please recall that x̃gq ,jq has the same value for j = 1, . . . , k.
In the above notation the original values are representable by adding a further parameter level:

xgr,jq = x̃gr,jq + ∆gr,j
q , (2)

5. The estimation equation for generalized linear regression with canonical link function takes a similar form, only
replacing (1,xi) by h(1,xi)
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where ∆gr,j
q is the corresponding deviation of the individual record from its corresponding group

mean. By just looking at the microaggregated values, one is able to deduce the group membership
used in the microaggregation’s aggregation step. As the mean value within each group is already
known, there is a restriction on those deviations per group, which can be formulated by means of
the underlying true values associated with a each group

k∑

j=1

x
gq ,j
q = k · x̃gq ,jq ∀q, g , (3)

or expressed in terms of the deviations within each group

k∑

j=1

∆
gq ,j
q = 0 ⇐⇒ ∆

gq ,k
q = −

k−1∑

j=1

∆
gq ,j
q ∀q, g . (4)

Depending on the employed microaggregation technique, further information on the regions
in the data space in which the true underlying values are lying are deducible. Those regions are
especially straightforward obtainable in case of Individual Ranking. Also in case of multivariate
clustering one could identify such regions.

In the following two different approaches on obtaining meaningful estimators for the regression
coefficients are presented.

3. A Nuisance Parameter Optimization Approach

This section discusses the optimistic estimation of the structural parameter when only considering
favorable data situation. What is actually deemed as favorable is depending on the view taken.

A naive estimation approach just substitutes the true underlying data x with the microaggre-
gated data x̃, treating the microaggregated data as independent observations, resulting in the so-
called naive estimator for β. However, this estimator entirely neglects the nature of the data, it
even explicitly rules out the imprecision. In the literature the properties of this naive estimator
have been studied in the context of OLS estimation in order to improve it if necessary: Schmid and
Schneeweiss (2008) have investigated the effects on the regression coefficient estimates in a general
case when Individual Ranking was used, while in Schmid et al. (2007) Single-axis Sorting was con-
sidered with the response variable as the sorting variable. Further situations, including also external
sorting variables, were discussed in Schmid (2007). Schmid and Schneeweiss (2005) conducted
simulation studies, looking at the effect of different microaggregation techniques on the bias of the
estimators. They prove that in some situations a bias correction is necessary and actually derive it
for either the coefficient estimator or the error variance or even both. They also demonstrate that the
corrected estimators are consistent and sometimes even the naive estimator has this property with
respect to the true underlying data. However, they rely heavily on the fact that the OLS estimator is
obtainable in a closed form, necessarily limiting their investigations to linear models.

3.1 Implications on the Score Function

When looking at the same task from the generalized linear regression perspective, a closed form
is also obtainable for the classical linear regression as the estimation equations coincide, however
the framework provides means for uniformly modeling different types of models for which neither
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an OLS estimation is appropriate nor a closed form expression for the estimates is obtainable. Ad-
ditionally, the fitting of the proposed corrections into the likelihood approach to obtain consistent
estimators are tedious and not straightforwardly applicable; especially when thinking a step ahead
when dealing with generalized linear regression. Yet again to obtain a concise estimate only one
specific data constellation is to be deemed favorable, which is implicitly assessed by the likelihood.

In the following an extension is elaborated on stating this implicit assumption explicitly: One
includes the underlying true values x ∈ X, or equivalently their deviation ∆ from the respective
group mean, as nuisance parameters into the ideal likelihood and estimates them alongside:

β̂ : `(β,x;y) −→ max
β,x∈X

The restrictions in (3) or (4) introduce a well perceived loss of freedom which in turn results
in the fact that within each group there are k − 1 nuisance parameters to estimate. For simplicity
reason the restrictions as on the right in (4) are employed.

One should note that in the case of a classical linear model the resulting likelihood function to
maximize is already a polynomial of grade 4 in the parameters, while taking the same approach in
the logistic regression setting the function is not even polynomial.

As seen in (1) the score function consists of all observations’ contributions. This overall sum-
mation may be re-ordered as one desires, and additionally even separately for the different score
function parts; yet this comes at the cost that the score function is no longer directly expressible in
the straightforward matrix notation as in (1). The general trick when looking at the score function is
to exploit the grouping structure: For any q = 1, . . . , p the grouping with respect to the qth covariate
is employed when considering the score function part of βq.

In the following the contribution s(βq)g of such a group g to the score function with respect to
βq is given by including (4) into the ideal likelihood and then taking the respective derivatives:

s(βq)g =
1

φ

k∑

j=1


x̃gq ,jq


ygq ,j −


β0 + βqx̃

gq ,j
q +

p∑

r=1
r 6=q

βr

(
x̃
gq ,j
r + ∆

gq ,j
r

)









+
1

φ

k−1∑

j=1

∆
gq ,j
r


(ygq ,j − ygq ,k)− βq

(
∆

gq ,j
q +

k−1∑

l=1

∆
gq ,l
q

)

−
p∑

r=1
r 6=q

βr(x̃
gq ,j
r + ∆

gq ,j
r − x̃gq ,kr −∆

gq ,k
r )


 . (5)

As each deviation is group specific for its respective covariate, the global score function s(∆gq ,j
q )

for the deviation ∆
gq ,j
q takes the following form:

s(∆
gq ,j
q ) =

βq
φ


(ygq ,j − ygq ,k)− βq

(
∆

gq ,j
q +

k−1∑

l=1

∆
gq ,l
q

)

−
p∑

r=1
r 6=q

βr(x̃
gq ,j
r + ∆

gq ,j
r − x̃gq ,kr −∆

gq ,k
r )


 . (6)
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As a necessary condition for the optimum the term in (6) needs to be zero. Under the assumption
βq 6= 0 it follows that the term in square brackets needs to equal zero. Furthermore, noting that the
terms in square brackets are the same in (5) and (6), the score function s(βq) for βq simplifies to:

s(βq) =
1

φ

n/k∑

g=1

k∑

j=1

x̃
gq ,j
q


ygq ,j −


β0 + βqx̃

gq ,j
q +

p∑

r=1
r 6=q

βrx̃
gq ,j
r







− 1

φ

n/k∑

g=1

k∑

j=1


x̃gq ,jq

p∑

r=1
r 6=q

βr∆
gq ,j
r


 . (7)

With Equation (7) it becomes obvious that, in the general case the estimate of βq will be dif-
ferent to the one obtained by the naive estimator. However, when the grouping is the same for all
covariates, the second line in (7) equals zero and the function is identical to the one obtained for
the naive estimator. When looking at the respective equations for the intercept β0 they are same
in this approach and for the naive estimation. Nonetheless, as they are is dependent on the other
coefficients, the resulting estimates will still differ.

3.2 Notes on Consistency

When considering the limit behavior of the estimators in case of infinitely many observations, in par-
ticular their consistency, two situations are to be covered. In any case the number of observations
prior to microaggregation increases, however the outcome will be dependent on whether the maxi-
mal group size is still fixed, i.e. k is independent of n, or if we increase k along with n, such that
the ratio k/n is fixed. In the first case, as the number of observations increases and the group size
does not change, the value of observations within a group converges to its group mean and therefore
the deviations converge to zero. This then implies that the score estimation equation converges to
the naive estimator equations, which converge to the ones obtain on the original data. Hence the
nuisance parameters vanish in the converging point and the consistency of the one proposed in this
section follows from the consistency of the general maximum likelihood estimator on the original
data. However, such a property is in practice irrelevant, or even not desirable at all as it means that
the privacy preserving effect of microaggregation vanishes in the limit. Hence the second case of a
fixed ratio should be considered: In this case the observations will not converge towards the group
means and equivalently the deviations will not vanish in the limit. This allows to conclude that the
naive estimator is generally not a consistent one, as it neglects the non-vanishing deviations.

3.3 Maximax Optimization

The maximization of the likelihood as presented in the above subsection was formulated as an
unconstrained optimization task with respect to β and ∆. Nonetheless, the task may also be for-
mulated as a constrained optimization problem with respect to β and either the true underlying
values x or the deviations ∆, with the microaggregation as constraint condition. As it appears more
natural, in the following the choice of the restriction is switched to the ones on x, as presented in
(3). The previous formulation in terms of the ∆ already implements the microaggregation equality
constraints into the target function by so-called elimination.
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Furthermore, there might be additional restrictions on the original values which are specific
for certain microaggregation techniques. For instance considering Individual Ranking: Here each
variable is ordered and grouped individually and therefore additional bounds of the underlying true
values for each variable are inferable as each underlying true value within a group must lie between
the respective means of the neighboring groups. Also for MDAV, based on the Euclidean distance,
one can add the heuristic restrictions that the true values are within a ball around each group mean
with a radius of the minimal distance to any other group mean. By taking this optimization view,
other – even external – constraints are implementable to restrict the task further.

In the here presented case the target function is still polynomial, while for generalized linear re-
gression this does not necessarily hold. Therefore algorithms which can deal with such optimization
tasks are required. As there already exist powerful algorithms to solve the maximization task in a
generalized linear regression setting, instead of the direct maximization of the (log-)likelihood, the
popular hill climbing strategy is employed. It consists of two major steps, which are to be repeated
until a specified stopping criterion is reached:

1. Maximization of the likelihood for given β̂(v−1) estimates, such that all constraints on x are
satisfied (not only microaggregation ones):

x̂(v) = arg max
x

`(x; β̂(v−1),y)

2. Maximization of the likelihood for given x̂(v) estimates:

β̂(v) = arg max
β

`(β; x̂(v),y) .

x̂(v) and β̂(v) denote the obtained estimates for x and β in the v-th iteration step. By this approach
the complex optimization task is split into two different sub-tasks, which are in themselves easier to
solve. The first is in general a non-convex optimization problem with linear constraints, while the
second step is a simple estimation of a generalized linear regression for which standard software may
be employed. One should note that the number of parameters to estimate is in general greater than
the number of available observations which might result in more than a single solution. Furthermore,
extensive care needs to be taken for choosing the initial values β̂(0): if they are set poorly the
algorithm might converge only to a local maximum instead of the global one or might not converge
at all, especially without the region constraints. Their introduction does make a difference to avoid
some local maxima entirely, as it became visible in the simulation study in section 5.

4. A Partial Identification View

The previous sections rely implicitly on the assumption that the functions presented actually deserve
their name as score function. As the number of nuisance parameters increases with the sample size,
the situation is comparable to an example in Neyman and Scott (1948), therefore violating standard
regularity conditions of maximum likelihood theory. They derive that in their situation the obtained
estimators may not be consistent.

Instead of trying to correct the above functions and derive valid score functions, an ideological
break is taken by looking at the task from a different angle, stressing the points of interest for gen-
eralized linear regression. The structural parameters β are of primary interest, while the underlying
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values of the covariates are of minor interest or do not matter at all. In the spirit of partial identi-
fication only the available information is to be exploited, for instance the region constraints, while
questionable assumptions are dropped, e.g. taking only the most favorable covariate constellation(s)
into account in the model estimation. The partial identification approach in general leads to a set of
estimates compatible with the available data. A natural approach is to calculate the so-called collec-
tion regions6, or an outer approximation of it in form of a hypercube by calculating bounds on the
coefficient estimates component wise. Those obtained may still be informative enough in practice.
The collection region collects all such coefficients β̂ which are obtained as maximum likelihood
estimates, or equivalently as zeros of the score function s(β;x0), for at least one feasible x ∈ X:

B̂ :=
{
β̂ | ∃x0 ∈ X : `(β̂;x0,y) ≥ `(β;x0,y) , ∀β ∈ Rp+1

} 7
=
{
β̂ | ∃x0 ∈ X : s(β̂;x0) = 0

}
.

With this approach only the actually present information of the covariates is employed in the
estimation of coefficients, it is guaranteed that the estimator of the unknown underlying micro data
prior to microaggregation is contained within the resulting set, as well as the naive estimator. Fur-
thermore, additional information on the covariates like marginal distributions are also includible.

When actually estimating the collection region B̂ or an appropriate approximation, an optimiza-
tion perspective on the tasks proves fruitful once again. In order to obtain the component wise lower
and upper bounds on β̂, the target function to minimize or maximize takes then a rather simple form:

β̂q −→ min /max .

Additionally to the constraints introduced by the microaggregation, namely the mean and region
constraints, the score function constraint needs to be taken into account:

sr(β̂;x) = 0 ∀r ∈ {0, . . . , p} ,
i.e. each score function part evaluated at the coefficient vector β̂ and a feasible x.

Please note that in contrast to the previous section, the x are only indirectly subject to the opti-
mization. They are allowed to vary freely within their respective bounds, as long as the summation
restrictions induced by the microaggregation and any other constraints on them are satisfied. There
is no further plausibility assessment on their actual values, as it was employed when optimizing
them in the light of the log-likelihood concomitantly or when constructing corrected estimators.

As in general the constraint on the score function has a not negligible complexity, especially as
it is not linear in the parameters, the equality constraint may be better incorporated into the target
function in terms of a penalty. This leads to the following target function:

β̂q ±
p∑

r=0

λr(sr(β̂;x))2 −→ min /max ,

where the sign before the sum is chosen appropriately8 and λr are the so-called penalty parameters.
If λr increases each deviation of the evaluated score function from zero is penalized to a greater
extent. Therefore by sufficiently large enough λr the deviation is numerically forced onto zero.

Another benefit of those views is the ability to check for any given vector β∗ if it is included in
the feasible region B̂ of regression coefficients, which is an optimization task in x only.

6. cf. Schollmeyer and Augustin (2015, sec. 3.2) for an overview of other types of identification regions.
7. This equivalence holds for generalized linear regression as the log-likelihood is concave; cf. Wedderburn (1976).
8. The addition is chosen when minimizing and subtraction when maximizing the component.
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n Average RMSE

Truth IR SaS MDAV

100 0.453 0.667 (0.459) 0.797 (0.797) 0.461 (0.462)
250 0.268 0.352 (0.269) 0.469 (0.469) 0.270 (0.270)

Table 1: Average root mean squared error (RMSE) for the maximax-like approach in different mi-
croaggregation settings; values in parentheses are the respective value for the naive esti-
mator

5. Simulation Results

Besides the theoretical investigations, a simulation study is conducted with the aim to visualize the
effects of microaggregation and display the adequacy of the proposed methods.9 The simulation
was carried out with the statistical software R (R Core Team, 2016)10.

The classical linear model in the generalized linear regression setting is considered, for sim-
plicity reasons with two independent covariates. Exemplary, the microaggregation techniques of
Single-axis Sorting (SaS), Individual Ranking (IR) and MDAV are employed onto the setting of
two independent covariates; the dependent variable is left un-aggregated. The regression coeffi-
cients are estimated by means of the hill climbing algorithm with all available constraints in the
sense of section 3 and for the component wise bounds by taking the partial identification view as
presented in section 4. The covariates are each drawn from a uniform distribution on [0, 10], while
the response variable is obtained by inducing a dependency structure based on β = (1, 0.5, 1.9)T

and adding white noise with variance σ2 = 4. To study the behavior when more observations are
available, the number of observations varied between n = 100 and 250, while the aggregation size
was kept fixed with k = 5. Each setting was repeated 1000 times.

Under consideration were the different proposed methods: optimization with only microag-
gregation equality constraints, optimization with microaggregation equality constraints and region
inequality constraints and finally component wise coefficient min/max estimation of the collection
region. However, in a preliminary run, it turned out that the first method, which ignores de-facto
available information, is also numerically unstable as the results are very highly dependent on the
choice of the initial value, which is a well known difficulty when applying a hill climbing strat-
egy.11 However as soon as the additional region constraints entered the task, this was no longer the
case and the obtained solution was a reliable one. Therefore in the here presented simulation the
optimization with just the microaggregation equality constraints is left out.

In Table 1 some results of the simulation are summarized: For the concise estimates their av-
erage root mean squared error (RMSE) is reported. As can be seen for the average RMSE, in the
case of Individual Ranking the maximax-like approach performs poorer in comparison to the naive
estimator. For Single-axis Sorting the estimator coincide, as theoretically shown in section 3, which

9. The code and supplementary files are available on request.
10. The employed optimizer SLSQP (Kraft, 1994) is provided by the R package NLoptr (Johnson, 2014).
11. It was found that most of the times in cases when the initial values for β(0) were considerably far away from the true

ones, a solution was returned, which was easily improvable.
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practically also holds for the MDAV approach12. Furthermore, with higher n the average RMSE is
smaller, reflecting the considerations in section 3.2. When comparing the average RMSE obtained
on the aggregated data to the one on the original, one finds that Single-axis Sorting produced the
highest discrepancy, while the others yield quite comparable results. This is mainly due to the fact
that Singe-axis Sorting destroys any multivariate structure within the data. In general it is found
that the maximax-like approach is too optimistic resulting in poorer performance, and that the naive
estimator should be preferred if the user insists on a guaranteed precise solution. The simulation
essentially confirms the analytical results of section 3 and the corresponding ones in Schmid and
Schneeweiss (2005).

For the outer approximation of the identification region the volume of the coefficient box was
calculated. For those the results are also in line with the findings for average RMSE, as in case of
Single-Axis Sorting the boxes are considerably large (n = 100: 38.031; n = 250: 1.530), while
for Individual Ranking and MDAV the estimators are numerically point identified. Nonetheless, for
Single-Axis Sorting the box volume shrinks as n increases. For any methods in any repetition the
naive estimator is indeed included within the box or coincides with the point identified estimators.13

The tight boxes are mainly due to the exploitation of the guessable region constraints for Individual
Ranking and MDAV.

6. Concluding Remarks

In the light of protecting sensitive data, especially micro data, and availability of suitable methods
for protection, the usability of such protected data should no longer be neglected. In this paper a gen-
eral investigation of the effect of different microaggregation methods on the outcome of regression
coefficient estimation in generalized linear regression was started. For generic microaggregation it
was demonstrated how the ideal likelihood as the core of generalized linear models can be used as
basis in estimation: on the one hand by introducing nuisance parameters concerning the true un-
derlying values and on the other hand by a partial identification view resulting in a set of reachable
values. In the present paper for the partial identification approach an outer approximation of the ac-
tual set was given, yet it may be further refined. Furthermore, the basic ideas were demonstrated on
a classical linear regression, expressed in the framework of generalized linear regression. However,
the developed concepts are general and therefore may be employed to other models, for instance the
logistic regression.
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Abstract
This paper deals with the problem of probability estimation in the context of coarse data. Proba-
bilities are estimated using the maximum likelihood principle. Our approach presupposes that each
imprecise observation underlies a precise one, and that the uncertainty that pervades its observation
is epistemic, rather than representing noise. As a consequence, the likelihood function of the ill-
observed sample is set-valued. In this paper, we apply a robust optimization method to find a safe
plausible estimate of the probabilities of elementary events on finite state spaces. More precisely
we use a maximin criterion on the imprecise likelihood function. We show that there is a close con-
nection between the robust maximum likelihood strategy and the maximization of entropy among
empirical distributions compatible with the incomplete data. A mathematical model in terms of
maximal flow on graphs, based on duality theory, is proposed. It results in a linear objective func-
tion and convex constraints. This result is somewhat surprizing since maximum entropy problems
are known to be complex due to the maximization of a concave function on a convex set.
Keywords: maximum likelihood, incomplete information, robust optimization, entropy

1. Introduction

Interval observations, and more generally, set-valued ones, do not always reflect the same phe-
nomenon (Couso and Dubois, 2014). Sets, e.g. intervals, may either represent exact observations of
items taking the form of sets (for instance, the daily min-max temperature ranges across one year),
or, on the contrary, imprecise observations of precise quantities. In the later case, we speak of coarse
data (Heitjan and Rubin, 1991). In the first situation, set data are a special kind of functional data
where observations lie in a space of characteristic functions equipped with a suitable metric struc-
ture, enabling precise statistical parameters to be derived, e.g., (González-Rodrı́guez et al., 2012).
In this paper we are interested in the statistical analysis of data when observations are imprecise, or
coarse, more specifically, when we only know that the precise values of observations are restricted
by sets of possible outcomes of a random variable of interest. In this kind of representation, sets
model epistemic states (or states of knowledge) in the sense that no value outside the set is possibly
the true observed value (unreachable for the observer). Under the epistemic approach, the expected
value and the variance of a collection of intervals are themselves intervals (Kruse and Meyer, 2012).

This paper addresses the problem of statistical inference in the presence of epistemic set-valued
data using the maximum likelihood principle. Under imprecise observations, the likelihood function
itself becomes imprecisely appraised too and is thus set-valued. There are several possible ways of
defining a scalar likelihood function in this situation (Couso and Dubois, 2016a). In this paper we
adopt a robust optimisation point of view and maximize the lower bound of the imprecise likelihood
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function, with a view to obtain a probability density that accounts for the potential variability of the
random variable observed via sets of possible outcomes. We give an interpretation of the robust
solution in terms of entropy maximization, and propose algorithms for computing robust maximum
likelihood distributions in the discrete (finite) case of coarse nominal data, based on a maximal flow
approach.

The paper is organized as follows. In Section 2, we recall a general framework for maximum
likelihood estimation under coarse data due to Couso and Dubois (2016a), and situate our robust op-
timization strategy in this framework. It consists in maximizing the minimal likelihood function in
agreement with the coarse data. We discuss the difference between our approach and the optimistic
maximax strategy. Section 3 proposes a methodology for solving the robust optimisation problem
in the discrete case, based on max-flow formulation and duality. Section 4 shows that the optimal
estimate corresponds to maximizing entropy among empirical distributions of all possible samples
in agreement with the coarse data. In section 5, we propose a new method for solving the maximin
likelihood estimation problem and discuss an illustrative example.

2. General framework

A likelihood function is proportional to the probability of obtaining the observed data given a hy-
pothesis, according to a probability model. Observed data are considered as outcomes, i.e., ele-
mentary events. If this point of view is accepted, what becomes of the likelihood function under
coarse observations? If coarse observations are considered as results, we can construct the likeli-
hood function for set-valued outcomes, and compute a random set. However, coarse observations
being set-valued, they do not directly inform us about the underlying random variable. In order
to properly exploit such incomplete information, we must first decide what to model (Couso and
Dubois, 2016a): (1) the random phenomenon despite the deficiencies its measurement process; or
(2) the random phenomenon as known via its measurement process.

In the first case, authors have proposed several ways of restoring a distribution for the underlying
random phenomenon. The most traditional approach constructs a virtual sample of the ill-observed
random variable in agreement with the imprecise data, by minimizing divergence from a parametric
model, and maximizing likelihood wrt this sample, so as to update this parametric model. This
is often carried out by means of EM algorithm (Dempster et al., 1977). The problem with this
approach is that there may be several optimal distributions, hence virtual samples, especially when
the connection between the hidden random variable and its observation process is loose (Couso and
Dubois, 2016b). The result of an iterative algorithm such as EM may depend on the initial parameter
value. Moreover the EM algorithm assumes that observed coarse data form a partition of the domain
of the random variable of interest (see the introduction of (Dempster et al., 1977)).

In this paper, we take the other point of view, the one of ill-observed outcomes. Then, there
are as many likelihood functions as precise datasets in agreement with the coarse observations, and
it is not clear which one to maximize. We pursue our study of a methodology based on a robust
maximin optimisation approach applied to a set-valued likelihood Guillaume and Dubois (2015).
Note that here, we do not consider the issue of modelling imprecision due to too small a number of
precise observations (see for instance (Serrurier and Prade, 2013)). Let us recall the formal setting
for statistics with coarse data proposed by Couso and Dubois (2016a), then we study the meaning
of the solution to the maximin approach, and finally propose an algorithm to solve it in the case of
nominal outcome sets.
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2.1 The random phenomenon and its measurement process

Let a random variable X : Ω → X represent the outcome of a certain random experiment. For
the sake of simplicity, let us assume that X = {a1, . . . , am} is finite. Suppose that there is a
measurement tool driven by a random variable Y that provides an incomplete report of observa-
tions. Namely, there is a set-valued random variable Y : Ω → ℘(X ) that models the reports of
a measurement device, where ℘(X ) is the set of subsets of X . Y is thus a multimapping which
represents our (imprecise) perception of X , in the sense that we assume that X is a selection of Y ,
i.e. X(ω) ∈ Y (ω), ∀ω ∈ Ω, in agreement with the setting of imprecise probabilities proposed by
Dempster (1967). X is often called the latent variable. Let Y = {A1, . . . , Ar} denote the set of
possible set-valued outcomes of Y , where Aj ∈ ℘(X ).

The information about the joint distribution of the random vector (X,Y ) modeling the random
variable X and its measurement process can be represented by a joint probability on X ×Y defined
by means of m × r coefficients pij = P (X = ai, Y = Aj). Some knowledge may be available
about this probability matrix. For instance, in the case when Y is a partition of X , we have

pij = P (Y = Aj |X = ai) · P (X = ai) =

{
P (X = ai) if ai ∈ Aj
0 otherwise.

(1)

Sometimes assumptions are made about the conditional probability P (Y = Aj |X = ai) describing
the imprecise measurement process, like the superset assumption (Hüllermeier and Cheng, 2015)
considering that Y = ℘(X ) and stating that this probability is a constant ci over all sets containing
ai, i.e. ci = 1/2m−1 that does not depend on i. Another less restrictive assumption is called “coarse
at random” (CAR) whereby P (Y = Aj |X = ai) does not depend on the value ai ∈ Aj (Heitjan
and Rubin, 1991). In this paper, we shall just ignore the measurement process.

2.2 Different likelihood functions

The respective marginals on X and Y are denoted as follows:

• p.j =
∑m

k=1 pkj denotes the mass of Y = Aj , j = 1, . . . , r, and

• pk. =
∑r

j=1 pkj denotes the mass of X = ak, k = 1, . . . ,m.

Now, let us assume that the above joint distribution is characterized by means of a (vector of)
parameter(s) θ ∈ Θ that determines a joint distribution on X × Y .

For a sequence of N iid copies of Z = (X,Y ), Z = ((X1, Y1), . . . , (XN , YN )), we de-
note by z = ((x1, y1), . . . , (xN , yN )) ∈ (X × Y)N a specific sample of the vector (X,Y ).
Thus, y = (y1, . . . , yN ) will denote the observed sample (an observation of the set-valued vec-
tor Y = (Y1, . . . , Yn), and x = (x1, . . . , xN ) will denote an arbitrary artificial sample from X for
the unobservable latent variable X , that we shall vary in XN . The samples x are chosen such that
the number of repetitions nkj of each pair (ak, Aj) ∈ X × Y in the sample are in agreement with
the number qj of actual observations Aj . We denote by X y (resp. Zy), the set of samples x (resp.
complete joint samples z) respecting this condition. We assume that the measurements are reliable
in the sense that, observing y = G ⊆ X , we can be sure that the actual outcome X = x ∈ G. If
we let nk be the number of appearances of ak in the virtual sample x, we have that any x ∈ X y
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satisfies: 



∑
k=1,...,r nk =

∑
j=1,...,r qj = N

nk =
∑r

j=1 nkj ,∀k = 1, ...,m

qj =
∑m

k=1 nkj∀j = 1, ..., r.

nkj = 0 if ak 6∈ Aj ,∀k, j.

(2)

For a complete sample z to be compatible with the observation y, we have that any z ∈ Zy satisfies:




∑
k=1,...,r

∑
j=1,...,r nkj = N

qj =
∑m

k=1 nkj ,∀j = 1, ..., r.

nkj = 0 if ak 6∈ Aj ,∀k, j.
(3)

As pointed out by Couso and Dubois (2016a), we may consider three different log-likelihood func-
tions depending on whether we refer to

1. the observed sample in Y : Ly(θ) = log
∏N
i=1 p(yi; θ) =

∑r
j=1 qj log pθ.j .

2. the hidden sample in X : Lx(θ) = log
∏N
i=1 p(xi; θ) =

∑m
k=1 nk. log pθk..

3. the complete sample in X × Y: Lz(θ) = log
∏N
i=1 p(zi; θ) =

∑m
k=1

∑r
j=1 nkj log pθkj

The two last ones are ill-known. The choice of one likelihood function vs. another depends
upon what problem we are interested to solve. Maximizing Ly(θ) means that we are interested in
modeling our perception of the random variable only. It is the standard maximum likelihood esti-
mation (MLE) that computes the argument of the maximum of Ly considered as a mapping defined
on Θ, i.e.: θ̂ = arg maxθ∈Θ L

y(θ) = arg maxθ∈Θ
∏r
j=1(pθ.j)

qj . The result is a mass assignment on
2X if there is no constraint relating the distributions of X and Y via the parameter θ. It computes a
belief function on X with focal sets in Y .

The EM algorithm (Dempster et al., 1977) is an iterative technique maximizing this likelihood
function via the use of the latent variable X and a virtual sample for X in order to achieve a local
maximum ofLy. This procedure makes sense if the observed sample y provides enough information
on X (via suitable assumptions on the model parameters θ) to guarantee the convergence of the
iterative procedure to a solution that minimizes the distance between the empirical distribution of
the final virtual sample in agreement with y, and the resulting parametric distribution on X (Couso
and Dubois, 2016a).

Maximizing Lz(θ) enables to take into account the knowledge we may have about the measure-
ment process, and allows for a fine-grained modeling. On the contrary, maximizing Lx(θ) means
that we completely give up modeling the measurement process and try to extract information about
X based on information about Y , assuming complete ignorance about the measurement process.
The difficulty with Lz(θ) and Lx(θ) is that they are ill-known, namely we must consider for all
values of θ, the sets Lz(θ) = {Lz(θ) : z ∈ Zy} and Lx(θ) = {Lx(θ) : x ∈ X y}, respectively.
In the paper we shall deal with Lx(θ), i.e., try to find results independently of the measurement
process.

Applying the maximum likelihood principle when the likelihood function is ill-known requires
the choice of a representative likelihood function from Lx(θ). Obvious natural choices are L(θ) =
maxx∈Xy Lx(θ) and L(θ) = minx∈Xy Lx(θ).
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On this basis, there are two strategies of likelihood maximization, based on a sequence of im-
precise observations y = (y1, . . . , yN ) ∈ YN :

1. The maximax strategy (Hüllermeier, 2014): it aims at finding the pair (x∗, θ∗) ∈ X y×Ω that
maximizes Lx(θ). In other words, compute (x∗, θ∗) = arg maxx∈Xy,θ∈Θ L

x(θ).

2. The maximin strategy (Guillaume and Dubois, 2015): it aims at finding θ∗ ∈ Θ that maxi-
mizes L(θ) = minx∈Xy Lx(θ). It is a robust optimization approach that takes a pessimistic
view on likelihood maximization.

The maximax strategy tries to disambiguate the coarse data by choosing a virtual sample x that
makes the parametric model maximally in agreement with the data. In the case of the maximin
strategy, it is pessimistic in the sense that it tends to select distributions with large variability as we
shall show.

3. The robust approach to discrete probability estimation with coarse date

In this section, we try to estimate the probability P (X = ak), k = 1, ...,m when the reports of N
observations of X are imperfect and take the form of an imprecise sample y containing qj copies
of subsets Aj ∈ Y of values of X , for j = 1 . . . r. To determine the parameter we adopt the usual
approach based on likelihood maximization, which in the case of precise observations takes the
form:

maximize : Lx(θ) = log p(x; θ) =
m∑

i=1

nk log p(X = ak|θ) (4)

Note that in our context the numbers nk, k = 1, ...,m are ill-known, because we did not fully
observe the outcomes. All we know is that x ∈ X y. Hence, the vector n = (nk)k=1,...,m ∈ N y,
where N y is the set of possible statistics in agreement with the imprecise observations y, that is,
respecting equation (2). We call an assignment n ∈ N y a virtual sample. To manage the uncertainty
on n we use the pessimistic maxmin strategy. Namely, we will maximize the minimal value of
likelihood function for the hidden sample x:

max
θ

min
n∈Ny

m∑

i=1

nk log p(X = ak|θ) (5)

Note that by using the likelihood based on the hidden sample x, we make no assumption on the
measurement process that from observing X ∈ X , yields a subset of X . We only know that if
Y = Aj is observed, some xk ∈ Aj has been produced. One can see that Equation (5) is then
equivalent to the more explicit mathematical formulation:

maxp minn
∑

k=1,...,m nk · log pk (6)

s.t.

(a)
∑

k=1,...,m nk =
∑

j=1,...,r qj = N

(b) nk =
∑

j:(j,k)∈Ey nj,k, ∀k = 1, ...,m

(c) qj =
∑

k:(j,k)∈Ey nj,k, ∀j = 1, ..., r

(d)
∑

k=1,...,m pk = 1

(e) nk, nj,k ∈ N+, pk > 0, ∀k = 1, ...,m,
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where

• the value qj , j = 1, ..., r is the number of actual observations of Y of the form Aj ,

• the decision variables (pk)k=1,...,m stand for the ill-known model probabilities p(X = ak|θ),
k = 1, ...,m on X ; in the loosest situation, there is no constraint relating the pk via an explicit
parameter θ.

• (nk)k=1,...,m are the ill-known numbers of occurrences of values ak, k = 1, ...,m of X ,

• Ey = {(j, k) : ak ∈ Aj ,∀k = 1, ...,m}. Indeed, since coarse observations are supposed to
be faithful, nj,k = 0 if ak 6∈ Aj .

The constraints (6(a)) guarantee that all observations are taken into account. The constraints (6(b))
and (6(c)) guarantee that the number of virtual samples n ∈ N y is in agreement with observations.
Equation (6(d)) is a normalisation constraint. Moreover we add constraints (6(e)) since the obser-
vation is integer and log(x) is not defined for x = 0. Constraint (6(d)) expresses the reliability of
imprecise observations. In particular, the set N of feasible statistics n for X is thus defined by the
set of m-tuples of integers verifying constraints (6(a, b, c)), and such that (j, k) ∈ Ey.

Remark 1 Note that the maximal size of Y is a linear function of the number of observations and
not exponential of the form 2|X |. More precisely, it is min(2|X |,

∑r
k=1 qr). In fact, in the case where

2|X | >
∑r

k=1 qr, observations could be different from one another, i.e., qk = 1, k = 1, ..., r.

4. The maxmin strategy maximizes entropy

Problems of the form (6) are well-known in the framework of game theory. The major issue is to
find conditions under which the expression maxu minv f(u, v) is equal to minu maxv f(u, v) for
(u, v) lying in a compact convex subset of R2. In the general case, the following inequality always
holds:

max
u

min
v
f(u, v) ≤ min

v
max
u

f(u, v).

When there is a saddle point, that is a pair (u∗, v∗) such that

f(u∗, v) ≤ f(u∗, v∗) ≤ f(u, v∗),∀u, v,

then the equality holds, and corresponds to the notion of Nash equilibrium in game theory. This is
the case when the function f is convex-concave and continuous, that is when f is convex in u and
concave in v (Von Neumann, 1928; Sion, 1958; Komiya, 1988).

Problem (6) can be written as maxθ minn∈Ny f(n, θ), where function f has the form: f(n, θ) =∑m
i=1 nk log p(X = ak|θ). Provisionally, let us drop the assumption that n is a vector of integers,

and assume it is a set of reals obeying (6(a, f)). It is easy to see that f(n, θ) is increasing and linear
in n, while is concave and continuous with respect to θ = (pk)k=1,...,m. The optimisation domain is
clearly a compact and convex set. So, f is convex concave, and the above known result then applies:

Proposition 1 Assuming n is not restricted to being integer-valued, the equality
maxp minn

∑
k=1,...,m nk · log pk = minn maxp

∑
k=1,...,m nk · log pk holds.
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The solution to the minmax problem is easier to find. Indeed the problem maxp
∑

k=1,...,m nk·log pk
is a standard maximum likelihood problem with a fixed vector n. The optimal solution is given by
pk = nk/N, k = 1, ...,m. Now we are led to find n that maximizes an expression of the form
−nk · log(nk/N) which, divided by N , is clearly the entropy of (n1/N, . . . , nm/N). We can thus
conclude that:

Corollary 1 The optimal solution to the maxmin likelihood problem (6) is the solution with maximal
entropy, namely the solution to: maxn−

∑
k=1,...,m

nk
N · log nk

N under conditions (6(a, b, c)), and
nk ∈ R+, i.e. n in the convex hull of N y.

In fact, it is easy to see that the observed data (qj , Aj), j = 1 . . . r defines a belief functionBel with
mass function µ(Aj) =

qj
N , j = 1 . . . r, and that the convex set of probabilities P = {P : P ≥ Bel}

is nothing but the credal set defined by the set of probability assignments p = (n1/N, . . . , nm/N)
(Zaffalon, 2002), where

∑
k=1,...,m nk =

∑
j=1,...,r qj = N plus conditions (6(b, c)) and ni ≥ 0

are reals. So the maxmin likelihood problem (6) comes down to a finding the maximum entropy
probability in the credal setP , a problem already addressed in the past by Abellán and Moral (2003).

so

v1

vj

vr

[qk]k=1,...,r

v′1

v′i

v′`

vm

(nj,k)∀(j,k)∈Ey

si

(nk)k=1,...,m,

{ck}k=1,...,m

Figure 1: Graph representation of the problem

It remains to be checked whether the optimal solution n∗ is integer or not. To this end, we focus
on the problem of minimizing

∑
k=1,...,m nk · log pk for a given probability distribution p. The

decision variables form the vector n in the convex hull of N y. The problem considered is :

minn
∑

k=1,...,m nkck (7)

s.t.

(a)
∑

k=1,...,m nk =
∑

k=1,...,r qk = N,

(b) nk −
∑

j:(j,k)∈Ey nj,k = 0, ∀k = 1, ...,m

(c)
∑

k:(j,k)∈Ey nj,k = qj , ∀j = 1, ..., r

(d) nk ∈ N+, ∀k = 1, ...,m

where ck = log pk, k = 1, ...,m are constant. The problem (7) can be modeled by a bipartite
transportation graph, as done by Zaffalon (2002). The graph is (V, E) where the vertices V include
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a source node so related to r vertices corresponding to elements of Y , themselves related tom nodes
corresponding to the elements of X , and finally a sink node si. Edges in E are of the form (so, vj),
(vj , v

′
k) if (j, k) ∈ Ey, and (v′k, si) (see Fig.1). The values in brackets provide the flow along these

edges.

Proposition 2 The problem (7) is a maximum flow minimum cost problem.

Proof: The constraint (7(a)) is the equality constraint between the source flow and the sink flow.
The constraints (7(b)) and (7(c)) are flow conservation constraints. In our case, the maximum flow
is equal to

∑
k=1,...,r qk. �

From Proposition 2, we know that this problem has a totally unimodular structure, i.e., it is a
linear problem with a totally unimodular constraint matrix. Therefore, the linear program relaxation
of the model (7), letting nk ∈ R+ yields an integral solution, which is thus the one of problem (7).
So, the maximal entropy solution we have defined above for the maximization of the lower hidden
likelihood is indeed of the form (n1/N, . . . , nm/N) for integer values of nk.

Remark 2 The solution of the maximization of the upper hidden likelihood, that is maxp maxn∑
k=1,...,m nk ·log pk under constraints (7(a-d)), is trivially equivalent to maxn maxp

∑
k=1,...,m nk ·

log pk. It corresponds to minimizing the entropy of the vector (n1/N, . . . , nm/N) ∈ N y in the
credal set induced by y, i.e. looking for the minimally uncertain frequency tuples compatible with
observations, which corresponds to the idea of disambiguation put forward by Hüllermeier (2014).

The above results shed light on the significance of the maximin and the maximax strategies and
are useful to understand when to apply one or the other.

• The maximin strategy makes sense if we know that the process generating the variable X
is genuinely non-deterministic, and that the imprecision of the observation may hide some
variability (for instance the pace of variability of X is higher than the one of the observation
process, so that X may vary during the making of one observation). Consider the case of re-
porting daily the temperature of the outside air based on a device that records the temperature
variation within each day. This information is representative of the “average daily tempera-
ture”, which may lead to their modelling as epistemic intervals containing this average value.
Then it is reasonable to interpret the coarseness of Ai in terms of underlying variability and
to go for a maximal entropy solution to the maximum likelihood problem.

• The maximax strategy makes sense if it is assumed that the underlying phenomenon is deter-
ministic but the observations are noisy and coarse. If we try to learn a best model taken from
a class of models and we have some good reason to think that the phenomenon under study
can be represented by one of these models, then it is natural to try and choose one of them.
In particular, it is clear that if A = ∩j=1Aj 6= ∅, then the maximax strategy yields any Dirac
function on X such that P (A) = 1 (it picks any element in A). For instance, consider a linear
regression problem with interval observations, an example from Hüllermeier (2014). If the
studied phenomenon is known to be affine, then one may choose the straight line that achieves
a best fit with respect to the intervals. Especially any linear model that would be consistent
with all interval observations will be preferred. The maximin strategy clearly yields a very
different result due to the link with maximal entropy laid bare above.
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5. Resolution method and an example

In this section, we propose a mathematical programming approach to solving problem (6), which
comes down to optimizing a linear objective function under convex constraints. From the duality
theorem, we know that the cost value of an optimal solution of the original (primal) model is equal
to the cost value of the optimal solution of its dual. Let α be the dual variable associated to con-
straint (7(a)), βk, k = 1, ...,m the dual variables for constraints (7(b)) and γk, k = 1, ..., r the dual
variables for constraints (7(c)). The dual form of problem (7) is:

maxα, β, γ −(α
∑r

k=1 qk +
∑r

k=1 γkqk) (8)

s.t. α+ βk ≥ − log(pk), ∀k = 1, ...,m

−βj + γk ≥ 0, ∀(k, j) ∈ Ey

α, βj , γk ∈ R, ∀j = 1, ..., r, k = 1, ...,m

Let us now return to the initial problem (eq.6) where the probability distribution is a decision vari-
able. Its dual problem can be now written as a maximax problem:

maxp maxα, β, γ −(α
∑r

k=1 qk +
∑r

k=1 γkqk) (9)

s.t.

(a) α+ βk ≥ − log(pk), ∀k = 1, ...,m

(b) −βj + γk ≥ 0, ∀(j, k) ∈ Ey

(c)
∑

k=1,...,m pk = 1

(d) pk > 0, ∀k = 1, ...,m

(e) α, βj , γk ∈ R, ∀j = 1, ..., r, k = 1, ...,m

One can reformulate the problem (9) as follows with ε→ 0:

minP, α, β, γ α
∑r

k=1 qk +
∑r

k=1 γkqk (10)

s.t.

(a) α+ βk ≥ − log(pk), ∀k = 1, ...,m

(b) −βj + γk ≥ 0, ∀(j, k) ∈ Ey

(c)
∑

k=1,...,m pk = 1

(d) pk + ε ≥ 0, ∀k = 1, ...,m

(e) pk, α, βj , γk ∈ R, ∀j = 1, ..., r, k = 1, ...,m

The problem (10) has a linear objective function to minimize, m convex constraints 10.(a) plus lin-
ear constraints. Hence this problem can be efficiently solved using a nonlinear solver.

Example
We want to estimate the probability that a type of car is present in some parking lot. The

custodian provides some characteristics of cars (color and the number of doors) in a data base. For
simplicity we consider three colors: red (r), blue(b),grey (g) and two situations for doors: 3 doors (3)
and 5 doors (5).There are 6 possible types of cars:{r3, r5, b3, b5, g3, g5}. The information reported
by the custodian can be both the color and the number of doors or only the color or only the number
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Y {r3} {r5} {b3} {b5} {g3} {g5}
q 9 167 120 199 164 188
Y {r3, b3, g3} {r5, b5, g5} {r3, r5} {b3, b5} {g3, g5}
q 80 80 18 107 100

Table 1: Distribution of Coarse Observations

of doors. So, we have Y = {{r3}, {r5}, {b3}, {b5}, {g3}, {g5}, {r3, b3, g3}, {r5, b5, g5},
{r3, r5}, {b3, b5},{g3, g5}}. Table 1 provides the coarse dataset.

To estimate the maximin probability distribution on X (noted pMm) we solve the mathematical
formulation given in section 5 using the solver SQP of software Octave.1. To discuss the result, we
compare it with the probability distribution obtained using a maximax approach (noted pMM ). The
results are given in table 2. Firstly, the maximin allow us to conclude that {r3} is the least probable,

X {r3} {r5} {b3} {b5} {g3} {g5}
pMm(X = ai) ≈ 0.141 0.171 0.171 0.171 0.173 0.173
pMM (X = ai) ≈ 0.007 0.150 0.098 0.313 0.279 0.153

Table 2: Estimations of probability distributions on the latent variable

{r5}, {b3}, and {b5} have the same probability to be present in this parking. Finally {g5} and {g3}
are the most expected ones in this parking. The uncertainty on data prevents us from differentiating
between {r5}, {b3} or {b5}. In the same way, it is not possible to differentiate the probabilities of
a car of types {g3} or {g5}.

Let us compare both approaches on the resulting distributions pictured on Table 2. Both the
maximin as the maximax approaches suggest that the cars of type r3 have the least probability to
appear. But its probability in the maxmin approach is around two times the probability obtained by
the maximax approach. In fact, in the maximax approach the observations {r3, b3, g3} and {r3, r5}
are respectively interpreted as {g3} and {r5}. It supposes that when the custodian just writes the
characteristic “3 doors” in data base, the car is supposed to be grey. And when the custodian only
writes the characteristic “red”, the car has 3 doors. One can see that the probability of {r5}, {b3},
and {b5} are very different, like probability {g5} and {g3}.

We focus now on the probability of {b3}, and {b5}. In the maximin approach they were equal
but in the maximax approach the probability {b3} is the second less probable while {b5} is the most
probable type of car. But one can see that around half of observations concerning {b3} or {b5} are
imprecise. It is clear that the maximin approach favors uniform distributions over outcomes while
the maximax approach tends to put more weights on some specific cars, namely those which have
been already most often observed precisely (such as {b5}).

Let us swap observations {b5} and {b3},i.e., suppose there are 120 observations for {b5} and
199 observations for {b3}. The probability distribution of maximin approach does not change since
the number of imprecise observations {b3, b5} is too high to separate the probabilities of {b3} and
{b5}. But the probability distribution of the maximax approach is very sensitive to this exchange
(see Table3). Of course, the probability of {b3} becomes higher than that of {b5}. We point out to
that the probability of {g3} and {g5} changes a lot. In fact, now the observations {r3, b3, g3} are

1. https://www.gnu.org/software/octave/
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interpreted as {b3} and not {g3} while the observations {g3, g5} are interpreted as {g3} and not
{g5}.

X {r3} {r5} {b3} {b5} {g3} {g5}
pMM (X = ai) ≈ 0.008 0.150 0.313 0.097 0.133 0.299

Table 3: Maximax probability distribution with the modified dataset

In this example we show that the maximin approach is cautious compared to the maximax ap-
proach. More precisely, a high number of very coarse observations tends to equalize the probabili-
ties of elementary outcomes while the maximax approach tends to select a best outcome consistent
to coarse observations and this result can be completely altered by slightly changing the number of
observations of each kind, which may lead to very different results.

6. Conclusion

This paper is a contribution to the study of maximum likelihood methods when data are coarse.
The most popular approaches often assume some knowledge about the measurement process (as
witnessed by the use of the superset of the CAR assumptions). These assumptions are strong and
lead to work with the likelihood function of the complete joint sample involving both the observed
and the latent variables. In our approach, we ignore the measurement process, and adopt a cautious
approach involving robust optimisation and graph-theoretic methods. This approach, introduced
previously (Guillaume and Dubois, 2015) for continuous parametric distributions and interval data,
is here studied for finite sets of outcomes. The close connections between maximax and maximin
strategies with entropy optimization shed light on the significance of each approach: the intuitive
character of the resulting distribution depends on whether the observed phenomenon is genuinely
random, or if it is deterministic, with a known class of models, and randomness comes from the
measurement tool that is both imprecise and noisy: only in the latter case does the disambiguation
strategy sound natural. On the contrary, the maximin approach interprets imprecision as the effect
of the variability of the real outcomes. Moreover, we have proposed an efficient solving technique
that can use existing non-linear optimization software. Further work is needed to test the approach
on real data, and compare obtained results with other approaches that use belief functions (De-
noeux, 2013), and also recent possibilistic maximum likelihood methods, which yield possibility
distributions with fixed levels of specificity (Haddad et al., 2016).
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E. Hüllermeier. Learning from imprecise and fuzzy observations: Data disambiguation through
generalized loss minimization. International Journal of Approximate Reasoning, 55(7):1519–
1534, 2014.
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Abstract
We introduce three different approaches for decision making under uncertainty, if (I) there is only

partial (both cardinal and ordinal) information on an agent’s preferences and (II) the uncertainty
about the states of nature is described by a credal set. Particularly, (I) is modeled by a pair of
relations, one specifying the partial rank order of the alternatives and the other modeling partial
information on the strength of preference. Our first approach relies on criteria that construct com-
plete rankings of the acts based on generalized expectation intervals. Subsequently, we introduce
different concepts of global admissibility that construct partial orders by comparing all acts simul-
taneously. Finally, we define criteria induced by suitable binary relations on the set of acts and,
therefore, can be understood as concepts of local admissibility. Whenever suitable, we provide
linear programming based algorithms for checking optimality/admissibility of acts.
Keywords: partial preferences; ordinality; cardinality; decision making under uncertainty; linear
programming; decision criterion; stochastic dominance; utility representation; admissibility.

1. Introduction

One of the constantly recurring topics discussed in the imprecise probabilities community (and on
ISIPTA conferences in particular) is defining meaningful criteria for decision making under complex
uncertainty, finding persuading axiomatic justifications for them and providing efficient algorithms
capable to deal with them. Examples ranging from early ISIPTA contributions by, e.g., Jaffray
(1999) to (most) recent ones by, e.g., Bradley (2015). However, in the vast majority of works in
this field, the complexity underlying the decision situation is assumed to solely arise from beliefs
on the mechanism generating the states of nature that are expressed by an imprecise probabilistic
model. In contrast, the cardinal utility function adequately describing the decision maker’s pref-
erence structure is often unquestioned and assumed to be precisely given in advance.1 Our paper
generalizes the classical (generalized) setting to situations, in which this assumption is no longer
justified. Particularly, we consider the case that the decision maker’s preference structure is both
partially ordinal and partially cardinal and, therefore, no longer can be characterized by (a set of
positive linear transformations of) one cardinal utility function.

The paper is structured as follows: In Section 2, we give a brief overview on the background of
our work and show how our approach naturally fits into this picture. In Section 3, we introduce the
crucial concept of a preference system over a set of alternatives that allows for modeling partially
ordinal and partially cardinal preference structures. Section 4 introduces three different approaches

1. Exceptions include Montes (2014, Section 4.2.1), who uses set-valued utility functions.
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for decision making with acts taking values in a preference system by proposing decision criteria
based on generalized expectation intervals (Section 4.2), on global comparisons of acts (Section 4.3)
and on pairwise comparisons of acts (Section 4.4). Whenever suitable, we give linear programming
driven algorithms for checking feasability of acts in finite decision settings. Section 5 concludes.

2. Brief Overview on the Fundamentals underlying our Approach

In classical subjective expected utility theory (SEUT), the decision maker is assumed to be able to
specify (I) a cardinal utility function (unique up to a positive linear transformation) representing his
preferences on a set of alternatives and (II) a unique and precise subjective probability measure on
the space of states of nature specifying his beliefs on the occurrence of the states. Once these ingre-
dients are specified, according to SEUT, the decision maker should choose any act that maximizes
expected utility with respect to his utility and his subjective probability measure. However, in prac-
tice both assumptions (I) and (II) often are systematically too restrictive. In particular, (I) demands
the decision maker to act in accordance with the axioms of von Neumann and Morgenstern, i.e. to
be able to specify a complete preference ranking of all simple lotteries that is both independent and
continuous (see, e.g., Fishburn (1970, Ch. 8)), whereas (II) requires that the decision maker can
completely order the resulting utility-valued acts by preference in accordance with the axioms of de
Finetti, i.e. continuous, additive and monotone (see, e.g., Gilboa (2009, Ch. 9)).

Consequently, there exists plenty of literature relaxing these assumptions. If only (II) is vio-
lated in the sense that there is partial probabilistic information on the occurrence of the states of
nature together with a cardinal preference structure, the common relaxation is to allow for imprecise
probabilistic models in order to represent the probabilistic information. In this case, one can define
optimality of acts in terms of some imprecise decision criterion such as Γ-maximin, Γ-maximix,
maximality or E-admissibility that, each in its own way, takes into account the whole set of prob-
abilities for constructing a ranking of the acts (see Huntley et al. (2014) for a survey and, e.g.,
Kofler and Menges (1976); Levi (1983); Walley (1991); Gilboa and Schmeidler (1989) for original
sources). Accordingly, there exists a very well-investigated and established theory as well as effi-
cient and powerful algorithms to deal with this kind of violation of the classical assumptions (see,
e.g., Utkin and Augustin (2005); Kikuti et al. (2011); Hable and Troffaes (2014)).

If (I) is violated in the sense that the decision maker has only complete ordinal preferences and
(II) is violated in the sense that there is no probabilistic information at all, it is nearly unanimously
favored to define optimality of acts in terms of Wald’s classical maximin criterion: Choose what-
ever act receiving highest possible rank under the worst possible state of nature (see Wald (1949)).
However, note that the completeness of the involved ordinal ranking is essential, since, otherwise,
the worst consequences of two distinct acts might be incomparable and, therefore, an optimal act
with respect to the maximin criterion simply does not exist. Even more severe, also the vacuousness
assumption is crucial: Applying the minimax criterion in the presence of (partial) probabilistic infor-
mation means willingly ignoring information. This seems not reasonable at all (cf. also Example 1
for an illustration). Finally, if only (I) is violated in the sense that there is no cardinal information at
all and the available ordinal information is possibly incomplete, one commonly applies the concept
of first order stochastic dominance: Dismiss an act X taking values in the partially ordered set, if
there exists another act Y such that u ◦ Y dominates u ◦ X in expectation for every real-valued
function u respecting the partial order (see, e.g. Lehmann (1955); Kamae et al. (1977); Mosler and
Scarsini (1991)).
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3. Preference Systems

In this section we define the crucial concept of a preference system. The intuition behind this con-
cept is simple: In many decision problems, the (available information on) the agent’s preferences
is incomplete. More precisely, it often is the case that some pairs of possible decision outcomes
are incomparable, whereas others can be ordered by preference. For some pairs there might even
be an idea of the strength of the preference. There are several situations that could lead to such
incomplete preferences. For example, if a company wants to analyze the choice behavior of their
customers, the information on the customer’s preferences will often be given in form of observed
choices and/or survey data. In this case, incompleteness is a missing data problem and originates
in lacking information. However, also the agent herself might have incomplete preferences. Sup-
pose she knows (e.g. from earlier experience) certain outcomes better than others. Then for pairs
involving better known outcomes, she might be able to specify a preference ranking and even some
intuition for the strength of the preference, whereas for pairs involving unfamiliar outcomes, she
might be able to specify only a ranking or can’t make a comparison at all. The following definition
captures the intuition just described.

Definition 1 Let A be a non-empty set and let R1 ⊂ A × A denote a preorder (i.e. reflexive and
transitive) on A. Moreover, let R2 ⊂ R1 × R1 denote a preorder on R1. Then the triplet A =
[A,R1, R2] is called a preference system on A.

Except from transitivity, Definition 1 makes no rationality and/or compatibility assumption on the
relations R1 and R2. Hence, a preference system in the sense of the above definition needs by no
means to be reasonable or rational. In Krantz et al. (1971, Chapter 4), an axiomatic approach for
characterizing consistent preference systems is provided for the case that the involved relations are
complete. The corresponding axioms then imply the existence of a real valued function representing
both relations simultaneously that is unique up to a positive linear transformation. Another axiom-
atization that uses quaternary relations instead of pairs of relations is established in Pivato (2013),
where it is shown that under some quite strong conditions (like, e.g., solvability) there exists a mul-
tiutility characterization of the corresponding quaternary relation. A weaker consistency condition
that still applies to settings in which conditions like solvability no longer can be expected is given in
the following definition, for which we need some further notation: IfR is a preorder onA, we denote
by IR and PR its indifference and its strict part, respectively. More precisely, for (a, b) ∈ A × A,
we have (a, b) ∈ IR :⇔ ((a, b) ∈ R ∧ (b, a) ∈ R) and (a, b) ∈ PR :⇔ ((a, b) ∈ R ∧ (b, a) /∈ R).

Definition 2 Let A = [A,R1, R2] be a preference system. Then A is said to be consistent if there
exists a function u : A→ [0, 1] such that for all a, b, c, d ∈ A the following two properties hold:

i) If (a, b) ∈ R1, then u(a) ≥ u(b) with equality iff (a, b) ∈ IR1 .

ii) If ((a, b), (c, d)) ∈ R2, then u(a)−u(b) ≥ u(c)−u(d) with equality iff ((a, b), (c, d)) ∈ IR2 .

Every such function u is then said to (weakly2) represent the preference system A. The set of all
(weak) representations u of A is denoted by UA. The set of all u ∈ UA satisfying infa∈A u(a) = 0
and supa∈A u(a) = 1 is denoted by NA.

2. Here, the term weakly refers to the fact that the representation is meant in the if and not the iff sense.
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The idea behind the set NA in the above definition is the following: For the special case, that
the preference system A is in accordance with the axioms in Krantz et al. (1971, Chapter 4), the
representation is unique up to a positive linear transformation. Hence, the conditions infa u(a) = 0
and supa u(a) = 1 guarantee a unique representation for that special case. For the general case of a
consistent preference systemAwith non complete relationsR1 andR2, restricting analysis to the set
NA ensures that comparison will not be made with respect to equivalent representation which only
measure utility on a different scale. Note that for finite A, the boundedness condition on the utility
function implies the existence of alternatives in A with greatest and lowest utility value, but not
necessarily of worst and best alternatives inA w.r.t. the relationR1. The restriction onNA, together
with the concept of granularity of Definition 3, will prove crucial when comparing acts by means
of numerical representation in Section 4.2. Obviously, for a preference system A = [A,R1, R2] to
be consistent, certain compatibility criteria between the relations R1 and R2 have to be satisfied.
For example it cannot be the case that, for some elements a, b, c ∈ A, it simultaneously holds that
(c, a) ∈ PR1 and ((a, b), (c, b)) ∈ R2, since any element u ∈ UA would have to satisfy u(c) > u(a)
and u(a) − u(b) ≥ u(c) − u(b). We now provide an algorithm for checking the consistency of a
finite preference system. The proof is straightforward and therefore left out.

Proposition 1 LetA = [A,R1, R2] be a preference system, where A = {a1, . . . , an} is a finite and
non-empty set. Consider the linear optimization problem

ε = 〈(0, . . . , 0, 1)
′
, (u1, . . . , un, ε)

′〉 −→ max
(u1,...,un,ε)∈Rn+1

(1)

with constraints 0 ≤ (u1, . . . , un, ε) ≤ 1 and

i) up = uq for all (ap, aq) ∈ IR1 \ diag(A)

ii) uq + ε ≤ up for all (ap, aq) ∈ PR1

iii) up − uq = ur − us for all ((ap, aq), (ar, as)) ∈ IR2 \ diag(R1)

iv) ur − us + ε ≤ up − uq for all ((ap, aq), (ar, as)) ∈ PR2

Then A is consistent if and only if the optimal outcome of (1) is strictly positive.

The linear programming problem (1) possesses |R2| + n + 2 constraints. Thus, the number of
constraints increases with the preciseness of the available information on the agent’s preferences. In
applications, typically the relation R2 will be rather sparse, whereas the relation R1 will be rather
dense. This is intuitive: While R1 is directly observable in the choice behavior of the agent, edges
in R2 need to be gained by hypothetical comparisons in interviews and polls by asking questions
like: “Imagine you have objects a and b. Would you rather be willing to accept the exchange of a by
c or the exchange of b by d?” In order to reduce the number of constraints of the problem, note that
(weak) representability of a preference systemA = [A,R1, R2] automatically implies transitivity of
the relations R1 and R2. Therefore, in the constraints of the above optimization problem it actually
suffices to quantify only over the transitive reduction of the relations IR1 , PR1 , IR2 and PR2 . Before
turning to decision theory with preference system valued acts, we need one further concept:

Definition 3 Let A = [A,R1, R2] be a consistent preference system. Moreover, for δ ∈ (0, 1), let
N δ
A denote the set of all u ∈ NA satisfying u(a)−u(b) ≥ δ for all (a, b) ∈ PR1 and u(c)−u(d)−

u(e) + u(f) ≥ δ for all ((c, d), (e, f)) ∈ PR2 . Then, N δ
A is called the (weak) representation set of

granularity (at least) δ.
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The granularity can be given a similar interpretation as the just noticeable difference in the context
of psychophysics (see Luce (1956) for details): It is the minimal difference in utility that the specific
decision maker under consideration is able to notice given that utility is measured on a [0, 1]-scale.
More practically, the restriction to utility functions that reflect the fact that utility differences below
some threshold are not distinguishable empirically will play a crucial role when it comes to defining
generalized expectations in Section 4.2. For now, it is sufficient to note that the algorithm given in
Proposition 1 straightforwardly extends to checking whether the preference system is consistent for
a decision maker with granularity δ > 0: If (u∗1, . . . , u

∗
n, ε
∗) is an optimal solution to problem (1),

then the system is δ-consistent if and only if it holds that δ ≤ ε∗.

4. Decision Theory with ps-valued Acts

Differently from axiomatic approaches followed in, e.g., Seidenfeld et al. (1995); Nau (2006);
Galaabaatar and Karni (2013), where (multi-)utility and (imprecise) probability representations are
obtained by preferences over acts, the aim of the present paper is to obtain preferences on acts given
a preference system and some additional probabilistic information. Therefore, we now propose and
discuss some first ideas on decision making under uncertainty with acts taking values in some pref-
erence system (short: ps-valued acts) and partial probabilistic information on the occurrence of the
states available. Before turning to these ideas, let us briefly give some intuition why the standard cri-
teria for decision making under uncertainty generally will fail (or at least produce counter-intuitive
results) in our context: The classical maximin criterion, originally proposed by A. Wald (see Wald
(1949)), is the prototypical criterion for decision under complete lack of information. However, ap-
plying this criterion in the presence of probabilistic information means willingly ignoring available
information and will often lead to counter-intuitive decisions (see Example 1). On the other hand,
the principle of maximizing expected utility requires both cardinal utility and precise probabilistic
information and, therefore, obviously is not applicable in our situation. Moreover, the common
imprecise decision criteria, while explicitly allowing to take into account the incompleteness of the
probabilistic information, still require cardinal utility scale. Contrarily, stochastic dominance allows
for dealing with non-cardinal utility scales, however, requires precise probabilistic information (for
approaches generalizing stochastic dominance to credal sets, see Montes (2014, Section 4.1.1)).

4.1 Basic Setting

We start by defining the central concepts of the theory for the most general case. Let S denote some
non-empty set equipped with some suitable σ-algebra σ(S). The elements of S are interpreted as all
possible states of nature about whose occurrence the decision maker is uncertain. Moreover, letM
denote the credal set on the measurable space (S, σ(S)), interpreted as the set of all probabilities
that are compatible with the available (partial) probabilistic information and thus describing the
uncertainty about the occurrence of the states. For a given consistent preference system A, a state
space S and a credal setM, a ps-valued act is a mapping X : S → A assigning states of nature to
values in the preference system. Define the set F(A,M,S) ⊂ AS := {f |f : S → A} by setting

F(A,M,S) :=
{
X ∈ AS : u ◦X is σ(S)-BR-measurable for all u ∈ UA

}
(2)

where BR denotes the Borel sigma field on R. By construction, the space F(A,M,S) consists of
exactly those acts X : S → A whose expectation exists with respect to all pairs (u, π) ∈ UA ×M
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of compatible probability measure and utility representation (since bounded and measurable random
variables have finite expectation). Given this notation, we can now define our main object of study:

Definition 4 In the situation above, call every subset G ⊂ F(A,M,S) a decision system (with infor-
mation base (A,M)). Moreover, call a decision system G finite, if both |G| <∞ and |S| <∞.

The elements of a decision system G are interpreted as those elements of the space F(A,M,S) that
are available in the specific choice situation under consideration. Given a decision system G, we are
interested in the following question: How can we utilize the information base (A,M) best possibly
in order to define meaningful and reasonable choice criteria on the set G? In the following sections,
we propose three different classes of approach that address exactly this question.

4.2 Criteria based on Generalized Expectation Intervals

In this section, we consider decision criteria that are based on the analysis of generalized expectation
intervals. Depending on the attitude towards ambiguity of the decision maker of interest, such
intervals give rise to different criteria for decision making. Specifically, for a ps-valued act and a
decision maker with granularity δ > 0, the corresponding interval will range from the lowest to the
highest possible expected value that choosing this act can lead to under some pair (u, π) ∈ N δ

A×M.
This leads to the definition of the basic quantity of this section.

Definition 5 Let X ∈ F(A,M,S) and δ ∈ (0, 1). With Dδ := N δ
A ×M, we call the quantity

EDδ(X) :=
[
EDδ(X),EDδ(X)

]
:=
[

inf
(u,π)∈Dδ

Eπ(u ◦X), sup
(u,π)∈Dδ

Eπ(u ◦X)
]

(3)

the generalized interval expectation of X with respect to A,M and granularity δ.

In the spirit of the theory of imprecise probabilities, the set EDδ(X) can be given an epistemic or an
onthological interpretation: If the imprecision/ambiguity in the sets arises from lack of information
in the sense of e.g. partially observed choice behavior and/or partially known precise probabilities,
the set EDδ(X) is the set of all expectations arising in at least one situation that is compatible
with the data. In contrast, if both sets N δ

A and M have an onthological interpretation, i.e. are
interpreted as holistic entities of their own, the same holds true for the set of expectations EDδ(X).
Of course, all decision theory that is based on comparisons of the set EDδ(Xi) of different acts
Xi should reflect the underlying interpretation. The following definition gives three criteria rather
relying on an onthological interpretation of the set Dδ. Note that all of them are straightforward
generalizations of the (complete order inducing) decision criteria commonly used in the theory of
imprecise probabilities and reviewed, e.g., in Huntley et al. (2014).

Definition 6 Let G ⊂ F(A,M,S) be a decision system and δ, α ∈ (0, 1). An act X ∈ G is called

i) Dδ-maximin :iff ∀Y ∈ G : EDδ(X) ≥ EDδ(Y )

ii) Dδ-maximax :iff ∀Y ∈ G : EDδ(X) ≥ EDδ(Y )

iii) Dαδ -maximix :iff ∀Y ∈ G : αEDδ(X) + (1− α)EDδ(X) ≥ αEDδ(Y ) + (1− α)EDδ(Y )

We denote by Gδ, Gδ and Gαδ the sets of Dδ-maximin, Dδ-maximax and Dαδ -maximix acts in G.
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Independent of its interpretation, we need ways for computing the set EDδ(X) in concrete situa-
tions. The following proposition gives a linear programming based algorithm for doing so in finite
decision systems. However, note that applying the proposition requires the extreme points of the
underlying credal setM and, therefore, is ideal for situations where the number of extreme points is
moderate and where closed formulas for computing the extreme points are available. For credal sets
induced by 2-monotone lower/ 2-alternating upper probabilities such formulas exist (cf., Shapley
(1971, Theorem 3, p.19)). While generally the number of extreme points could be very high (max-
imally |S|! for lower probabilites), convenient cases exist where furthermore efficient enumeration
procedures are available (such special cases include ordinal probabilities (cf., Kofler (1989, p. 26)),
comparative probabilites (cf., Miranda and Destercke (2015)), necessity measures (cf., Schollmeyer
(2015)) or p-boxes (cf., Montes and Destercke (2017)).

Proposition 2 Let A = [A,R1, R2] be a consistent preference system, where A = {a1, . . . , an}
such that (a1, b), (b, an) ∈ R1 for all b ∈ A and let ε∗ denote the optimal outcome of problem (1).
Moreover, let S = {s1, . . . , sm} be finite,M be some polyhedral credal set on (S, 2S) with extreme
points E(M) := {π(1), . . . , π(T )} and let X ∈ G. For ε∗ ≥ δ > 0, consider the collection of linear
programs LPδ1, ... , LPδT given by:

n∑

i=1

ui · π(t)(X−1({ai})) −→ min
(u1,...,un)∈Rn

/ max
(u1,...,un)∈Rn

(LPδt )

with constraints 0 ≤ (u1, . . . , un) ≤ 1, u1 = 1, un = 0 and i) to iv) as given in Proposition 1 (with
ε := δ fixed). Let v(t, δ) and v(t, δ) denote the optimal outcomes of problem LPδt in minimum and
maximum form. Then, we have EDδ(X) = [mint v(t, δ),maxt v(t, δ)].

Proof. Let X ∈ G and ε∗ ≥ δ > 0. Then, N δ
A is non-empty and we can define the function

f : Dδ → R, (u, π) 7→ Eπ(u ◦X). For any u ∈ N δ
A fixed, the function π 7→ f(u, π) is linear and,

therefore, both convex and concave. By applying standard results on families of convex and concave
functions, we know that the functions π 7→ infu f(u, π) and π 7→ supu f(u, π) have to be concave
and convex, respectively. But concave functions on polyhedral set attain their minimum and convex
functions on polyhedral set attain their maximum on the set of extreme points. Hence, in order to
find global maximum and minimum of the function f , it suffices to check on the set N δ

A × E(M).
Now, let (u∗1, . . . , u

∗
n) denote an optimal solution to problem LPδt in maximum form for fixed

t ∈ {1, . . . , T}. One easily verifies that the constraints imply u∗ ∈ N δ
A, where u∗ : A →

[0, 1], u∗(ai) := u∗i and v(t, δ) = Eπ(t)(u∗ ◦ X) = sup
{
Eπ(t)(u ◦ X) : u ∈ N δ

A
}

. Analogous
reasoning for the problem in minimum form yields v(t, δ) = infu∈N δA Eπ(t)(u◦X). Thus, applying
our considerations from before yields EDδ(X) = [mint v(t, δ),maxt v(t, δ)]. �

Another way to compute the bounds in (3) in the case of 2-monotone lower prabailities on a finite
space A is to use the Choquet represenation of the upper (lower) expectation (cf., e.g., Denneberg
(1994, Proposition 10.3, p. 126)): For a fixed utility u and a 2-alternating upper probability ν with
associated credal setMν the corresponding expected upper utility can be written as E{u}×Mν

(X) =∑n
i=1

(
u(i) − u(i−1)

)
· ν({s ∈ S | u(X(s)) ≥ u(i)}). If R1 is complete then the expectation is a

linear form in the utility u and the maxmization maxu∈N δA E{u}×Mν(X) translates to a simple linear
program. If the relation R1 is not complete then the ordering of the utility values ui can change as u
ranges in N δ

A and one has to compute the expectation separately for every possible ordering of the
utility values and then take the maximum. If there are totally comparable values ui meaning that
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for every uj either ui ≤ uj or ui > uj , independently from the concrete u ∈ N δ
A then one can split

the sum in a part containing all utility values below ui and a part containing all utility values above
ui and then analyze every subsum independently which would help in reducing the combinatorial
complexity. The criteria from Definition 6 allow for comparing acts given the granularity δ of the
specific decision maker of interest. However, note that knowing the granularity might be a strong
assumption if R1 and R2 are partial orderings, since experimental settings in which this additional
parameter could precisely be elicitated are not as straightforward as in the complete case. Further
possibilities to deal with these issues are treated in the next two sections, where we propose two
approaches completely overcoming the choice of a granularity parameter.

4.3 Criteria based on Global Comparisons

The decision criteria defined in Section 4.2 all construct complete rankings on the set G by compar-
ing numerical representations of parts of the decision system and by somehow ignoring the inherent
utility and probability structure. Therefore, when defining optimality of acts in terms of one of the
criteria from Definition 6, it makes no difference if the ranking is constructed by pairwise or global
comparisons. In the next sections, we turn to two approaches that explicitely take into account a
global and local viewpoint for defining optimality of acts, respectively.3 We start with the global
perspective in the sense that we try to find existing utilities (or probabilities, respectively) that can
establish a form of global admissability of a given act X over all other acts Y that is valid for every
possible underlying probability (or utility, respectively). This is reflected in the fact that in the three
admissibility concepts of Definition 7 a ∀ quantifier can follow an ∃ quantifier but not vice versa.

Definition 7 Let G ⊂ F(A,M,S) denote a decision system. We call an act X ∈ G
i) A|M−admissible :iff ∃u ∈ UA ∃π ∈M ∀Y ∈ G : Eπ(u ◦X) ≥ Eπ(u ◦ Y )

ii) A−admissible :iff ∃u ∈ UA ∀π ∈M ∀Y ∈ G : Eπ(u ◦X) ≥ Eπ(u ◦ Y )

iii) M−admissible :iff ∃π ∈M ∀u ∈ UA ∀Y ∈ G : Eπ(u ◦X) ≥ Eπ(u ◦ Y )

iv) A|M−dominant :iff ∀u ∈ UA ∀π ∈M ∀Y ∈ G : Eπ(u ◦X) ≥ Eπ(u ◦ Y )

Denote by GA|M, GA, GM and GdA|M the sets of such acts, respectively.

All four act properties just defined rely on the idea that, if there was perfect information on both the
state probabilities (i.e.M = {π} is a singleton) and the utility values (i.e. the utility representation
u is unique up to a positive linear transformation), then an act X should be labeled optimal iff X
has greater or equal expected utility than every other act Y ∈ G with respect to (u, π). However,
they differ in the way they handle the ambiguity underlying the involved sets M and UA: While
A|M-admissibility only demands the existence of at least one compatible combination (u, π) with
respect to which X maximizes expected utility, A|M-dominance requires this for all compatible
combinations. M- and A-admissibility relax the ∀-assumption on probability and utility level,
respectively. Clearly, it holds that GA,GM,GdA|M ⊂ GA|M and GdA|M ⊂ GA and GdA|M ⊂ GM, but
in general neither GA ⊂ GM nor GM ⊂ GA. The following example demonstrates that ignoring
the available information base and applying the maximin criterion instead leads to counter-intuitive
decisions even in very simple situations.

3. Note that in the context of IP decision theory, fundamental differences between global criteria and criteria based on
pairwise comparisons have already been discussed (Schervish et al., 2003).
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Example 1 Let A = {a1, a2, a3, a4}, the (complete) relation R1 induced by a2PR1a3PR1a4PR1a1
and PR2 = {((a2, a4), (a3, a1))} consists of one single edge. Consider the decision system G =
{X1, X2}, where the acts X1, X2 : {s1, s2} → A are defined by (X1(s1), X1(s2)) = (a1, a2)
and (X2(s1), X2(s2)) = (a3, a4). Moreover, suppose our probabilistic information is given by the
credal setM := {π : π({s1}) ≤ 0.5}. In this case, act X1 is A|M-dominant, since it maximizes
expected utility w.r.t. every pair (u, π) ∈ UA ×M. In contrast, X2 is not even A|M-admissible,
although it is the unique optimal act w.r.t. the maximin criterion!

To complete the section, we give a proposition containing a linear programming based approach for
checking whether an act X is A-admissible in finite decision settings.

Proposition 3 Consider again the situation of Proposition 2. Moreover, let G := {X1, . . . , Xk} ⊂
F(A,M,S) denote a finite decision system and let Xz ∈ G. Consider again the linear optimization
problem (1) with additional constraints

n∑

i=1

ui · π(t)(X−1z ({ai})) ≥
n∑

i=1

ui · π(t)(X−1l ({ai})) for all l = 1, . . . , k (Ct)

for every t = 1, . . . , T . Then Xz is A-admissible if and only if the optimal outcome of this opti-
mization problem is strictly greater than 0.

Proof. A similar argument as in the proof of Proposition 1 guarantees the existence of an optimal
solution (u∗1, . . . , u

∗
n, ε
∗) such that u : A → R, u(ai) := u∗i for all i ∈ n (weakly) represents

the preference system A. Now, let π ∈ M be arbitrary. Choose α ∈ ∆T−1 such that π(·) =∑T
t=1 αt · π(t)(·). Then, condition (Ct) additionally guarantees that for all l = 1, . . . , k it holds

Eπ(u ◦Xz) =
n∑

i=1

u∗i · π(X−1z ({ai})) =
n∑

i=1

u∗i ·
( T∑

t=1

αt · π(t)(X−1z ({ai}))
)

=

T∑

t=1

αt

( n∑

i=1

u∗i · π(t)(X−1z ({ai}))
)
≥

T∑

t=1

αt

( n∑

i=1

u∗i · π(t)(X−1l ({ai}))
)

=
n∑

i=1

u∗i ·
( T∑

t=1

αt · π(t)(X−1l ({ai}))
)

= Eπ(u ◦Xl)

Hence, Xz maximizes expected utility with respect to (u, π). Since π ∈ M was chosen arbitrarily,
this implies that Xz is A-admissible. �

Note that a similar algorithm as given in in Proposition 3 could be used for checking M-
admissibility of acts. However, this would require the set E(UA) of extreme points of the repre-
sentation set to be known, which is way less straightforward than assuming E(M) to be known.

4.4 Criteria based on Pairwise Comparisons

While the criteria defined in Section 4.3 rather relied on global comparisons of acts in the sense
that an act, in order to be labeled admissible, has to dominate all other acts in expectation for (at
least one) fixed pair (π, u), we now turn to criteria induced by pairwise expectation comparisons of
acts (i.e. binary relations on the set of acts). Similarly as already seen in the global case, there are
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several different ways to define such relations each of which reflecting a different attitude towards
the underlying ambiguity. In particular, we define six binary relationsR∃∃, R1

∃∀, R
2
∃∀, R

1
∀∃, R

2
∀∃ and

R∀∀ on F(A,M,S) by setting for all X,Y ∈ F(A,M,S):

(X,Y ) ∈ R∃∃ :⇔ ∃u ∈ UA ∃π ∈M : Eπ(u ◦X) ≥ Eπ(u ◦ Y ) (4)

(X,Y ) ∈ R1
∃∀ :⇔ ∃u ∈ UA ∀π ∈M : Eπ(u ◦X) ≥ Eπ(u ◦ Y ) (5)

(X,Y ) ∈ R2
∃∀ :⇔ ∃π ∈M ∀u ∈ UA : Eπ(u ◦X) ≥ Eπ(u ◦ Y ) (6)

(X,Y ) ∈ R1
∀∃ :⇔ ∀u ∈ UA ∃π ∈M : Eπ(u ◦X) ≥ Eπ(u ◦ Y ) (7)

(X,Y ) ∈ R2
∀∃ :⇔ ∀π ∈M ∃u ∈ UA : Eπ(u ◦X) ≥ Eπ(u ◦ Y ) (8)

(X,Y ) ∈ R∀∀ :⇔ ∀π ∈M ∀u ∈ UA : Eπ(u ◦X) ≥ Eπ(u ◦ Y ) (9)

Obviously, it holds that R∀∀ is subset of all other relation, whereas R∃∃ is a superset of them. For
the remaining relations, in general, no sub- or superset relation has to be satisfied. Furthermore,
transitivity is only guaranteed for R∀∀ in general. Similarly as already discussed in the global case,
each of the desirability relations just defined relies on the idea that, given perfect information on
utilities and probabilities, maximizing expected utility should be the criterion of choice. Again,
the relations differ only in the way they handle the ambiguity on the involved sets UA and M.
Naturally, each of the relations defined above induces a different criterion of (local) admissibility.
These criteria are summarized in the following definition.

Definition 8 Let R ∈ {R∃∃, R1
∃∀, R

2
∃∀, R

1
∀∃, R

2
∀∃, R∀∀} =: Rp. We call an act X ∈ G locally ad-

missible with respect toR, if it is an element of the set maxR(G) := {Y ∈ G : @Z ∈ G s.t. (Z, Y ) ∈
PR}, that is if it is a maximal element in G with respect to the relation R ∩ (G × G).

So, which of the relations defined above are most important in our context? To address this question,
we discuss some special cases: If the credal setM is a singletonM = {π} and if UA = {a ·u0+b |
a > 0, b ∈ R} is unique up to a positive linear transformation then all relations R ∈ Rp coincide
with the classical expected utility criterion. If M is a singleton and UA is the class of all non-
decreasing functions then the relations R1

∀∃ and R∀∀ essentially coincide with the classical concept
of first order stochastic dominance (cf., e.g., Mosler and Scarsini (1991); Lehmann (1955); Kamae
et al. (1977)) while second order stochastic dominance is obtained if UA is the set of all continuous
concave non-decreasing utility functions that are related to the concept of decreasing returns to
scale. An intermediate case would arise if one has information about decreasing returns to scale
only for parts of the preference system. To compute the relations R∃∃ and R∀∀ in the general case
one can use the same technique as in Proposition 2 by noting that Eπ(u ◦ X) ≥ Eπ(u ◦ Y ) is
equivalent to Eπ(u ◦X − u ◦ Y ) ≥ 0. The other relations R ∈ Rp do not appear to be manageable
in such a straightforward manner. However, ifM is the core of a belief function then all π ∈ M
can be understood as obtained from a mass transfer of probability mass to singleton sets of S. Since
classical first order stochastic dominance can be checked via the solution of a mass transportation
problem (cf., Mosler and Scarsini (1991, p. 269)), the computation of R2

∃∀ can be done by solving a
composite mass transportation problem. The most rigorous relationR∀∀ is also discussed in Montes
(2014, Ch. 4.1). Note that the locally R∀∀-admissible acts coincide with the A|M−dominant acts.
Note also that, in general, the other global concepts of admissibility from Definition 4.3 are not
expressable as induced by one of the local criteria from Definition 4.4 (for the special case of a
cardinal u this is discussed in Schervish et al. (2003)).
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5. Summary and Outlook

We proposed three approaches for decision making under severe uncertainty if acts are ps-valued:
The first is based on granularity-dependent expectation intervals, while the other two rely on local
and global comparisons of specific expectations of acts. For selected criteria, we gave linear pro-
grams. Several challenges should be addressed in future research. Clearly, further algorithms for
the remaining criteria need to be explored in order to make the theory computationally feasible and,
therefore, applicable in practice. Further, it is certainly worth investigating in more detail how the
criteria from the different approaches relate to each other. Finally, designing experimental settings
for elicitating the parameter δ could help to receive a more canonical interpretation of granularity.

Acknowledgements

The authors would like to thank the three anonymous referees for their helpful comments and Jean
Baccelli for stimulating discussions on the topic and hints to further relevant references.

References

S. Bradley. How to choose among choice functions. In T. Augustin, S. Doria, E. Miranda, and
E. Quaeghebeur, editors, Proc. of ISIPTA ’15, pages 57–66. Aracne, 2015.

D. Denneberg. Non-additive Measure and Integral. Kluwer Academic Publishers, Dordrecht,
Boston and London, 1994.

P. Fishburn. Utility Theory for Decision Making. Wiley, London and New York, 1970.

T. Galaabaatar and E. Karni. Subjective expected utility with imcomplete preferences. Economet-
rica, 81:255–284, 2013.

I. Gilboa. Theory of Decision under Uncertainty. Cambridge University Press, New York, 2009.

I. Gilboa and D. Schmeidler. Maxmin expected utility with non-unique prior. J Math Econ, 18:
141–153, 1989.

R. Hable and M. Troffaes. Computation. In T. Augustin, F. Coolen, G. de Cooman, and M. Troffaes,
editors, Introduction to Imprecise Probabilities, pages 329–337. Wiley, Chichester, 2014.

N. Huntley, R. Hable, and M. Troffaes. Decision making. In T. Augustin, Coolen, Frank,
G. de Cooman, and Matthias Troffaes, editors, Introduction to Imprecise Probabilities, pages
190–206. Wiley, Chichester, 2014.

J.-Y. Jaffray. Rational decision making with imprecise probabilities. In G. de Cooman, F. Cozman,
S. Moral, and P. Walley, editors, Proc. of ISIPTA ’99, pages 183–188. IPP, 1999.

T. Kamae, U. Krengel, and G. O’Brien. Stochastic inequalities on partially ordered spaces. Ann
Probab, pages 899–912, 1977.

D. Kikuti, F. Cozman, and R. Filho. Sequential decision making with partially ordered preferences.
Artif Intel, 175:1346 – 1365, 2011.

191



JANSEN ET AL.

E. Kofler. Prognosen und Stabilität bei unvollständiger Information. Campus, Frankfurt, 1989.
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Abstract
We consider the problem of performing inference with imprecise continuous-time hidden Markov
chains, that is, imprecise continuous-time Markov chains that are augmented with random output
variables whose distribution depends on the hidden state of the chain. The prefix ‘imprecise’ refers
to the fact that we do not consider a classical continuous-time Markov chain, but replace it with
a robust extension that allows us to represent various types of model uncertainty, using the theory
of imprecise probabilities. The inference problem amounts to computing lower expectations of
functions on the state-space of the chain, given observations of the output variables. We develop
and investigate this problem with very few assumptions on the output variables; in particular, they
can be chosen to be either discrete or continuous random variables. Our main result is a polynomial
runtime algorithm to compute the lower expectation of functions on the state-space at any given
time-point, given a collection of observations of the output variables.

1. Introduction

A continuous-time Markov chain (CTMC) is a stochastic model that describes the evolution of a
dynamical system under uncertainty. Specifically, it provides a probabilistic description of how
such a system might move through a finite state-space, as time elapses in a continuous fashion.
There are various ways in which this model class can be extended.

One such extension are continuous-time hidden Markov chains (CTHMC’s) (Wei et al., 2002).
Such a CTHMC is a stochastic model that contains a continuous-time Markov chain as a latent
variable—that is, the actual realised behaviour of the system cannot be directly observed. This
model furthermore incorporates random output variables, which depend probabilistically on the
current state of the system, and it is rather realisations of these variables that one observes. Through
this stochastic dependency between the output variables and the states in which the system might
be, one can perform inferences about quantities of interest that depend on these states—even though
they have not been, or cannot be, observed directly.

Another extension of CTMC’s, arising from the theory of imprecise probabilities (Walley,
1991), are imprecise continuous-time Markov chains (ICTMC’s) (Škulj, 2015; Krak et al., 2016).
This extension can be used to robustify against uncertain numerical parameter assessments, as well
as the simplifying assumptions of time-homogeneity and that the model should satisfy the Markov
property. Simply put, an ICTMC is a set of continuous-time stochastic processes, some of which
are “traditional” time-homogeneous CTMC’s. However, this set also contains more complicated
processes, which are non-homogeneous and do not satisfy the Markov property.

193



KRAK ET AL.

In this current work, we combine these two extensions by considering imprecise continuous-time
hidden Markov chains—a stochastic model analogous to a CTHMC, but where the latent CTMC
is replaced by an ICTMC. We will focus in particular on practical aspects of the corresponding
inference problem. That is, we provide results on how to efficiently compute lower expectations of
functions on the state-space, given observed realisations of the output variables.

Throughout, all results are stated without proof. We have made available an extended version
of this work (Krak et al., 2017), which includes an appendix containing the proofs of all our results.

1.1 Related Work

As should be clear from the description of CTHMC’s in Section 1, this model class extends the
well-known (discrete-time) hidden Markov models (HMM’s) to a continuous-time setting. In the
same sense, the present subject of ICTHMC’s can be seen to extend previous work on imprecise
hidden Markov models (iHMM’s) (de Cooman et al., 2010) to a continuous-time setting. Hence, the
model under consideration should hopefully be intuitively clear to readers familiar with (i)HMM’s.

The main novelty of this present work is therefore not the (somewhat obvious) extension of
iHMM’s to ICTHMC’s, but rather the application of recent results on ICTMC’s (Krak et al., 2016) to
derive an efficient solution to the continuous-time analogue of inference in iHMM’s. The algorithm
that we present is largely based on combining these results with the ideas behind the MePiCTIr
algorithm (de Cooman et al., 2010) for inference in credal trees under epistemic irrelevance.

A second novelty of the present paper is that, contrary to most of the work in the literature on
iHMM’s, we allow the output variables of the ICTHMC to be either discrete or continuous. This
allows the model to be applied to a much broader range of problems. At the same time, it turns out
that this does not negatively influence the efficiency of the inference algorithm.

2. Preliminaries

We denote the reals as R, the non-negative reals as R≥0, and the positive reals as R>0. The natural
numbers are denoted by N, and we define N0 := N∪{0}.

Since we are working in a continuous-time setting, a time-point is an element of R≥0, and these
are typically denoted by t or s. We also make extensive use of non-empty, finite sequences of time
points u ⊂ R≥0. These are taken to be ordered, so that they may be written u = t0, . . . , tn, for some
n ∈N0, and such that then ti < t j for all i, j ∈ {0, . . . ,n} for which i < j. Such sequences are usually
denoted by u or v, and we let U be the entire set of them.

Throughout, we consider some fixed, finite state space X . A generic element of X will be de-
noted by x. When considering the state-space at a specific time t, we write Xt :=X , and xt denotes
a generic state-assignment at this time. When considering multiple time-points u simultaneously,
we define the joint state-space as Xu := ∏ti∈u Xti , of which xu = (xt0 , . . . ,xtn) is a generic element.

For any u ∈U , we let L (Xu) be the set of all real-valued functions on Xu.

2.1 Imprecise Continuous-Time Markov Chains

We here briefly recall the most important properties of imprecise continuous-time Markov chains
(ICTMC’s), following the definitions and results of Krak et al. (2016). For reasons of brevity, we
provide these definitions in a largely intuitive, non-rigorous manner, and refer the interested reader
to this earlier work for an in-depth treatise on the subject.
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An ICTMC will be defined below as a specific set of continuous-time stochastic processes.
Simply put, a continuous-time stochastic process is a joint probability distribution over random
variables Xt , for each time t ∈ R≥0, where each random variable Xt takes values in X .

It will be convenient to have a way to numerically parameterise such a stochastic process P. For
this, we require two different kinds of parameters. First, we need the specification of the initial dis-
tribution P(X0) over the state at time zero; this simply requires the specification of some probability
mass function on X0. Second, we need to parameterise the dynamic behaviour of the model.

In order to describe this dynamic behaviour, we require the concept of a rate matrix. Such a rate
matrix Q is a real-valued |X | × |X | matrix, whose off-diagonal elements are non-negative, and
whose every row sums to zero—thus, the diagonal elements are non-positive. Such a rate matrix
may be interpreted as describing the “rate of change” of the conditional probability P(Xs |Xt ,Xu =
xu), when s is close to t. In this conditional probability, it is assumed that u < t, whence the state
assignment xu is called the history. For small enough ∆ ∈ R>0, we may now write that

P(Xt+∆ |Xt ,Xu = xu)≈
[
I +∆Qt,xu

]
(Xt ,Xt+∆) ,

for some rate matrix Qt,xu , where I denotes the |X |× |X | identity matrix, and where the quantity
[I +∆Qt,xu ](Xt ,Xt+∆) denotes the element at the Xt-row and Xt+∆-column of the matrix I +∆Qt,xu .
Note that in general, this rate matrix Qt,xu may depend on the specific time t and history xu at which
this relationship is stated.

If these rate matrices only depend on the time t and not on the history xu, i.e. if Qt,xu = Qt for
all t and all xu, then it can be shown that P satisfies the Markov property: P(Xs |Xt ,Xu) = P(Xs |Xt).
In this case, P is called a continuous-time Markov chain.

Using this method of parameterisation, an imprecise continuous-time Markov chain (ICTMC)
is similarly parameterised using a set of rate matrices Q, and a set of initial distributions M . The
corresponding ICTMC, denoted by PQ,M , is the set of all continuous-time stochastic processes
whose dynamics can be described using the elements of Q, and whose initial distributions are
consistent with M . That is, PQ,M is the set of stochastic processes P for which P(X0) ∈M and for
which Qt,xu ∈Q for every time t and history xu.

The lower expectation with respect to this set PQ,M is then defined as

EQ,M [· | ·] := inf
{
EP[· | ·] : P ∈ PQ,M

}
,

where EP[· | ·] denotes the expectation with respect to the (precise) stochastic process P. The upper
expectation EQ,M is defined similarly, and is derived through the well-known conjugacy property
EQ,M [· | ·] =−EQ,M [−· | ·]. Note that it suffices to focus on lower (or upper) expectations, and that
lower (and upper) probabilities can be regarded as a special case; for example, for any A⊆X , we
have that PQ,M (Xs ∈ A |Xt) := inf{P(Xs ∈ A|Xt) : P ∈ PQ,M }= EQ,M [IA(Xs) |Xt ], where IA is the
indicator of A, defined for all x ∈X by IA(x) := 1 if x ∈ A and IA(x) := 0 otherwise.

In the sequel, we will assume that M is non-empty, and that Q is non-empty, bounded,1 con-
vex, and has separately specified rows. This latter property states that Q is closed under arbitrary
recombination of rows from its elements; see (Krak et al., 2016, Definition 24) for a formal defin-
ition. Under these assumptions, PQ,M satisfies an imprecise Markov property, in the sense that
EQ,M [ f (Xs) |Xt ,Xu = xu] = EQ,M [ f (Xs) |Xt ]. This property explains why we call this model an
imprecise continuous-time “Markov” chain.

1. That is, that there exists a c ∈ R≥0 such that, for all Q ∈Q and x ∈X , it holds that |Q(x,x)|< c.
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2.2 Computing Lower Expectations for ICTMC’s

Because we want to focus in this paper on providing efficient methods of computation, we here
briefly recall some previous results from Krak et al. (2016) about how to compute lower expectations
for ICTMC’s. We focus in particular on how to do this for functions on a single time-point.

To this end, it is useful to introduce the lower transition rate operator Q that corresponds to Q.
This operator is a map from L (X ) to L (X ), defined for every f ∈L (X ) by

[
Q f
]
(x) := inf

{
∑

x′∈X
Q(x,x′) f (x′) : Q ∈Q

}
for all x ∈X . (1)

Using this lower transition rate operator Q, we can compute conditional lower expectations in
the following way. For any t,s ∈ R≥0, with t ≤ s, and any f ∈L (X ), it has been shown that

EQ,M [ f (Xs) |Xt ] = EQ[ f (Xs) |Xt ] := lim
n→+∞

[
I +

(s− t)
n

Q
]n

f ,

where I is the identity operator on L (X ), in the sense that Ig = g for every g ∈ L (X ). The
notation EQ is meant to indicate that this conditional lower expectation only depends on Q, and not
on M . The above implies that for large enough n ∈ N, and writing ∆ := (s−t)/n, we have

EQ,M [ f (Xs) |Xt ] = EQ[ f (Xs) |Xt ]≈
[
I +∆Q

]n f . (2)

Concretely, this means that if one is able to solve the minimisation problem in Equation (1)—which
is relatively straightforward for “nice enough” Q, e.g., convex hulls of finite sets of rate matrices—
then one can also compute conditional lower expectations using the expression in Equation 2. In
practice, we do this by first computing f ′1 := Q f using Equation (1), and then computing f1 :=
f +∆ f ′1. Next, we compute f ′2 := Q f1, from which we obtain f2 := f1 +∆ f ′2. Proceeding in this
fashion, after n steps we then finally obtain fn := [I +∆Q] fn−1 =

[
I +∆Q

]n f , which is roughly the
quantity of interest EQ,M [ f (Xs) |Xt ] provided that n was taken large enough.2

As noted above, the conditional lower expectation EQ,M [ f (Xs)|Xt ] only depends on Q. Sim-
ilarly, and in contrast, the unconditional lower expectation at time zero only depends on M . That
is,

EQ,M [ f (X0)] = EM [ f (X0)] := inf

{
∑

x∈X
p(x) f (x) : p ∈M

}
. (3)

Furthermore, the unconditional lower expectation at an arbitrary time t ∈ R≥0, is given by

EQ,M [ f (Xt)] = EM

[
EQ[ f (Xt) |X0]

]
, (4)

which can therefore be computed by combining Equations (2) and (3). In particular, from a prac-
tical point of view, it suffices to first compute the conditional lower expectation EQ[ f (Xt) |X0],
using Equation (2). Once this quantity is obtained, it remains to compute the right-hand side of
Equation (3), which again is relatively straightforward when M is “nice enough”, e.g., the convex
hull of some finite set of probability mass functions.

2. We refer the reader to (Krak et al., 2016, Proposition 8.5) for a theoretical bound on the minimum such n that is
required to ensure a given maximum error on the approximation in Equation (2). We here briefly note that this bound
scales polynomially in every relevant parameter. This means that EQ,M [ f (Xs) |Xt ] is numerically computable in
polynomial time, provided that Q is such that Equation (1) can also be solved in the same time-complexity order.
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3. Imprecise Continuous-Time Hidden Markov Chains

In this section, we construct the hidden model that is the subject of this paper. Our aim is to
augment the stochastic processes that were introduced in the previous section, by adding random
output variables Yt whose distribution depends on the state Xt at the same time point t.

We want to focus in this paper on the more practical aspect of solving the inference problem of
interest, i.e., computing lower expectations on the state-space given some observations. Hence, we
will assume that we are given some finite sequence of time points, and we then only consider these
time points in augmenting the model. In order to disambiguate the notation, we will henceforth
denote stochastic processes as PX , to emphasise that they are only concerned with the state-space.

3.1 Output Variables

We want to augment stochastic processes with random “output variables” Yt , whose distribution
depends on the state Xt . We here define the corresponding (conditional) distribution.

We want this definition to be fairly general, and in particular do not want to stipulate that Yt

should be either a discrete or a continuous random variable. To this end, we simply consider some
set Y to be the outcome space of the random variable. We then let Σ be some algebra on Y . Finally,
for each x∈X , we consider some finitely (and possibly σ -)additive probability measure PY |X (·|x)
on (Y ,Σ), with respect to which the random variable Yt can be defined.

Definition 1 An output model is a tuple (Y ,Σ,PY |X ), where Y is an outcome space, Σ is an
algebra on Y , and, for all x ∈X , PY |X (·|x) is a finitely additive probability measure on (Y ,Σ).

When considering (multiple) explicit time points, we use notation analogous to that used for
states; so, Yt := Y for any time t ∈ R≥0, and for any u ∈U , we write Yu := ∏t∈u Yt .

We let Σu denote the set of all events of the type Ou =×t∈uOt , where, for all t ∈ u, Ot ∈ Σ. This
set Σu lets us describe observations using assessments of the form (Yt ∈ Ot for all t ∈ u). For any
Ou ∈ Σu and xu ∈Xu, we also adopt the shorthand notation PY |X (Ou|xu) := ∏t∈u PY |X (Ot |xt).

3.2 Augmented Stochastic Processes

We now use this notion of an output model to define the stochastic model P that corresponds to
a—precise—continuous-time hidden stochastic process. So, consider some fixed output model
(Y ,Σ,PY |X ), some fixed continuous-time stochastic process PX and some fixed, non-empty and
finite sequence of time-points u ∈U on which observations of the outputs may take place.

We assume that Yt is conditionally independent of all other variables, given the state Xt . This
means that the construction of the augmented process P is relatively straightforward; we can simply
multiply PY |X (· |Xt) with any distribution PX (Xt , ·) that includes Xt to obtain the joint distribution
including Yt : for any t ∈ u and v ∈U such that t /∈ v, any xt ∈Xt and xv ∈Xv, and any Ot ∈ Σ:

P(Yt ∈ Ot ,Xt = xt ,Xv = xv) := PY |X (Ot |xt)PX (Xt = xt ,Xv = xv) .

Similarly, when considering multiple output observations at once—say for the entire sequence u—
then for any v ∈U such that u∩ v = /0, any xu ∈Xu and xv ∈Xv, and any Ou ∈ Σu:

P(Yu ∈ Ou,Xu = xu,Xv = xv) := PY |X (Ou |xu)PX (Xu = xu,Xv = xv) .

Other probabilities can be derived by appropriate marginalisation. We denote the resulting aug-
mented stochastic process as P = PY |X ⊗PX , for the specific output model PY |X and stochastic
process PX that were taken to be fixed in this section.
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3.3 Imprecise Continuous-Time Hidden Markov Chains

An imprecise continuous-time hidden Markov chain (ICTHMC) is a set of augmented stochastic
processes, obtained by augmenting all processes in an ICTMC with some given output model.

Definition 2 Consider any ICTMC PQ,M , and any output model (Y ,Σ,PY |X ). Then, the corres-
ponding imprecise continuous-time hidden Markov chain (ICTHMC) Z is the set of augmented
stochastic processes that is defined by Z :=

{
PY |X ⊗PX : PX ∈ PQ,M

}
. The lower expectation

with respect to Z will be denoted by EZ .

Note that we leave the parameters M , Q and PY |X implicit in the notation of the ICTHMC Z —we
will henceforth take these parameters to be fixed.

Also, the output model is taken to be precise, and shared by all processes in the set. One further
generalisation that we aim to make in the future is to allow for an imprecise specification of this
output model. However, this would force us into choosing an appropriate notion of independence;
e.g., whether to enforce the independence assumptions made in Section 3.2, leading to strong or
complete independence, or to only enforce the lower envelopes to have these independence proper-
ties, leading to epistemic irrelevance. It is currently unclear which choice should be preferred, e.g.
with regard to computability, so at present we prefer to focus on this simpler model.

4. Updating the Model

Suppose now that we have observed that some event (Yu ∈ Ou) has taken place, with Ou ∈ Σu. We
here use the terminology that we update our model with these observations, after which the updated
model reflects our revised beliefs about some quantity of interest. These updated beliefs, about
some function f ∈ L (Xv), say, are then denoted by EP[ f (Xv) |Yu ∈ Ou] or EZ [ f (Xv) |Yu ∈ Ou],
depending on whether we are considering a precise or an imprecise model. In this section, we
provide definitions and alternative expressions for such updated (lower) expectations.

4.1 Observations with Positive (Upper) Probability

When our assertion (Yu ∈ Ou) about an observation at time points u has positive probability, we
can—in the precise case—update our model by application of Bayes’ rule. The following gives
a convenient expression for the updated expectation EP[ f (Xv) |Yu ∈ Ou], which makes use of the
independence assumptions in Section 3.2 for augmented stochastic processes.

Proposition 3 Let P be an augmented stochastic process and consider any u,v ∈U , Ou ∈ Σu and
f ∈L (Xv). Then the updated expectation is given by

EP[ f (Xv) |Yu ∈ Ou] := ∑
xv∈Xv

f (xv)
P(Xv = xv,Yu ∈ Ou)

P(Yu ∈ Ou)
=

EPX [ f (Xv)PY |X (Ou|Xu)]

EPX [PY |X (Ou |Xu)]
,

whenever P(Yu ∈ Ou) = EPX [PY |X (Ou |Xu)]> 0, and is left undefined, otherwise.

Having defined above how to update all the precise models P ∈ Z , we will now update the
imprecise model through regular extension (Walley, 1991). This corresponds to simply discarding
from Z those precise models that assign zero probability to (Yu ∈ Ou), updating the remaining
models, and then computing their lower envelope.
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Definition 4 Let Z be an ICTHMC and consider any u,v ∈ U , Ou ∈ Σu and f ∈L (Xv). Then
the updated lower expectation is defined by

EZ

[
f (Xv) |Yu ∈ Ou

]
:= inf

{
EP[ f (Xv) |Yu ∈ Ou] : P ∈Z , P(Yu ∈ Ou)> 0

}
,

whenever PZ (Yu ∈ Ou) = EQ,M [PY |X (Ou |Xu)]> 0, and is left undefined, otherwise.

As is well known, the updated lower expectation that is obtained through regular extension satis-
fies Walley’s generalised Bayes’ rule (Walley, 1991). The following proposition gives an expression
for this generalised Bayes’ rule, rewritten using some of the independence properties of the model.
We will shortly see why this expression is useful from a computational perspective.

Proposition 5 Let Z be an ICTHMC and consider any u,v ∈U , Ou ∈ Σu and f ∈L (Xv). Then,
if PZ (Yu ∈ Ou) = EQ,M [PY |X (Ou |Xu)]> 0, the quantity EZ

[
f (Xv) |Yu ∈ Ou

]
satisfies

EZ

[
f (Xv) |Yu ∈ Ou

]
= max

{
µ ∈ R : EQ,M

[
PY |X (Ou|Xu)

(
f (Xv)−µ

)]
≥ 0
}
.

4.2 Uncountable Outcome Spaces, Point Observations, and Probability Zero

An important special case where observations have probability zero for all precise models, but
where we can still make informative inferences, is when we have an uncountable outcome space
Y and the observations are points yu ∈ Yu—i.e., when Yu is continuous. In this case, it is common
practice to define the updated expectation EP[ f (Xv) |Yu = yu] as a limit of conditional expectations,
where each conditioning event is an increasingly smaller region around this point yu. We will start
by formalising this idea in a relatively abstract way, but will shortly make this practicable. For the
sake of intuition, note that we are working towards the introduction of probability density functions.

Fix any P ∈ Z , consider any yu ∈ Yu and choose a sequence {Oi
u}i∈N of events in Σu which

shrink to yu—i.e., such that Oi
u ⊇ Oi+1

u for all i ∈ N, and such that ∩i∈NOi
u = {yu}. We then define

EP[ f (Xv) |Yu = yu] := lim
i→+∞

EP[ f (Xv) |Yu ∈ Oi
u] . (5)

This limit exists if there is a sequence {λi}i∈N in R>0 such that, for every xu ∈Xu, the limit

φu(yu |xu) := lim
i→+∞

PY |X (Oi
u |xu)

λi

exists, is real-valued—in particular, finite—and satisfies EPX [φu(yu |Xu)]> 0:

Proposition 6 Let P be an augmented stochastic process and consider any u,v ∈ U , yu ∈ Yu and
f ∈ L (Xv). For any {Oi

u}i∈N in Σu that shrinks to yu, if for some {λi}i∈N in R>0 the quantity
φu(yu |Xu) exists, is real-valued, and satisfies EPX [φu(yu |Xu)]> 0, then

EP[ f (Xv) |Yu = yu] := lim
i→+∞

EP[ f (Xv) |Yu ∈ Oi
u] =

EPX [ f (Xv)φu(yu|Xu)]

EPX [φu(yu |Xu)]
. (6)

Note that EP[ f (Xv) |Yu = yu] is clearly dependent on the exact sequence {Oi
u}i∈N. Unfortunately, this

is the best we can hope for at the level of generality that we are currently dealing with. For brevity,
we nevertheless omit from the notation the updated expectation’s dependency on this sequence.
However, as we will explain below, this should not be problematic for most practical applications.
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It is also useful to note that φu(yu|xu) can often be constructed “piecewise”. That is, if for every
t ∈ u there is a sequence {λ t,i}i∈N in R>0 such that, for all xt ∈Xt ,

φt(yt |xt) := lim
i→+∞

PY |X (Oi
t |xt)

λ t,i

exists and is real-valued, then choosing {λi}i∈N as λi := ∏t∈u λ t,i yields φu(yu|xu) = ∏t∈u φt(yt |xt).
Now, to make the above practicable, we can for example assume that if Y is uncountable, then

it is the set Y = Rd , for some d ∈ N, and that Σ is the Borel σ -algebra on Rd . For each x ∈X , we
then assume that the measure PY |X (· |x) is induced by some given probability density function: a
measurable function ψ(· |x) : Y → R≥0 such that

∫
Y ψ(y|x)dy = 1 and, for every O ∈ Σ,

PY |X (O |x) :=
∫

O
ψ(y|x)dy ,

where the integrals are understood in the Lebesgue sense.
Then choose any yu ∈ Yu, any t ∈ u, any sequence {Oi

t}i∈N of open balls in Yt that are centred
on, and shrink to, yt , and fix any xu ∈Xu. If ψ(·|xt) is continuous at yt , it can be shown that

φt(yt |xt) = lim
i→+∞

PY |X (Oi
t |xt)

λ (Oi
t)

= ψ(yt |xt) , (7)

where λ (Oi
t) denotes the Lebesgue measure of Oi

t . So, we can construct the sequence {Oi
u}i∈N such

that every Oi
u := ∏t∈u Oi

t , with each Oi
t chosen as above. If we then choose the sequence {λi}i∈N as

λi := ∏t∈u λ (Oi
t) for each i ∈ N, we find φu(yu|xu) = ∏t∈u φt(yt |xt) = ∏t∈u ψ(yt |xt), provided that

each φt(yt |xt) satisfies Equation (7). It can now be seen that, under these assumptions, the right-hand
side of Equation (6) is simply the well-known Bayes’ rule for (finite) mixtures of densities.

In most practical applications, therefore, the function φu(· |xu) is known explicitly; one may as-
sume, for example, that Yt follows a Normal distribution with parameters depending on Xt , and the
functions φt(· |xt)—and by extension, φu(·|xu)—then follow directly by identification with ψ(· |xt).
Furthermore, arguably, most of the density functions that one encounters in practice will be con-
tinuous and strictly positive at yt . This guarantees that the limit in Equation (7) exists, and largely
solves the interpretation issue mentioned above: when φu(yu|Xu) = ∏t∈u ψ(yt |Xt) is continuous and
positive at yu, EP[ f (Xv) |Yu = yu] exists and is the same for almost3 all sequences {Oi

u}i∈N.
Moving on, note that if φu(yu|Xu) exists and satisfies EQ,M [φu(yu|Xu)] > 0, then the updated

expectation EP[ f (Xv) |Yu = yu] is well-defined for every P ∈ Z . Hence, we can then update the
imprecise model by updating each of the precise models that it consists of.

Definition 7 Let Z be an ICTHMC and consider any u,v ∈U , yu ∈ Yu, and f ∈L (Xv). For any
{Oi

u}i∈N in Σu that shrinks to yu, if for some {λi}i∈N in R>0 the quantity φu(yu |Xu) exists and is
real-valued, the updated lower expectation is defined by

EZ

[
f (Xv) |Yu = yu

]
:= inf{EP[ f (Xv)|Yu = yu] : P ∈Z } ,

whenever EQ,M [φu(yu|Xu)]> 0, and is left undefined, otherwise.

3. It suffices if, for all t ∈ u, there is a sequence of open balls {Bi
t}i∈N in Y that shrinks to yt such that, for all i ∈N, Oi

t
has positive Lebesgue measure and is contained in Bi

t .
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Similar to the results in Section 4.1, this updated lower expectation satisfies a “generalised
Bayes’ rule for mixtures of densities”, in the following sense.

Proposition 8 Let Z be an ICTHMC and consider any u,v ∈ U , yu ∈ Yu and f ∈L (Xv). For
any {Oi

u}i∈N in Σu that shrinks to yu, if for some {λi}i∈N in R>0 the quantity φu(yu |Xu) exists, is
real-valued, and satisfies EQ,M [φu(yu|Xu)]> 0, then

EZ

[
f (Xv) |Yu = yu

]
= max

{
µ ∈ R : EQ,M

[
φu(yu|Xu)

(
f (Xv)−µ

)]
≥ 0
}
. (8)

Furthermore, this updated imprecise model can be given an intuitive limit interpretation.

Proposition 9 Let Z be an ICTHMC and consider any u,v∈U , yu ∈Yu and f ∈L (Xv). For any
{Oi

u}i∈N in Σu that shrinks to yu, if for some {λi}i∈N in R>0 the quantity φu(yu |Xu) exists, is real-
valued, and satisfies EQ,M [φu(yu|Xu)]> 0, then EZ [ f (Xv)|Yu = yu] = limi→+∞EZ [ f (Xv)|Yu ∈Oi

u].

Now, recall that the requirement EQ,M [φu(yu|Xu)] > 0 for updating the imprecise model is a
sufficient condition to guarantee that all the precise updated models are well-defined. However, one
may wonder whether it is also possible to update the imprecise model under weaker conditions.
Indeed, one obvious idea would be to define the updated model more generally as

ER
Z [ f (Xv) |Yu = yu] := inf{EP[ f (Xv) |Yu = yu] : P ∈Z , EPX [φu(yu|Xu)]> 0} ,

whenever EQ,M [φu(yu|Xu)] > 0; this guarantees that some of the precise updated models are well-
defined. This updated lower expectation satisfies the same generalised Bayes’ rule as above, i.e.
the right-hand side of Equation (8) is equal to ER

Z [ f (Xv) |Yu = yu] whenever EQ,M [φu(yu|Xu)]> 0.
However, the limit interpretation then fails to hold, in the sense that it is possible to construct
an example where ER

Z [ f (Xv) |Yu = yu] 6= limi→+∞EZ [ f (Xv) |Yu ∈ Oi
u], with EQ,M [φu(yu|Xu)] > 0

but EQ,M [φu(yu|Xu)] = 0. We feel that this makes this more general updating scheme somewhat
troublesome from an interpretation (and hence philosophical) point of view.

On the other hand, we recall that the existence of φu(yu|Xu) and the positivity of EPX [φu(yu|Xu)]
are necessary and sufficient conditions for the limit in Equation (5) to exist and be computable
using Equation (6). However, these conditions are sufficient but non-necessary for that limit to
simply exist. Therefore, a different way to generalise the imprecise updating method would be

EL
Z [ f (Xv) |Yu = yu] := inf{EP[ f (Xv) |Yu = yu] : P ∈Z , EP[ f (Xv) |Yu = yu] exists} ,

whenever {P ∈ Z : EP[ f (Xv) |Yu = yu] exists} 6= /0. We conjecture that this updated model does
satisfy the limit interpretation, but on the other hand, it is possible to show that this, in turn, no longer
satisfies the above generalised Bayes’ rule. That makes this updating scheme somewhat troublesome
from a practical point of view because, as we discuss below, the expression in Equation (8) is crucial
for our method of efficient computation of the updated lower expectation.

5. Inference Algorithms

In the previous section, we have seen that we can use the generalised Bayes’ rule for updating our
ICTHMC with some given observations. From a computational point of view, this is particularly
useful because, rather than having to solve the non-linear optimisation problems in Definitions 4
or 7 directly, we can focus on evaluating the function EQ,M

[
PY |X (Ou|Xu)

(
f (Xv)− µ

)]
, or its
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density-analogue, for some fixed value of µ . Finding the updated lower expectation is then a matter
of finding the maximum value of µ for which this quantity is non-negative. As we will discuss in
Section 5.1, this is a relatively straightforward problem to solve numerically.

Therefore, in order for this approach to be computationally tractable, we require efficient al-
gorithms that can evaluate this quantity for a given value of µ . In Section 5.2, we provide such an
algorithm for the important case where the function f depends on a single time-point.

We first generalise the problem so that these results are applicable both for observations of the
form (Yu ∈ Ou), and for point-observations (Yu = yu) in an uncountable outcome space. Recall that

PY |X (Ou|Xu) = ∏
t∈u

PY |X (Ot |Xt) and φu(yu|Xu) = ∏
t∈u

φt(yt |Xt) .

In both cases, we can rewrite this expression as ∏t∈u gt(Xt), where, for all t ∈ u, gt ∈L (Xt) and
gt ≥ 0. The function of interest is then EQ,M

[(
∏t∈u gt(Xt)

)(
f (Xv)−µ

)]
and the sign conditions

in Propositions 5 and 8 reduce to EQ,M [∏t∈u gt(Xt)]> 0 and EQ,M [∏t∈u gt(Xt)]> 0, respectively.

5.1 Solving the Generalised Bayes’ Rule

Finding the maximum value of µ for which the function of interest in the generalised Bayes’ rule is
non-negative, is relatively straightforward numerically. This is because this function, parameterised
in µ , is very well-behaved. The proposition below explicitly states some of its properties. These
are essentially well-known, and can also be found in other work; see, e.g., (De Bock, 2015, Section
2.7.3). The statement below is therefore intended to briefly recall these properties, and is stated in a
general form where we can also use it when working with densities.

Proposition 10 Let PQ,M be an ICTMC and consider any u,v ∈ U , any f ∈L (Xv) and, for all
t ∈ u, any gt ∈ L (Xt) such that gt ≥ 0. Consider the function G : R→ R that is given, for all
µ ∈ R, by G(µ) := EQ,M

[
(∏t∈u gt(Xt))

(
f (Xv)−µ

)]
. Then the following properties hold:

G1: G is continuous, non-increasing, concave, and has a root, i.e. ∃µ ∈ R : G(µ) = 0.

G2: If EQ,M

[
∏t∈u gt(Xt)

]
> 0, then G is (strictly) decreasing, and has a unique root.

G3: If EQ,M

[
∏t∈u gt(Xt)

]
= 0 but EQ,M

[
∏t∈u gt(Xt)

]
> 0, then G has a maximum root µ∗, sat-

isfies G(µ) = 0 for all µ ≤ µ∗, and is (strictly) decreasing for µ > µ∗.

G4: If EQ,M

[
∏t∈u gt(Xt)

]
= 0, then G is identically zero, i.e. ∀µ ∈ R : G(µ) = 0.

Note that the function G in Proposition 10 can behave in three essentially different ways. These
correspond to the cases where the observed event has strictly positive probability(/density) for all
processes in the set; to where it only has positive probability(/density) for some processes; and
to where it has zero probability(/density) for all processes. In the first two cases—which are the
important ones to apply the generalised Bayes’ rule—the function is “well-behaved” enough to
make finding its maximum root a fairly simple task. For instance, a standard bisection/bracketing
algorithm can be applied here, known in this context as Lavine’s algorithm (Cozman, 1997).

We sketch this method below. First, note that due to Propositions 5 and 8, the maximum root
will always be found in the interval [min f ,max f ]. The properties above therefore provide us with a
way to check the sign conditions for updating. That is, for any µ > max f , we see that G(µ)< 0 if
and only if EQ,M [∏t∈u gt(Xt)]> 0; similarly, for any µ < min f , we see that G(µ)> 0 if and only
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if EQ,M [∏t∈u gt(Xt)]> 0. Evaluating G at such values of µ is therefore sufficient to check the sign
conditions in Propositions 5 and 8.

The algorithm now starts by setting µ− := min f , and µ+ := max f ; if G(µ+) = 0, we know
that µ+ is the quantity of interest. Otherwise, proceed iteratively in the following way. Compute the
half-way point µ := 1/2(µ+−µ−); then, if G(µ)≥ 0 set µ− := µ , otherwise set µ+ := µ; then repeat.
Clearly, the interval [µ−,µ+] still contains the maximum root after each step. The procedure can be
terminated whenever (µ+−µ−)< ε , for some desired numerical precision ε > 0. Since the width of
the interval is halved at each iteration, the runtime of this procedure is O

(
log{(max f −min f )ε−1}

)
.

Methods for improving the numerical stability of this procedure can be found in (De Bock, 2015,
Section 2.7.3).

5.2 Functions on a Single Time Point

Having discussed an efficient method to find the maximum root of the function G(µ) in Section 5.1,
it now remains to provide an efficient method to numerically evaluate this function for a given value
of µ . Clearly, any such method will depend on the choice of f .

We focus on a particularly useful special case, which can be used to compute the updated lower
expectation of a function f ∈L (Xs) on a single time point s, given observations at time points u.
If s /∈ u, then it will be notationally convenient to define gs := f −µ , and to let u′ := u∪{s}. We can
then simply focus on computing

EQ,M

[(
∏
t∈u

gt(Xt)

)
(

f (Xs)−µ
)
]
= EQ,M

[
∏
t∈u′

gt(Xt)

]
.

On the other hand, if s = t for some t ∈ u, we let u′ := u and replace gt by ( f − µ)gt . Clearly, the
above equality then also holds; the point is simply to establish a uniform indexing notation over all
time-points and functions. The right hand side of the above equality can now be computed using
the following dynamic programming technique.

For all t ∈ u′, we define auxiliary functions g+t ,g
−
t ∈L (Xt), as follows. Writing u′ = t0, . . . , tn,

let g+tn := g−tn := gtn . Next, for all i ∈ {0, . . . ,n−1} and all xti ∈Xti , let

g+ti (xti) :=
{

gti(xti)EQ[g+ti+1(Xti+1) |Xti = xti ] if gti(xti)≥ 0,
gti(xti)EQ[g−ti+1(Xti+1) |Xti = xti ] if gti(xti)< 0

and

g−ti (xti) :=
{

gti(xti)EQ[g−ti+1(Xti+1) |Xti = xti ] if gti(xti)≥ 0,
gti(xti)EQ[g+ti+1(Xti+1) |Xti = xti ] if gti(xti)< 0.

Clearly, backward recursion allows us to compute all these functions in a time-complexity order
that is linear in the number of time points in u′. Practically, at each step, computing the quantit-
ies EQ[g+ti+1(Xti+1) |Xti = xti ] and EQ[g−ti+1(Xti+1) |Xti = xti ] can be done using Equation (2) and the
method described in Section 2.2. Due to the results in (Krak et al., 2016), each of these quantities is
computable in polynomial time. So, the total complexity of computing all these functions is clearly
also polynomial. We now have the following result.

Proposition 11 For all t ∈ u′, let gt , g+t and g−t be as defined above. Then the function of interest is
given by EQ,M [∏t∈u′ gt(Xt)] = EQ,M

[
g+t0 (Xt0)

]
. Also, EQ,M [∏t∈u′ gt(Xt)] = EQ,M

[
g−t0 (Xt0)

]
.

So, in order to evaluate the function of interest, it remains to compute EQ,M

[
g+t0 (Xt0)

]
. Since g+t0 is

a function on a single time point t0, this can again be done in polynomial time, using Equation (4).
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6. Conclusions and Future Work

We considered the problem of performing inference with imprecise continuous-time hidden Markov
chains; an extension of imprecise continuous-time Markov chains obtained by augmenting them
with random output variables, which may be either discrete or continuous. Our main result is an
efficient, polynomial runtime, algorithm to compute lower expectations of functions that depend on
the state-space at any given time-point, given a collection of observations of the output variables.

In future work, we intend to further generalise this model, by also allowing for imprecise output
variables. Furthermore, we also aim to develop algorithms for other inference problems, such as
the problem of computing updated lower expectations of functions f ∈ L (Xv) that depend on
more than one time-point. Similarly, we aim to investigate predictive output inferences, i.e., the
lower probability/density of observations, which has uses in classification problems. Another such
problem is that of estimating state-sequences given observed output-sequences—as was previously
done for (discrete-time) iHMM’s (De Bock and de Cooman, 2014).
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Abstract
Sum-product networks are a relatively new and increasingly popular class of (precise) probabilistic
graphical models that allow for marginal inference with polynomial effort. As with other proba-
bilistic models, sum-product networks are often learned from data and used to perform classifica-
tion. Hence, their results are prone to be unreliable and overconfident. In this work, we develop
credal sum-product networks, an imprecise extension of sum-product networks. We present algo-
rithms and complexity results for common inference tasks. We apply our algorithms on realistic
classification task using images of digits and show that credal sum-product networks obtained by
a perturbation of the parameters of learned sum-product networks are able to distinguish between
reliable and unreliable classifications with high accuracy.
Keywords: Sum-product networks, tractable probabilistic models, credal classification.

1. Introduction

Probabilistic models are usually built so that they can be used to produce inferences, that is, to draw
quantitative (probabilistic) conclusions about the domain of interest. Probabilistic graphical models
such as Bayesian networks and Markov Networks (Koller and Friedman, 2009; Darwiche, 2009)
allow complex uncertain knowledge to be modeled succinctly; however, producing inferences with
them is notoriously hard (Cooper, 1990; Roth, 1996; Darwiche, 2009).

Sum-Product Networks (SPNs) are a relatively new class of (precise) probabilistic graphical
models that allow marginal inference in linear time in their size (Poon and Domingos, 2011). They
have received increasing popularity in applications of machine learning due to their ability to repre-
sent complex and highly multidimensional distributions (Poon and Domingos, 2011; Cheng et al.,
2014; Nath and Domingos, 2016; Amer and Todorovic, 2016). An SPN encodes an arithmetic cir-
cuit whose evaluation produces a marginal inference (Darwiche, 2003). The internal nodes of a SPN

perform (weighted) sums and multiplications, while the leaves represent variable assignments. The
sum nodes can be interpreted as latent variables, while the product nodes can be interpreted as en-
coding context-sensitive probabilistic independences. Thus, SPNs can be seen as a class of complex
mixture distributions with tractable inference (Zhao et al., 2015; Peharz et al., 2016).

Imprecise probability models extend precise probabilistic models to accommodate the repre-
sentation of incomplete and indeterminate knowledge (Walley, 1991; Augustin et al., 2014). For
example, (separately specified) credal networks extend Bayesian networks by allowing sets of con-
ditional probability measures to be associated with nodes in lieu of conditional probability measures
(Cozman, 2000, 2005).
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In this work, we develop the Credal Sum-Product Networks (CSPNs), a class of imprecise proba-
bility models which extend SPNs to the imprecise case. A CSPN is simply an SPN where the weights
associated with sum nodes (i.e., the numerical parameters of the model) are allowed to vary in-
side a closed and convex set. Among other things, CSPNs can be used to analyze the robustness of
conclusions supported by SPNs.

We begin by presenting somee basic facts about SPNs in Section 2. Then in Section 3 we derive
polynomial-time algorithms for computing upper and lower bounds on the marginal (unconditional)
probability of an event; we also present a polynomial-time algorithm for computing upper and lower
expectations when the structure is constrained so that every internal node has at most one parent. As
many learning algorithms produce networks of this type (Gens and Domingos, 2013; Rooshenas and
Lowd, 2014), this result is quite important and useful. We show that performing credal classification
(i.e., verifying whether a class value dominates another value under maximality) is coNP-complete
when the number of class values is unbounded. Since this task can be posed as the computation of
a lower expectation, this result also shows hardness of computing expectation bounds on arbitrary
(multivariate) functions. We show empirically in Section 4 that CSPNs are effective in assessing the
reliability to classifications made with SPNs learned from data. Finally, we conclude the paper with
a review of our contributions and some ideas for the future in Section 5.

2. Sum-Product Networks

We use capital letters to notate both random variables and random vectors, with the former usually
being indexed by a subscript: e.g., Xi. If X is a random vector, we call the set composed of the
random variables in X its scope. The scope of a function that takes a random vector X as argument
is the scope of X . In this work, we consider only finite-valued random variables, and leave the
extension to random variables with infinite domains as future work.

We associate every random variable Xi taking values in {0, . . . , ci − 1} with a set of indicator
variables {λij : j = 0, . . . , ci−1}, each taking on values 0 and 1. IfXi is binary, we write xi (resp.,
x̄i) to denote λi1 (resp., λi0). Any discrete multivariate distribution P (XV) can be written as a mul-
tilinear function of the corresponding indicator variables by S(λ) =

∑
xV P(XV = xV)

∏
i∈V λixi .

For example, a Bernoulli distribution can be written as S(x, x̄) = Pr(X = 1)x+ Pr(X = 0)x̄.
A SPN is a concise representation of the multilinear function representing a probability distri-

bution. More formally, a SPN is a weighted rooted directed acyclic graph where internal nodes are
associated to either sum or product operations and leaves are associated with indicator variables.
Every arc from a sum node i to a child j is associated with a nonnegative weight wij , and every arc
leaving a product node has weight one. The scope of a leaf node of the network is the respective
random variable; the scope of an internal node is the union of the scopes of its children. If w are the
weights of a subnetwork Sw, we denote by wi the weights in the subnetwork Si

wi
rooted at node i,

and by wi the vector of weights wij associated with arcs from i to children j. Figure 1 shows an
example of a SPN with scope {A,B}, where A and B are binary variables.

An SPN satisfies the following properties (Poon and Domingos, 2011; Peharz et al., 2015): (i)
every indicator variable appears in at most one leaf node; (ii) the scope of any two children of a sum
node are identical (completeness); (iii) the scopes of any two children of a product node are disjoint
(decomposition); (iv) the sum of the weights associated with any sum node is one (normalization).
Every discrete distribution can be represented by a SPN, and any SPN satisfying the those properties
represents a valid distribution.
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Figure 1: A sum-product network over binary random variables A and B.

The evaluation of a SPN for a given configuration λ of the indicator variables is performed from
the leaves toward the root. The leaves (indicator variables) propagate up their corresponding value
(either 0 or 1) in the configuration λ. Sum (resp., product) nodes propagate the weighted sum (resp.,
product) of the values of their children multiplied by the corresponding arc weights. For example,
the value of the SPN Sw(a, ā, b, b̄) in Figure 1 at the point λ = (1, 0, 0, 1) is 0.15 and corresponds
to P(A = 1, B = 0), and for λ = (1, 0, 1, 1) is 0.45 and corresponds to P(A = 1).

Let E ⊆ {1, . . . , n} be an index set, and XE be a random vector of scope {Xi : i ∈ E}. The
marginal probability of some evidence {Xi = ei : i ∈ E} induced by a SPN S can be obtained by
evaluating the network at λ that is consistent with the evidence, and assigns one to all other indicator
variables (Poon and Domingos, 2011). That is, λij = 0 if i ∈ E and ei 6= j, and λij = 1 otherwise.
Thus marginal probabilities can be computed in time linear in the network size (the number of nodes,
arcs and weights). For example, the marginal probability P(B = 0) = 0.3 induced by the SPN in
Figure 1 can be obtained by evaluating S(a, ā, b, b̄) at λ = (1, 1, 0, 1). Conditional probabilities can
either be obtained by evaluating the network at query and evidence (then dividing the result) or by
applying Darwiche’s differential approach (Darwiche, 2003; Peharz et al., 2016).

A great deal of algorithms have been devised to “learn” SPNs from data (Dennis and Ventura,
2012; Gens and Domingos, 2013; Peharz et al., 2013, 2014; Lee et al., 2014; Rooshenas and Lowd,
2014; Dennis and Ventura, 2015; Adel et al., 2015; Rahman and Gogate, 2016). Most learning
algorithms employ a greedy search on the space of SPNs augmenting an SPN in either a top-down or
bottom-up fashion. For instance, Gens and Domingos (2013)’s algorithm starts with a single node
representing the entire dataset, and recursively adds product and sum nodes that divide the dataset
into smaller datasets until a stopping criterion is met. Product nodes are created using group-wise
independence tests, while sum nodes are created performing clustering on the row instances. The
weights associated with sum nodes are learned as the proportion of instances assigned to a cluster.

3. Credal Sum-Product Networks

Let Sw denote a SPN whose weights are w. We can obtain an imprecise sum-product network
by allowing the weights w to vary in some space, subject to the constraint that they still define a
SPN. More formally, a Credal Sum-Product Network (CSPN) is a set {Sw : w ∈ C}, where C is
the Cartesian product of probability simplexes, and each probability simplex constrains only the
weights associated with a single sum node. It is clear that a SPN is a CSPN where weights take
values in a singleton C, and that every choice of weights w inside C specifies a SPN. Since each SPN

induces a probability measure, the CSPN induces a credal set, that is, a (not necessarily convex) set

207
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Figure 2: A credal sum-product network over variables A and B.

of probability measures (Levi, 1980). Figure 2 shows a CSPN obtained by ε-contamination of the
SPN in Figure 1, with ε = 0.1.

A SPN can be interpreted as a bilevel bipartite Bayesian network by identifying sum nodes with
latent variables whose probability distributions are obtained from the corresponding weights (Zhao
et al., 2015). The network has a layer of latent variables Y1, . . . , Ym corresponding to sum nodes
of the network, and a layer of leaf variables X1, . . . , Xn corresponding to (scopes of) indicator
variables. There is an arc Yj → Xi if and only if Xi is in the scope of the sum node (associated
with) Yj . Each variable Yj has as many values as children, and its (unconditional) probabilities are
specified as the associated weights. The (conditional) probabilities associated with a node Xi are
specified as the weights entering the corresponding indicator variable (which depend on the value
of the respective latent variables). Note that a variable Xi can have a large number of parents, so
that obtaining this Bayesian network is often impracticable.

We can adapt a similar argument for CSPNs: sum nodes can be interpreted as latent variables in
a credal network. This network is obtained exactly as the Bayesian network, except that conditional
probability distributions are replaced by conditional credal sets.

3.1 Likelihood

The most trivial inference with CSPNs is to compute the minimum and maximum values obtained
at a SPN for a given value λ of the indicator variables. This computation corresponds to computing
the upper and lower likelihood of evidence, and can be performed in much the same way as the
computation of marginal probabilities in SPNs, with the additional extra effort of solving a linear
program at each node. To see this, consider a tree-shaped CSPN {Sw : w ∈ C} with root r. Since
the structure is a tree, the subnetworks S1, . . . , Sk rooted at the children of a node i do not share
any weights. Hence, we have that minw Sw(λ) = minwi

∑
j wij minwj S

j
wj (λ). Thus, the problem

of computing the minimum or maximum of a value λ decomposes into smaller similar problems.
A much similar argument applies to CSPNs with cycles; simply break the cycles by duplicating
nodes until the structure is a tree, and perform optimizations from the leaves toward the root. Every
duplicated network receives the same values from the (duplicated) children; thus the optimizations
are the same whether we “tie” the weights of identical parts or not. A more formal argument is
given next.
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Theorem 1 Consider a CSPN {Sw : w ∈ C}, where C is the Cartesian product of finitely-generated
polytopes Ci, one for each sum node i. Computing minw Sw(λ) and maxw Sw(λ) takes O(sL)
time, where s is the number of nodes and arcs in the shared graphical structure and L is an upper
bound on the cost of solving a linear program minwi

∑
j cijwij subject to wi ∈ Ci.

Proof Consider the computation of minw Sw(λ) (the case for max is analogous), and let 1, . . . , k
denote the sum nodes of the network. By construction, the optimization is over weight vectors
w = (w1, . . . , wk), where wi denotes the weights associated with the sum node i, and vary in a
finitely-generated polytope Ci. Now start at the leaves. There are no weights associated, so these
nodes simply propagate their values as in SPNs. Consider a sum node i, and assume that the weights
of the subnetworks at its children have been optimized (and are hence fixed). The corresponding op-
timization is then minw

∑
pwp

∑
j wijS

j
wj (λ)+Cw, where the leftmost sum is over all paths from

the root to i, the inner sum is over the children j of i, and Cw contains the subnetwork formed by
nodes which are neither an ancestor nor a descendant of i (hence can be optimized independently
of wi); this expression defines a linear program with (finitely many) linear constraints wi ∈ Ci.
Solving this linear program takes time O(L). The result follows by induction on the height of sub-
networks.

The algorithm to compute the minimum or maximum values at a configuration λ visits nodes
from leaves toward the root: at product or indicator nodes, it evaluates the corresponding expression
as in SPNs; at a sum node, it builds the corresponding linear program and calls a solver. Since linear
programs can be solved in polynomial time, the overall time is also polynomial in the size of the
input (which includes a description for the local polytopes). This leads to the following:

Corollary 2 Computing minw Sw(λ) and maxw Sw(λ) takes at most polynomial time in CSPNs
specified by finitely-generated polytopes.

3.2 Conditional Expectations

Each choice of the weights w of a CSPN {Sw : w ∈ C} defines a SPN and hence induces a proba-
bility measure Pw. We can thus use the CSPN to compute upper and lower conditional expectations:

max
w

Ew(f |XE = e) and min
w

Ew(f |XE = e) ,

where XQ are known as target variables, f : XQ → Q is a function to rational numbers and
XE = e is the evidence. We will focus on the lower expectation, since the upper expectation can be
obtained from maxw Ew(f |e) = −minw Ew(−f |e). This inference is however intractable (under
the common assumptions in complexity theory):

Theorem 3 Assuming that f is encoded succinctly (e.g., sparsely by its non-zero terms only), com-
puting lower/upper conditional expectations of f in CSPNs is NP-hard.

We defer the proof to Section 3.3, where we address the case of credal classification (that can be
posed as the computation of a conditional expectation). The requirement of a succinct representation
for f is necessary because an exponentially large input would give too much power to any algorithm
(since polynomial time in the input would allow exponential time computations).
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While the general case is NP-hard, there are useful subcases with tractable inference. We now
present an algorithm for the computation of lower and upper conditional expectations when the
network obtained by discarding leaves is a tree and f : XQ → Q is a univariate function. The
algorithm is based on the generalized Bayes rule, and uses the fact that, for any real µ:

min
w

Ew(f |XE = e) > µ ⇐⇒ min
w

∑

q∈XQ

(f(q)− µ) · Pw(XQ = q,XE = e) > 0 , (1)

provided that maxw Pw(XE = e) > 0 (this can be checked in polynomial time, see Section 3.1).
We can also check efficiently whether minw Pw(XE = e) = 0, and decide what to do in such
extreme scenarios. If we can decide Inequality (1) for any µ, then we can perform a binary search
to find the value of minw Ew(f |XE = e).

Theorem 4 Computing lower/upper conditional expectations of a variable in CSPNs takes at most
polynomial time when each internal node has at most one parent.

Proof Let λe be the assignment of indicator variables that is consistent with XE = e and as-
signs 1 to variables not in XE . As shown before, we can efficiently compute maxw Sw(λe) =
maxw Pw(XE = e) and minw Sw(λe) = minw Pw(XE = e). To compute a lower conditional
expectation we might do a binary search to find µ such that

min
w

∑

q∈XQ

(f(q)− µ) · Pw(XQ = q,XE = e) .

To simplify notation we will write Pw(q, e) to denote Pw(XQ = q,XE = e). Now suppose that the
CSPN has a product root node 0 with children 1, . . . , k and (without loss of generality) only node 1
has XQ in its scope. Then, because the scopes of children of product nodes are fully disjoint and
the internal graph of the CSPN forms a tree, we have that

min
w0

∑

q

(f(q)− µ) · Pw0(q, e0) =

(
min
w1

∑

q

(f(q)− µ) · Pw1(q, e1)

)
·

k∏

j=2

P∗wj
(ej) ,

where ej is the evidence for Ej within the scope of child j (note that E1 might be empty and e1 would
disappear), P∗wj

(ej) = maxwj Pwj (ej) in the case that minw1

∑
q(f(q)− µ) · Pw1(q, e1) < 0 and

P∗wj
(ej) = minwj Pwj (ej) otherwise. Hence, if we assume that S1

w1
(λ) = minw1

∑
q(f(q) −

µ) · Pw1(q, e1) and that Sj
wj (λ) = P∗wj

(ej), then from the computation scheme of the CSPN for a

sum node, it is clear that S0
w0

(λ) = minw0

∑
q(f(q)− µ) · Pw0(q, e0). The assumption Sj

wj (λ) =
P∗wj

(ej) is satisfied by definition for all children j that are leaf nodes and do not contain XQ.
Moreover, if the node 0 is a product node and does not have XQ in its scope, then

min
w0

Pw0(e0) =
k∏

j=1

min
wj

Pwj (ej) and max
w0

Pw0(e0) =
k∏

j=1

max
wj

Pwj (ej) ,

and so it is immediate that minw0 S
0
w0

(λ) = minw0 Pw0(e0) if each Sj
wj (λ) = minwj Pwj (ej)

(analogous for the maximization).

210



CREDAL SUM-PRODUCT NETWORKS

If node 0 is a sum node with XQ in its scope, then because the internal graph of the CSPN is a
tree and expectations are linear, we have that

min
w0

∑

q

(f(q)− µ) · Pw0(q, e0) = min
w0

k∑

j=1

w0,j ·min
wj

∑

q

(f(q)− µ) · Pwj (q, e0) ,

where w0 = (w0,1, . . . , w0,k) varies in the corresponding polytope specifying the weights of the
current node 0 (note that E0 might be empty and e0 would disappear). Hence, if we assume that
Sj
wj (λ) = minwj

∑
q(f(q) − µ) · Pwj (q, e0), it is immediate from the local computation of the

CSPN for a sum node that S0
w0

(λ) = minw0

∑
q(f(q) − µ) · Pw0(q, e0). If node 0 is a sum node

without XQ, then

min
w0

Pw0(e0) = min
w0

k∑

j=1

w0,j ·min
wj

Pwj (e0) ,

where w0 = (w0,1, . . . , w0,k) varies in the polytope specifying the weights of the current node
0. Again, minw0 S

0
w0

(λ) = minw0 Pw0(e0) if each Sj
wj (λ) = minwj Pwj (e0) (analogous for the

maximization). Finally, if node 0 is a leaf node with scope XQ, then

min
w0

∑

q

(f(q)− µ) · Pw0(q) = f(q′)− µ ,

where q′ is the value of the variable XQ associated to the λQ,q′ of the leaf node. Therefore, by
using these expressions, we can perform the computation recursively and obtain the desired upper
or lower conditional expectation in polynomial time.

3.3 Credal Classification

SPNs are most often constructed to perform probabilistic classification: to assign each object the
assignment that maximizes the probability of a distinguished set of variables XC given the realiza-
tion of (a subset of) the remaining variables. Since CSPNs define more than a single SPN, there
is more than one such possible maximizer. Many criteria have been devised for decision making
with imprecise probability models. Here we adopt a very popular one, based on the principle of
maximality, often called credal classification in the context of probabilistic classifiers.

Given distinguished variables XC , evidence e = {Xi = ei : i ∈ E} on some variables, and
a credal setM, we say that an assignment c′ for XC credally dominates another assignment c′′ if
(Zaffalon, 2002)

min
P∈M

(
P(XC = c′, XE = e)− P(XC = c′′, XE = e)

)
> 0 .

There is a special case of P(XE = e) = 0 to be treated— an advantage in CSPNs is that comput-
ing lower/upper marginals is efficient. According to the above definition, an assignment c′ credally
dominates class value c′′ if P(XC = c′|XE = e) > P(XC = c′′|XE = e) for all P ∈ M where
these conditional probabilities are defined. In the setting of CSPNs, credal dominance amounts to
establishing whether minw(Sw(λc′ , λe) − Sw(λc′′ , λe)) > 0, where λc′ (resp., λc′′) is the assign-
ment of indicator variables associated with variables XC consistent with c′ (resp., c′′), and λe is the
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Figure 3: Fragment of the sum-product network used to solve PARTITION. We duplicate leaves for
the sake of readability.

assignment of indicator variables consistent with evidence (if there are other variables, these have
their indicator variables set to one to indicate their marginalization).

Lemma 5 If we allow all weights w of an SPN an additive variation ε > 0, then the result of S(λ)
will vary (additively) at most O(s) · ε, where s is the number of nodes and arcs in the graphical
structure. If we allow all w a multiplicative variation ε > 0, then the result of S(λ) will vary
(multiplicatively) at most εO(s).

Proof Each sum node propagates an extra error of at most ε, while the product nodes propagate an
extra error of at most O(d) · ε, where d is its degree. So the result follows by induction. For the
multiplicative error, we hve that sum nodes contribute at most a factor ε to the error, while product
nodes may contribute a factor εO(d). Hence the overall result follows.

Theorem 6 Credal classification is coNP-complete.

Proof Membership in coNP is trivial: Given w, computing Sw(λc′ , λe)−Sw(λc′′ , λe) is a polyno-
mial time task. Hence, there is a polynomial certificate w that confirms that minw(Sw(λc′ , λe) −
Sw(λc′′ , λe)) ≤ 0 if that is indeed the case, and since credal classification is the complement,
membership follows.

Hardness follows by a reduction from the NP-hard problem PARTITION: Given a set of integers
z1, . . . , zn, decide if there is a set S ⊆ {1, . . . , n} such that

∑
i∈S zi = Z/2, where Z =

∑
i zi.

First note that we can scale integers to become rationals in the unit interval without affecting com-
plexity: Let vi = 2zi/Z; then set S solves the original problem if and only if

∑
i∈S vi = 1.

Now, we build an CSPN over variables X = (X1, . . . , Xn, Xn+1, . . . , X2n) as in Figure 3,
where the weights wi,1 vary in [0, 1], and let C = {1, . . . , n} and E = {n + 1, . . . , 2n}. Since
the variables Xi, i ∈ E , have their value fixed by the evidence e (say Xi = 1), we only show the
corresponding value in the figure. The product node S0 has children S1, . . . , Sn. Note that for
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XC = c′, Si′ computes 2−2vi while Si′′ computes 1; and for XC = c′′, Si′ computes 2−vi and
Si′′ computes 1. Because the weights are minimized at {0, 1}. Thus, we have that S(λc′ , λe) =

2
−∑

i:wi,1=1 2vi−n and S(λc′′ , λe) = 2
−∑

i:wi,1=1 vi−n. Hence,

Sw(λc′ , λe)− Sw(λc′′ , λe) = 2−n · (t2 − t) = 2−n · t · (t− 1), with t = 2
−∑

i:wi,1=1 vi .

Now, deciding whether minw(Sw(λc′ , λe)− Sw(λc′′ , λe)) ≤ −2−n−2 solves the partition problem
since t would be 2−1. With a small change in the model, we can move the threshold −2−n−2 to
zero, as required in the classification problem. Therefore, credal classification is coNP-complete.
However, we have to deal with the specification of 2−vi in polynomial time. To do so, we find
rational numbers which approximate them, and in view of Lemma 5, we can find accurate enough
results to separate between yes and no instances of PARTITION.

Since credal classification can be casted as the computation of the lower expectation of a uni-
variate function, we have from Theorem 4 that:

Theorem 7 Credal classification with a single class variable can be done in polynomial time in
CSPNs when each internal node has at most one parent.

4. Experiments

We evaluate the ability of CSPNs in distinguishing between robust and non-robust classifications in
a handwritten digit recognition task. The dataset consists of 700 digitalized images of handwritten
Arabic numerals ranging from 0 to 9 (70 images per digit). Each image consists of 20 × 30 pixels
taking on values 0 and 1, and we associate every pixel with a binary variable. To assess the effect
of dataset size, we consider two splits in training/test data: 50%/50% and 20%/80%. For each split,
we learn a SPN from the training set using the approach discussed by Poon and Domingos (2011),
and use it to classify each instance in the test set. Then, for each test instance, we find the maximum
value of ε such that the CSPN obtained by imposing a local ε-contamination to each of the sum
nodes produces a single classification under maximality (which is equivalent to E-admissibility in
this case). Call this value the classification robustness. We repeat this procedure 10 times using
different random partitions of the data into train and test parts. The curves show the accuracy (no.
of correctly classified instances/no. of instances) of the SPN for instances with robustness at most a
given ε (x-axis). The results are compiled into Figure 4. We see that the higher the robustness the
greater the accuracy.

Examples of misclassified instances are given in Figure 5. For comparison, we also analyze a
different approach to measure robustness: we compute the difference between the probability of
the most probable class and the second most probable class. As we see in the figure, this measure
correlates poorly with the accuracy.

In order to give a more quantitative perspective of the robustness value, we present in Table 1
some descriptive statistics for correctly and wrongly classified instances, using either robustness
measure. We see a much clearer separation of the robustness values between correctly and incor-
rectly classified instances using the CSPN approach instead of the “best minus second best” proba-
bility approach.
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Figure 4: Average classification accuracy for instance below the given robustness (the x-axis shows
the values times a constant 20 to be visually compatible with the probabilities), as ex-
plained in the text.

Figure 5: Examples of misclassified instances. Usually, number 8 is misclassified as 3, number 4
as number 1, and number 3 as 5 and 8. These classifications obtained low robustness
values as given by the CSPN analysis (< 0.01), rightfully indicating the lack of statistical
support.

5. Conclusion

Sum-product networks are tractable probabilistic graphical models that have shown competitive
results in many machine learning tasks. In this work we developed the credal sum-product net-
works, a new class of imprecise probabilistic graphical models that extend sum-product networks
to accommodate imprecision in the numerical parameters. We described algorithms and complex-
ity for common inference tasks such as computing upper and lower bounds on the probability of
evidence, computing conditional expectations and performing credal classification. We performed
experiments that showed that credal sum-product networks can distinguish between reliable and un-
reliable classifications of sum-product networks, thus providing an important tool for the analysis of

Robustness CSPN Best minus second best
Measure Correct Wrong Correct Wrong
1st quartile 0.0255 0.0012 0.0909 0.0627
median 0.0363 0.0029 0.0909 0.0880
3rd quartile 0.0461 0.0049 0.0909 0.0905
maximum 0.1524 0.0199 0.3333 0.3333
mean (std.dev.) 0.0369 ±0.017 0.0043 ±0.004 0.0976 ±0.04 0.1042 ±0.09

Table 1: Robustness values for split of 50% training and 50% testing, repeated 10 times. Overall
classification accuracy of 99.31%.
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such models. There are many open questions. We showed that verifying maximality is coNP-hard
when the query involves multiple variables, but the problem admits an efficient solution if internal
nodes have at most one parent and the test is over a single variable. In fact, we have showed a
polynomial algorithm for computing conditional expectations in networks of that structure, which
subsumes maximality. There remains to establish the complexity of verifying maximality and com-
puting conditional expectations for single variables in general structures, and for multiple variables
in tree-shaped networks. Our experiments here, however promising, are preliminary. In the future,
we intend to perform a more thorough examination of the credal sum-product networks applied to
robust analysis of sum-product networks.
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Abstract
We investigate the role of some game solutions, such the Shapley and the Banzhaf values, as

probability transformations of lower probabilities. The first one coincides with the pignistic trans-
formation proposed in the Transferable Belief Model; the second one is not efficient in general,
leading us to propose a normalized version. We consider a number of particular cases of lower
probabilities: minitive measures, coherent lower probabilities, as well as the lower probabilities
induced by comparative or distorsion models. For them, we provide some alternative expressions
of the transformations and study when they belong to the core of the lower probability.
Keywords: Game solutions, probability transformations, lower probabilities, belief functions,
core, Shapley value, Banzhaf value, pignistic transformation.

1. Introduction

One important problem within imprecise probability theory is that of eliciting a (precise) probability
measure from an imprecise model. This is usually referred to as a probability transformation, and
has been approached in many different ways: we can consider for instance the probability measure
that minimizes (some) distance to the lower probability (Baroni and Vicig, 2005) or that with the
maximum entropy (Jaffray, 1995). The problem has been considered with particular attention by the
belief function community, and a number of different transformations have been proposed (Smets,
2005; Voorbraak, 1989). Among these, one of the most widely used is the pignistic transformation,
considered by Smets and proposed earlier by Dubois and Prade (1982) and Williams (1982). It
turns out that this transformation coincides with what Shapley proposed in 1953 as a solution for a
game. Under this formalism, the possibility space represents a set of players, and the non-additive
measure of an event A is interpreted as the gain associated with a coalition from the players in A.
The link allows us to obtain the pignistic transformation as the center of gravity (the average of the
extreme points) of the set of probabilities associated with the non-additive measure, when the latter
is 2-monotone.

Inspired by this result, in this paper we investigate game solutions as probability transforma-
tions. On the one hand, we deepen in the properties of the Shapley value, studying if it is also
the center of gravity of the core under less restrictive conditions than 2-monotonicity. Moreover,
we study for which imprecise probability models we can guarantee the consistency of the Shapley
value with the lower probability it is induced from. In addition, we shall also study the role as a
probability transformation of another popular solution proposed within game theory: the Banzhaf
value.

After introducing some preliminary concepts in Section 2, in Sections 3–6 we investigate the
properties of the Shapley and Banzhaf values for some particular types of lower probabilities: mini-
tive measures, 2-monotone lower probabilities, coherent lower probabilities, or lower probabilities
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induced by comparative or distorsion models. We conclude the paper in Section 7 with some addi-
tional remarks. Due to the space limitations, proofs have been omitted.

2. Preliminary Concepts

2.1 Lower Probabilities

Consider a finite possibility space Ω = {1, . . . , n}. A lower probability on Ω = {1, 2, . . . , n}
is a function P : P(Ω) → [0, 1] that is monotone (A ⊆ B ⇒ P (A) ≤ P (B)) and normalized
(P (∅) = 0, P (Ω) = 1). Its conjugate upper probability is given by P (A) = 1 − P (Ac) for every
A ⊆ Ω, and its core is the setM(P ) of additive models that are compatible with P , in the sense
that

M(P ) = {P : P(Ω)→ [0, 1] probability measure : P (A) ≥ P (A) ∀A ⊆ Ω}.
We shall only consider in this paper lower probabilities P whose core is non-empty. These are

said to avoid sure loss. They are called coherent if they are moreover the lower envelope of their
core, in the sense that P (A) = min{P (A) : P ∈ M(P )} for every A ⊆ Ω. One particular family
of coherent lower probabilities are the 2-monotone ones, which are those satisfying P (A ∪ B) +
P (A ∩B) ≥ P (A) + P (B) for any pair of subsets A,B of Ω.

This notion can be strengthened by considering complete monotonicity, which means that

P (∪ni=1Ai) ≥
n∑

i=1

P (Ai)−
∑

i,j∈{1,...,n}
P (Ai ∩Aj) + · · ·+ (−1)n+1P (∩ni=1Ai)

for every n ∈ N and every A1, . . . , An ⊆ Ω.
Completely monotone lower probabilities are also called belief functions in the theory of evi-

dence (Shafer, 1976). One of their advantages is that they are uniquely determined by their basic
probability assignment m : P(Ω)→ [0, 1], by means of the formula

P (A) =
∑

B⊆A
m(B). (1)

More generally, any lower probability is determined by its Möbius inverse, given by

m(B) =
∑

B⊆A
(−1)|A\B|P (A),

in the sense that this function m determines P by means of Eq. (1); this Möbius inverse is non-
negative if and only if P is a belief function. In that case, the sets B with m(B) > 0 are called the
focal elements of the belief function P .

2.2 Game Solutions

Within game theory, the possibility space Ω is interpreted as a set of players, and P (A) is then
regarded as the gain that is guaranteed by the coalition of the players in A. Under the assumption of
transferable utility, the core of the game is the set distributions of the total payoff among the players
that cannot be improved by a coalition. These distributions are referred to here as solutions of the
game (they should not be mistaken with the alternative use of the term solution in game theory as a
multifunction that assigns to each game a set of valid strategies).
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Arguably the most important solution of a game is the so-called Shapley value (Shapley, 1953,
1971) that, for a player i, is given by

Φ(P )(i) =
∑

T+{i}

t!(n− t− 1)!

n!
(P (T ∪ {i})− P (T )), (2)

where t = |T |. It is the only solution of the game that satisfies the properties of efficiency (in the
sense defined below), symmetry, linearity and that is equal to zero on null players.

When the game P is 2-monotone, Φ(P ) corresponds to the center of gravity of the core, that is,
the average of the extreme points ofM(P ) (Shapley, 1971). These are related to the permutations
of Ω (Chateauneuf and Jaffray, 1989): any permutation σ defines an extreme point by means of the
equation

Pσ({σ(1), . . . , σ(i)}) := P ({σ(1), . . . , σ(i)}) for i = 1, . . . , n. (3)

Thus, it holds that Φ(P )(i) =
∑
σ∈SΩ Pσ({i})

n! , where SΩ denotes the set of permutations of Ω.
Interestingly, Shapley value of a belief function coincides with what Smets called its pignistic

transformation within the Transferable Belief Model (Smets and Kennes, 1994), as shown in (Smets,
2005). This means that we can also compute the Shapley value as:

Φ(P )(i) =
∑

i∈B

m(B)

|B| . (4)

The equivalence goes beyond belief functions, and as a consequence it can be used to justify the use
of the pignistic transformation beyond this framework. See Aregui and Denoeux (2008); Monney
et al. (2011) for some works making use of the pignistic transformation.

Another popular solution of a game is the so-called Banzhaf value (Banzhaf (1965); see also
Webber (1988)), given by

B(P )(i) =
1

2n−1

∑

T+{i}
P (T ∪ {i})− P (T ). (5)

However, and unlike the Shapley value, the equation above does not produce a probability mass
function, because we may not have

∑
i∈ΩB(P )(i) = 1 (in the language of game theory, if the sum

of the values of the players does not agree with the total payoff P (Ω) it means that the solution
is not efficient). For this reason, it has been suggested to consider instead the normalized Banzhaf
value, which is given by

Ψ(P )(i) =
B(P )(i)∑
j∈ΩB(P )(j)

. (6)

Although the normalized Banzhaf value does not share all the properties of the Banzhaf value
(Dubey and Shapley, 1979), it has been axiomatized from the point of view of game theory by
Van der Brink and Van der Laan (1998).

In this paper, we shall investigate the properties of the Shapley value and the normalized Banzhaf
value as probability transformations of a lower probability. Specifically, we shall study for which
types of lower probabilities they are guaranteed to belong to their core, as well as some simpler
expressions for a number of particular cases.
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3. Minitive Measures

We begin by considering a particular case of belief functions: minitive measures. They are also
referred to as consonant belief functions, necessity measures or minitive lower probabilities.

Definition 1 A lower probability P : P(Ω)→ [0, 1] is called minitive when it satisfies

P (A ∩B) = min{P (A), P (B)} ∀A,B ⊆ Ω.

It was proven by Nguyen et al. (1997) that any minitive measure is in particular completely
monotone, and therefore also 2-monotone. As a consequence, Shapley value can also be obtained
in this case as the center of gravity of the elements of the core. On the other hand, the number of
vertices of the core is smaller than n! in this case, as it was shown by Miranda et al. (2003) to be
equal to 2n−1, at most. The reason for this is that minitive functions correspond to the particular case
of completely monotone measures whose focal elements are nested (Shafer, 1976), in the sense that
they are completely ordered by the inclusion relation, and this makes the extreme points associated
with many different permutations of Ω to coincide.

Let P be a minitive measure. In this subsection, we shall assume without loss of generality that
its focal elements are the sets {1, . . . , j} for j = 1, . . . , n; the results extend easily to the general
case. Using the expression in Eq. (4), Dubois and Prade established the following formula:

Proposition 2 (Dubois and Prade, 2002) Let P be a minitive measure, and denote by m its basic
probability assignment. Then its Shapley value is given by:

Φ(P )(i) =
n∑

j=i

m({1, . . . , j})
j

∀i = 1, . . . , n.

With respect to the normalized Banzhaf value, we have proven the following:

Proposition 3 Let P be a minitive measure, and denote bym its basic probability assignment. Then
its Banzhaf value is given by:

B(P )(i) =
1

2n−1

n∑

j=i

2n−jm({1, . . . , j}) ∀i = 1, . . . , n,

whence its normalized Banzhaf value is:

Ψ(P )(i) =

∑n
j=i 2n−jm({1, . . . , j})∑n

j=1 j · 2n−jm({1, . . . , j}) ∀i = 1, . . . , n.

Moreover, the probability measure Ψ(P ) belongs to the coreM(P ) of the minitive measure P .

4. 2-Monotone Lower Probabilities

Next, we study in more detail the case of 2-monotone lower probabilities. As we mentioned before,
for them the Shapley value always belongs to the core ofM(P ). Interestingly, the same property
does not hold for the normalized Banzhaf value, not even in the particular case where P is a belief
function, as the following example shows:
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Example 1 Let Ω = {1, 2, 3, 4}, and consider the belief function associated with the basic proba-
bility assignment given by m({1}) = m({2, 3, 4}) = 0.5, and m(A) = 0 for any other A. Then
it follows from Eq. (5) that B(P ) = (1

2 ,
1
8 ,

1
8 ,

1
8). As a consequence, the probability mass function

of the normalized Banzhaf value is given by Ψ(P ) = (4
7 ,

1
7 ,

1
7 ,

1
7). However, this does not belong to

the core of P : we have that Ψ(P )({2, 3, 4}) = 3
7 <

1
2 = P ({2, 3, 4}).

For comparison, in this case Eq. (2) tells us that Φ(P ) = (3
6 ,

1
6 ,

1
6 ,

1
6). �

This means that the result we have established in Proposition 3 does not extend to arbitrary
belief functions. It also illustrates the difference between the Shapley and the normalized Banzhaf
values. On the other hand, it can be checked that in case of belief functions (and as a consequence
also for their subclass of minitive measures) the sum

∑
i∈ΩB(P )(i) of the values given by Eq, (5) is

always smaller than or equal to 1. This does not extend to arbitrary 2-monotone lower probabilities,
as Example 2 will show.

Next, we shall investigate the properties of the Shapley and Banzhaf values for some other
particular types of 2-monotone lower probabilities.

4.1 2-Monotone Lower Probabilities in a Three Element Space

Let us consider the particular case where the possibility space has three elements. In that case, it has
been proven that a lower probability is 2-monotone if and only if it is coherent. Moreover, in the case
of cardinality three 2-monotone lower probabilities are particular instances of probability intervals
(de Campos et al., 1994), that is, they are uniquely determined by the constraints [P ({i}), P ({i})]
on singletons. In other words, it suffices to know in this case the lower and upper bounds on the
gain of each player.

The following proposition gives an alternative expression for the Shapley and normalized Banzhaf
values in this case:

Proposition 4 Given Ω = {1, 2, 3}, it holds that, for every i ∈ Ω,

Φ(P )(i) =
1

3
+

1

2
[P ({i}) + P ({i})]− 1

6

3∑

l=1

[P ({l}) + P ({l})],

while the normalized Banzhaf value is

Ψ(P )({i}) =
4m({i}) +m(Ω) + 2

∑
j 6=im({i, j})

4−m(Ω)
.

Moreover, Ψ(P ) belongs to the coreM(P ).

As Example 1 shows, Ψ(P ) need not belong to the core for greater cardinalities of Ω.

4.2 Lower Probabilities Induced by a Distortion Model

Two particular cases of 2-monotone lower probabilities are those induced by a Pari-Mutuel Model
(PMM for short) or a ε-contamination model; these two cases are usually referred to as distortion
models. The PMM originated in horse racing. It considers a probability P0 on P(Ω) and a distortion
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value δ > 0. Using P0 and δ, the PMM defines a lower probability P by (Montes et al., 2017;
Pelessoni et al., 2010; Walley, 1991):

P (A) = max{(1 + δ)P0(A)− δ, 0}. (7)

From (Montes et al., 2017), the lower probability P induced by a PMM is in particular a probability
interval, and as a consequence also 2-monotone. Thus, the Shapley value coincides with the center
of gravity of the core.

The same applies to ε-contamination models, where we consider a probability P0 and a con-
tamination value ε ∈ (0, 1), that represents the distortion made on P0. The ε-contamination model
defines a lower probability by:

P (A) = (1− ε)P0(A) + εPΩ(A), (8)

where PΩ is the vacuous lower probability that assigns the value 1 to Ω and 0 otherwise. This lower
probability is known to be, not only 2-monotone, but also completely monotone.

Although one may think that for a distorsion based on the probability P0, the probability trans-
formations associated with the Shapley and normalized Banzhaf values return P0, our next example
shows that this is not the case:

Example 2 Consider the probability P0 on {1, 2, 3} given by P0({1}) = 0.1, P0({2}) = 0.2 and
P0({3}) = 0.7. Take δ = ε = 0.3, and denote by P δ and P ε the PMM and ε-contamination they
induce, respectively. Using Eqs. (7) and (8), these are given by:

A {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
P δ(A) 0 0 0.61 0.09 0.74 0.87 1
P ε(A) 0.07 0.14 0.49 0.21 0.56 0.63 1

We deduce from Eq. (3) that the extreme points ofM(P δ) andM(P ε) are given by:

σ Pσ forM(P δ) Pσ forM(P ε)

(1, 2, 3) (0, 0.09, 0.91) (0.07, 0.14, 0.79)
(1, 3, 2) (0, 0.26, 0.74) (0.07, 0.44, 0.49)
(2, 1, 3) (0.09, 0, 0.91) (0.07, 0.14, 0.79)
(2, 3, 1) (0.13, 0, 0.87) (0.37, 0.14, 0.49)
(3, 1, 2) (0.13, 0.26, 0.61) (0.07, 0.44, 0.49)
(3, 2, 1) (0.13, 0.26, 0.61) (0.37, 0.14, 0.49)

Thus, the Shapley values are Φ(P δ) = (0.08, 0.145, 0.775) and Φ(P ε) = (0.17, 0.24, 0.59), re-
spectively, and none of them coincide with P0.

Similarly, the normalized Banzhaf values are given by Ψ(P δ) = (0.35
4.09 ,

0.61
4.09 ,

3.13
4.09) and Ψ(P ε) =

(0.58
3.7 ,

0.86
3.7 ,

2.26
3.7 ), which do not coincide with P0 either. �

We now consider the PMM in the particular case where δ satisfies δ < P0({i})
1−P0({i}) for any i =

1, . . . , n. This can be shown (Walley, 1991) to correspond to the case where P is strictly positive for
any non-empty set. In that case we can give a simple expression for the Shapley and the normalized
Banzhaf values.
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Proposition 5 Let P be the lower probability associated with the PMM determined by P0, δ, and
assume that δ < P0({i})

1−P0({i}) for any i = 1, . . . , n. Then the Shapley value is given by Φ(P )(i) =

(1 + δ)P0({i})− δ
n , while

Ψ(P )(i) =
(1 + δ)P0({i})− δ

2n−1

k
, where k = (1 + δ)− nδ

2n−1
.

Moreover, both Φ(P ),Ψ(P ) belong to the coreM(P ).

Next we establish a similar result for the ε-contamination models:

Proposition 6 Let P be the lower probability associated with the ε-contamination determined by
P0, ε. Then the Shapley value is given by Φ(P )(i) = (1 − ε)P0({i}) + ε

n , while the normalized
Banzhaf value is

Ψ(P )(i) =
(1− ε)P0({i}) + ε

2n−1

k
, where k = (1− ε) +

nε

2n−1
.

Moreover, both Φ(P ),Ψ(P ) belong to the coreM(P ).

A common choice for P0 in a distortion model is the uniform distribution; see for example
Utkin (2014) and Utkin and Wiencierz (2013). Our next result shows that for the ε-contamination
model and for the PMM with small enough values of δ, the Shapley and normalized Banzhaf values
coincide with P0 if and only if P0 is uniform.

Corollary 7 Let P be the lower probability associated with either the PMM determined by P0, δ,
where δ satisfies δ < P0({i})

1−P0({i}) for any i = 1, . . . , n or a ε-contamination model. Then,

Φ(P ) = P0 ⇐⇒ Ψ(P ) = P0 ⇐⇒ P0({i}) =
1

n
∀i ∈ Ω.

In fact, for the PMM we easily derive from the symmetry axioms satisfied by the Shapley and
the Banzhaf values that, if P0 is the uniform probability measure, then it coincides with the Shapley
value of the PMM (P0, δ) irrespective of the value of δ; to see that the converse is not true in
general, i.e., that Φ can be the uniform probability measure for other PMM (P0, δ), it suffices to
consider that M(P ) is the set of all probability measures for P = (P0, δ) provided δ is large
enough (specifically, when δ ≥ 1

P0(Ac) for every A 6= Ω), and that in that case Φ becomes the
uniform distribution. Similar comments apply to the normalized Banzhaf value.

5. Coherent Lower Probabilities

We consider next the case of coherent lower probabilities. It was established by Baroni and Vicig
(2005, Proposition 5) in terms of the pignistic transformation that the Shapley value of a coherent
lower probability need not be an element of the core, or, in other words, that the result for 2-
monotone lower probabilities does not extend to arbitrary coherent lower probabilities. The very
same example allows us to show that the normalized Banzhaf value need not belong to the core,
either. In fact, as Example 1 shows, the normalized Banzhaf value is not guaranteed to be in the
core even in the particular case of belief functions, and in the case of possibility spaces with four
elements (the example by Baroni and Vicig considers a space of cardinality five).
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In spite of this result, we can guarantee that the Shapley and Banzhaf values belong to the core
in a number of particular cases. We begin by considering the case of coherent lower probabilities
that are the lower envelope of two probability measures. They may arise for instance when we are
aggregating the information from two different sources.

Proposition 8 Consider two probability measures P1, P2 on P(Ω) and let P be the coherent lower
probability they determine. Then Ψ(P )(i) = Φ(P )(i) = B(P )(i) = P1({i})+P2({i})

2 for every
i ∈ Ω.

Interestingly, in the case considered in the proposition above the Banzhaf value is always nor-
malized. On the other hand, the result does not extend to coherent lower probabilities that are
the envelope of three probability measures, as Example 1 shows: note that the belief function
in that example is the lower envelope of the family of probability measures with mass functions
{(0.5, 0.5, 0, 0), (0.5, 0, 0.5, 0), (0.5, 0, 0, 0.5)}.

Another situation in which we can guarantee that the Shapley value of a coherent lower proba-
bility belongs to its core is when the possibility space has cardinality equal to four, as our next result
shows:

Proposition 9 Let Ω = {1, 2, 3, 4} and let P : P(Ω) → [0, 1] be a coherent lower probability.
Then, Φ(P ) belongs toM(P ).

Example 1 shows that a similar result does not hold for the normalized Banzhaf value.

5.1 Comparative Lower Probabilities

Our attention shifts now to another useful model related to non-additive measures: comparative
probabilities. These (de Finetti, 1931; Koopman, 1940) correspond to the case where the available
information about the probability of the events is of qualitative nature, in the sense that we can only
make statements of the type ‘the probability of A is at least as much as that of B’.

The mathematical study of comparative models can be involved, and for instance the existence
of an additive model that is compatible with them (Kaplan and Fine, 1977; Kraft et al., 1959) is
not guaranteed; we refer to Regoli (1996) for a survey of this topic. In (Miranda and Destercke,
2015), the particular case of elementary comparative probabilities was considered, where we only
give qualitative assessments about the value of individual players.

With this in mind, given I ⊆ Ω × Ω, we call the (elementary) comparative model determined
by I the lower envelope P of the set

M := {P probability measure : P ({i}) ≥ P ({j}) ∀(i, j) ∈ I}.

It was proven by Miranda and Destercke (2015) that the core of these models can be given quite
a neat structure, and that we also have at most 2n−1 different extreme points. However, the lower
probability induced by this core need not be 2-monotone in general (Miranda and Destercke, 2015,
Section 4.3). Taking this into account, it is not surprising to see that the Shapley value need not
coincide with the center of gravity of the core, as our next example shows:

Example 3 Let us consider the comparative assessments

P ({1}) ≥ P ({2}), P ({1}) ≥ P ({3}), P ({2}) ≥ P ({4}), P ({3}) ≥ P ({4}).
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If we consider the set of probability measures compatible with these assessments, it follows from
(Miranda and Destercke, 2015) that the extreme points of this set are the probability measures

(1, 0, 0, 0),

(
1

2
,
1

2
, 0, 0

)
,

(
1

2
, 0,

1

2
, 0

)
,

(
1

4
,
1

4
,
1

4
,
1

4

)
,

(
1

3
,
1

3
,
1

3
, 0

)
.

From this we deduce that the lower probability P associated with these assessments is given by
P (A) = 0 if 1 /∈ A, and

P ({1}) =
1

4
, P ({1, 2}) = P ({1, 3}) =

1

2
, P ({1, 4}) =

1

3
,

P ({1, 2, 3}) =
3

4
, P ({1, 2, 4}) = P ({1, 3, 4}) =

1

2
, P (Ω) = 1.

Now, from Eq. (2), the Shapley value is given by

Φ(P ) =

(
41

72
,
13

72
,
13

72
,

5

72

)
,

while the center of gravity of the core is given by (31
60 ,

13
60 ,

13
60 ,

3
60). �

Nevertheless, it is possible to prove that both the Shapley and the normalized Banzhaf values
belong to the core in this case:

Proposition 10 Let P be a lower probability determined by elementary comparative probabilities.
Then Φ(P ) and Ψ(P ) belong to the coreM(P ).

6. Lower Probabilities Avoiding Sure Loss

The most general model of lower probabilities that we shall consider in this paper are those that
avoid sure loss. They correspond to balanced games within game theory (Shapley, 1967). Recall
that a lower probability P : P(Ω) → [0, 1] is said to avoid sure loss (Walley, 1991) when its core
M(P ) is non-empty.

Note that a lower probability that avoids sure loss need not be coherent, because it may not be
the lower envelope of its core. The relationship between the different models considered in this
paper is summarised by the following figure, where the implication means an inclusion between the
families:

Avoiding sure loss

Coherent

Comparative Distortion models

2-monotone

Completely monotone

Minitive
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Our next example provides an incoherent lower probability that avoids sure loss, and shows that
in that case neither of the Shapley and the normalized Banzhaf values need belong to the core:

Example 4 Consider Ω = {1, 2, 3}, and let us consider P given by

P ({1}) = P ({2}) = P ({3}) = 0, P ({1, 2}) =
9

12
, P ({1, 3}) =

8

12
, P ({2, 3}) =

7

12
,

and of course with P (Ω) = 1. The core of P is non-empty, as it includes for instance the probability
measure P given by ( 5

12 ,
4
12 ,

3
12); in fact it can be checked that M(P ) consists exactly of this

probability measure. As a consequence, we see that the lower probability P is not coherent, since
for instance P ({1}) = 0 < min{P ({1}) : P ∈M(P )}.

Using Eq. (2), we obtain that the Shapley value of P is given by

Φ(P )(1) =
9

24
, Ψ(P )(2) =

8

24
, Ψ(P )(3) =

7

24
.

However, Φ(P ) does not belong to the core of P : we have that Φ(P )({1, 2}) = 17
24 < 18

24 =
P ({1, 2}).

By Eq. (6) the normalized Banzhaf value is given by:

Ψ(P )(1) =
11

30
, Ψ(P )(2) =

10

30
, Ψ(P )(3) =

9

30
.

Thus, it does not belong to the core, either. �

This example also shows that the result we have established for coherent lower probabilities
in Proposition 4 does not extend to those avoiding sure loss, and also that the discussion about
possibility spaces of cardinality three in Section 4.1 does not apply when coherence is not satisfied.

7. Conclusions

The results in this paper show that some of the nice properties of the Shapley value can be extended
beyond the framework of 2-monotone lower probabilities and belief functions. With respect to the
Banzhaf value, although the lack of efficiency leads to the definition of the normalized version, it
is also possible to prove its consistency with the lower probability in a number of cases. Although
in this paper we have focused on this consistency property, in the future we should deepen into the
investigation of the mathematical properties of these models as probability transformations, in the
vein of the work carried out by Dezert et al. (2012), so as to be able to compare them properly with
the existing models.

More generally, we would like to continue this research by considering the probabilistic solu-
tions of games considered in (Webber, 1988). In addition, we should also study the properties of
other probability transformations, such as the maximum entropy one, for some of the imprecise
probability models considered in this paper.
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Abstract
The Pari-Mutuel model is a distortion model that has its origin in horse racing. Since then, it has
been applied in many different fields, such as finance or risk analysis. In this paper we investigate
the properties of the Pari-Mutuel model within the framework of Imprecise Probabilities. Since a
Pari-Mutuel model induces (2-monotone) coherent lower and upper probabilities, we investigate its
connections with other relevant models within this theory, such as probability intervals and belief
functions. We also determine the number of extreme points of the credal set induced by the Pari-
Mutuel model and study how to combine the information given by multiple Pari-Mutuel models.

Keywords: Pari-mutuel bets, credal sets, probability intervals, belief functions, information fu-
sion.

1. Introduction

The Pari-Mutuel model (PMM, for short) is a betting scheme originated in horse racing, that has
been used in other fields like economics, risk analysis or life insurance. It considers a probability
P0 which models the fair price for a bet fixed by an agent, usually called House. In order to ensure a
positive gain, House transforms this fair gain into a slightly greater value given by (1+ δ)P0, where
δ > 0 is interpreted as the taxation from House. We refer to (Gerber, 1979; Peters et al., 2007;
Terrell, 1994; Thaler and Ziemba, 1988) for some detailed studies on the PMM.

Using this interpretation, the PMM can be embedded into the Theory of Imprecise Probabilities:
it determines lower and upper bounds for the probability of any event. These lower and upper
probabilities satisfy the usual consistency requirement of coherence (Walley, 1991), and therefore
they can be equivalently represented by means of the set of probability measures they bound. This
set is a convex set of probabilities usually called credal set. Furthermore, the PMM satisfies the
additional property of 2-monotonicity that offers computational advantages (Destercke, 2013).

To the best of our knowledge, there are few studies of the PMM from the point of view of
imprecise probabilities. For example, (Pelessoni et al., 2010) studied the PMM as a risk measure
and how to extend it from events to gambles, and (Utkin and Wiencierz, 2013) investigated how to
use the PMM in classification problems.

In this paper, we further investigate the PMM from the point of view of Imprecise Probabilities.
The rest of the paper is organized as follows: Section 2 recalls the definition and basic properties
of the PMM. In Section 3 we investigate the connections between the PMM and other models from
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Imprecise Probability Theory. In particular, we first prove that a PMM can be represented by means
of a probability interval, and secondly we characterize the conditions a PMM must satisfy in order
for its lower probability to be not only 2-monotone but also a belief function. Then, Section 4
studies some properties of the extreme points of the credal set induced by a PMM. On the one hand
we investigate the form and the maximal number of extreme points of the credal set; on the other
hand we give an upper bound of the number of extreme points. A number of procedures for merging
different sources of information in the context of PMMs are investigated in Section 5. Due to space
limitations, proofs as well as some less relevant explanations have been omitted.

2. Basic Notions About the Pari-Mutuel Model

LetX = {x1, . . . , xn} denote a finite universe and let P0 be a probability measure defined onP(X ).
We shall assume throughout that P0({xi}) > 0 for i = 1, . . . , n; the results generalize easily to the
case where some elements have probability zero.

Given δ > 0, the pari-mutuel model (PMM, for short) induced by P0, δ, that we shall denote
(P0, δ), is given by the following lower and upper probabilities:

P (A) = max{(1 + δ)P0(A)− δ, 0} and P (A) = min{(1 + δ)P0(A), 1} ∀A ⊆ X . (1)

The functions P , P are conjugate, meaning that P (A) = 1 − P (Ac) ∀A ⊆ X . Also, since
P0({xi}) > 0 ∀i = 1, . . . , n, it holds that P (A) ≥ P0(A) > 0 for every A ⊆ X .

The interpretation of the parameter δ can be found in (Walley, 1991, Sec. 2.9.3). There, it is
proven that P (A)−P (A) ≤ δ for any A, and the equality is attained if and only if 1

1+δ ≤ P0(A) ≤
δ

1+δ . In particular, this condition holds when 0 < P (A) < P (A) < 1. Therefore, δ may be
understood in terms of the imprecision allowed in the definition of P0(A).

Note also that, since the lower probability of a PMM can be obtained as a convex transformation
of a probability measure, it follows (Denneberg, 1994) that P is 2-monotone, meaning that

P (A ∪B) + P (A ∩B) ≥ P (A) + P (B)

for any A,B ⊆ X . As a consequence (Walley, 1991), P , P are coherent, that is, they are respec-
tively the lower and upper envelopes of the credal set associated with the PMM, given by

M(P0, δ) = {P probability | P (A) ≤ P (A) ≤ P (A) ∀A ⊆ X}. (2)

3. PMM and Other Imprecise Probability Models

In this section, we study the connection between the PMM and other relevant imprecise probability
models. In particular, we show that PMMs in a finite setting are particular instances of probability
intervals, and study the conditions a PMM must satisfy in order to induce a belief function.

3.1 Connection Between PMM and Probability Intervals

Probability intervals on X (de Campos et al., 1994; Tessem, 1992) are just lower probabilities
defined on the singletons and their complementaries. Specifically, a probability interval is given by:

I = {[li, ui] : i = 1, . . . , n},
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where it is assumed that li ≤ ui and where the interpretation of [li, ui] is that the unknown or impre-
cisely specified probability of xi belongs to the interval [li, ui]. A probability interval determines a
credal set by:

M(I) = {P probability | li ≤ P ({xi}) ≤ ui, i = 1, . . . , n}, (3)

and the lower and upper envelopes ofM(I) determine coherent lower and upper probabilities by:

l(A) = inf
P∈M(I)

P (A) and u(A) = sup
P∈M(I)

P (A) ∀A ⊆ X . (4)

A probability interval I is called reachable (coherent in the terminology of Walley (1991)) whenever
the functionals l, u determined by Eq. (4) satisfy l({xi}) = li and u({xi}) = ui for all i = 1, . . . , n.
This is equivalent to the following inequalities:

∑

j 6=i
lj + ui ≤ 1 and

∑

j 6=i
uj + li ≥ 1 ∀i = 1, . . . , n. (5)

For a detailed study on probability intervals, we refer to (de Campos et al., 1994). See also (Guo
and Tanaka, 2010; Skulj, 2009; Tanaka et al., 2004) for other relevant works on this topic.

By considering the restrictions to singletons of the lower and upper probabilities associated
with a PMM, we can associate a reachable probability interval with any PMM. Interestingly, this
probability interval keeps all the information about the PMM, in the sense that both determine the
same credal set. In other words, PMMs are particular cases of reachable probability intervals, as
our next result shows:

Theorem 1 Let P0 be a probability measure on P(X ), δ > 0 and (P0, δ) the PMM they induce.
Define the probability interval I = {[li, ui] : i = 1, . . . , n} by li = P ({xi}) and ui = P ({xi}),
where P , P are given by Eq. (1). Then, ifM(I) denotes the credal set associated with I by means
of Eq. (3), it holds that:

1. The probability interval I = {[li, ui] : i = 1, . . . , n} is reachable.

2. M(I) =M(P0, δ), or equivalently, P (A) = l(A) and P (A) = u(A) for any A ⊆ X .

Thus, the PMM is a particular case of probability interval. On the other hand, the latter model is
more general, in the sense that not every reachable probability interval can be expressed in terms of
a PMM.

Example 1 Consider the four-element space X = {x1, x2, x3, x4} and the probability interval
I = {[li, ui] : i = 1, . . . , 4} given by:

x1 x2 x3 x4
li 0.2 0.1 0.3 0.2
ui 0.4 0.2 0.5 0.4

which can be shown to be reachable using Eq. (5). To see that I is not representable by a PMM
(P0, δ), note that from the comments in Section 2, any set A such that 0 < P (A) < P (A) < 1
should satisfy P (A)− P (A) = δ. However, in this example it holds that:

0 < l({x1}) = l1 = 0.2 < 0.4 = u1 = u({x1}) < 1 and

0 < l({x2}) = l2 = 0.1 < 0.2 = u2 = u({x2}) < 1,

whence u({x1})−l({x1}) = 0.2 and u({x2})−l({x2}) = 0.1. Thus, the difference is not constant,
and therefore l, u cannot be represented by means of a PMM. �
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3.2 Connection Between PMM and Belief Functions

As we mentioned in Section 2, the lower probability of a PMM is 2-monotone. In this section we
study under which conditions it is moreover completely monotone. Complete monotonicity means
that for any p ∈ N and any sets A1, . . . , Ap ⊆ X , it holds that

P (∪pi=1Ai) ≥
∑

J⊆{1,...,n}
(−1)|J |−1P (∩i∈JAi).

A completely monotone lower probability is usually called a belief function. Belief functions
(Shafer, 1976) are determined by their Möbius inverse m : P(X ) → [0, 1], which is a mass func-
tion on the subsets of X , by means of the formula P (A) =

∑
B⊆Am(B). The sets A ⊆ X such

that m(A) > 0 are called the focal elements of P . Conversely, the Möbius inverse m of a lower
probability P is determined by the formula

m(B) =
∑

A⊆B
(−1)|B\A|P (A), (6)

and P is a belief function if and only if the function m given by Eq. (6) satisfies m(A) ≥ 0 for
every A ⊆ X .

We start with a simple result from which we deduce that in general the PMM is not 3-monotone,
and therefore it is not completely monotone either.

Proposition 2 Let P be the lower probability associated with a PMM (P0, δ), with |X | ≥ 3. If
there are different xi, xj , xk such that P ({xi}), P ({xj}), P ({xk}) > 0, then P is not 3-monotone.

To see that the hypotheses of this proposition may be satisfied, let P0 be the uniform distribution on
{x1, x2, x3} and take δ = 1

3 : it follows from Eq. (1) that P ({x1}) = P ({x2}) = P ({x3}) = 1
9 .

Next, we establish necessary and sufficient conditions for the PMM to induce a belief function.
For this aim we define the non-vacuity index of a PMM as k = min{|A| : P (A) > 0}.

Theorem 3 Let P be the lower probability induced by a PMM (P0, δ) by Eq. (1), and denote by k
its non-vacuity index. P is a belief function if and only if one of the following conditions is satisfied:

(B1) k = n.

(B2) k = n− 1 and
∑n

i=1 P (X\{xi}) ≤ 1.

(B3) k < n − 1, there exists a unique B with |B| = k and P (B) > 0, and P (A) > 0 if and only
if B ⊆ A.

(B4) k < n− 1, there exists a unique B with |B| = k − 1 and δ = P0(B)
1−P0(B) , and P (A) > 0 if and

only if B ⊂ A.

Proof (Sketch) For sufficiency, it suffices to take into account that cases (B1)–(B4) determine a
belief function with focal elements:

(a) X , in the case of (B1);

(b) {X ,X \ {x} : ∀x ∈ X}, in the case of (B2);
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(c) {B,B ∪ {x} : ∀x /∈ B}, in the case of (B3); and

(d) {B ∪ {x} : ∀x /∈ B}, in the case of (B4).

For necessity, if P is a belief function and we consider its associated non-vacuity index, we
prove that the cases k = n, k = n− 1 and k < n− 1 determine the focal elements depicted in (a),
(b) or (c)-(d) above, respectively, from which it follows that we are in cases (B1)–(B4) above.

Boodgumarn et al. (2013, Thm. 1) established that a sufficient condition for a probability interval
to induce a belief function is that

∣∣∣∣∣∣

{
i : ui +

∑

j 6=i
lj < 1

}
∣∣∣∣∣∣
≤ 2. (7)

Theorem 3 tells us that this condition is not necessary. Although it holds trivially under condition
(B1) (i.e., for PMMs inducing a vacuous belief function), it is possible to find PMMs satisfying any
of the conditions (B2)–(B4) and not the one in Eq. (7).

4. Extreme points induced by a PMM

Since the coherence of the PMM implies that it is uniquely determined by its (closed and convex)
associated credal set, it becomes interesting to determine the extreme points of the set M(P0, δ)
given by Eq. (2); this is particularly relevant if we want to use the PMM in some applied contexts,
such as credal networks (Antonucci and Cuzzolin, 2010; Cozman, 2005).

Recall that the extreme points ofM(P0, δ) are the probability measures P ∈ M(P0, δ) such
that if P = αP1 + (1− α)P2 for some α ∈ (0, 1), P1, P2 ∈M(P0, δ), then P1 = P2.

Since the lower probability of a PMM is 2-monotone, the extreme points ofM(P0, δ) are asso-
ciated with permutations of X (Chateauneuf and Jaffray, 1989), in the following manner: if σ is a
permutation of {1, . . . , n}, we consider the probability measure Pσ given by

Pσ({xσ(1)}) = P ({xσ(1)}),
Pσ({xσ(k)}) = P ({xσ(1), . . . , xσ(k)})− P ({xσ(1), . . . , xσ(k−1)}) ∀k = 2, . . . , n. (8)

Then, the extreme points ofM(P0, δ) are {Pσ : σ ∈ Sn}, where Sn denotes the set of permutations
of {1, . . . , n}. As a consequence, the number of extreme points ofM(P0, δ) is bounded above by
n!, the number of permutations of a n-element space. In this section, we study if this upper bound
can be lowered in the particular case of the PMM.

4.1 Maximal Number of Extreme Points

We start our study by establishing two preliminary but helpful properties of the PMM. The first
result shows that under some conditions, P is not only sub-additive as a coherent upper probability,
but also additive.

Lemma 4 Let P be the upper probability induced by a PMM (P0, δ) by Eq. (1). If P (A) < 1, then

P (A) =
∑

x∈A
P ({x}). (9)
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We deduce that if P (A∪B) < 1 and A∩B = ∅, then P (A∪B) = P (A) +P (B). Using Eq. (9),
we can prove the second preliminary result, which gives the form of the extreme points in terms of
P and P .

Lemma 5 Consider a PMM (P0, δ), and let P , P be given by Eq. (1). The extreme point Pσ asso-
ciated with the permutation σ by Eq. (8) is given by:

P ({xi}) = P (xi) ∀i = σ(1), . . . , σ(j − 1),

P ({xσ(j)}) = P ({xσ(j), . . . , xσ(n)}),
P ({xσ(j+1)}) = . . . = P ({xσ(n)}) = 0,

where j ∈ {1, . . . , n} satisfies P ({xσ(1), . . . , xσ(j−1)}) < P ({xσ(1), . . . , xσ(j)}) = 1.

The above result is illustrated in the following example.

Example 2 Let X = {x1, x2, x3, x4}, P0 the uniform probability distribution and δ = 0.5. If we
consider the permutation σ = (1, 2, 3, 4), we obtain the extreme point Pσ given by:

Pσ({x1}) = P ({x1}) = 1.5 · 0.25 = 0.375.

Pσ({x2}) = P ({x2}) = 1.5 · 0.25 = 0.375.
Pσ({x3}) = P ({x3, x4}) = 1.5 · 0.5− 0.5 = 0.25.
Pσ({x4}) = 0.

In fact, it can be proven that the extreme points ofM(P0, δ) are given by

P ({xi}) = P ({xi}) = 0.375,

P ({xj}) = P ({xj}) = 0.375,
P ({xk}) = P ({xk, xl}) = 0.25,
P ({xl}) = 0,

for any possible combination of i, j, k, l in {1, 2, 3, 4}. �

Next we use the results above to compute the maximal number of extreme points induced by a
PMM. Note that from Theorem 1 we already know that any PMM is in particular a probability
interval. This means that the number of extreme points induced by a PMM is upper bounded by the
maximal number of extreme points induced by a probability interval. Next theorem shows that this
upper bound can be attained.

Theorem 6 Given a PMM (P0, δ) on X , the maximal number of extreme points ofM(P0, δ) is:

1. n
2

(
n
n
2

)
if n is even;

2. n+1
2

(
n
n+1
2

)
if n is odd.

Furthermore, these maxima are attainable, by considering P0 a uniform distribution and δ ∈(
n−2
n+2 , 1

)
, if n is even, or δ ∈

(
n−1
n+1 ,

n+1
n−1

)
if n is odd.
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The number of extreme points induced by a PMM (P0, δ) where P0 is the uniform probability
measure has already been studied in (Utkin, 2014, Sect. 5.2.) and (Utkin and Wiencierz, 2013,
Sect. 4.2). In this respect, note that, even if the definition of the PMM considered by Utkin and
Wiencierz (2013) is slightly different from the one given in Section 2 (they consider instead P (A) =
(1+ δ)P0(A)− δ and P (A) = (1+ δ)P0(A) ∀A ⊆ X ), both definitions determine the same credal
set: the lower and upper probabilities in Eq. (1) correspond to the natural extensions of the ones
considered by Utkin and Wiencierz (2013).

Remark also that the maximal number of extreme points for odd n can equivalently be expressed
by
(n+1
n+1
2

)
n+1
4 . Therefore, the formula of the maximal number of extreme points of the credal set of

a PMM coincides with that of probability intervals (Tessem, 1992).

4.2 Computing the Number of Extreme Points for an Arbitrary PMM

In this section, we establish a simple formula that provides an upper bound on the number of extreme
points associated with a PMM. Let (P0, δ) be a PMM, and define

L = {A ⊆ X | P (A) = 1}. (10)

This is a filter of subsets of X , and as a consequence also a poset with respect to set inclusion. We
can use it to bound the number of extreme points of a PMM.

Proposition 7 Consider a PMM (P0, δ), and let L be given by Eq. (10). Then, the number of
extreme points ofM(P0, δ) is bounded above by:

∑

A∈L

∣∣∣∣∣∣
⋂

B⊆A,B∈L
B

∣∣∣∣∣∣
. (11)

Furthermore, the number of extreme points coincides with this upper bound if and only if P0(A) >
1

1+δ for every A ∈ L.

The following example illustrates the result.

Example 3 Consider a four-element space X = {x1, x2, x3, x4} with probabilities 0.1, 0.1, 0.3
and 0.5, respectively, and let δ = 0.3. The poset (L,⊆) is given by

L = {X , {x2, x3, x4}, {x1, x3, x4}, {x3, x4}}
Eq. (11) provides an upper bound for the number of extreme points ofM(P0, δ). Specifically, it is
easy to see that for any A ∈ L, it holds that:

∣∣∣∣∣∣
⋂

B⊆A,B∈L
B

∣∣∣∣∣∣
=
∣∣∣{x3, x4}

∣∣∣ = 2;

therefore, the number of extreme points ofM(P0, δ) is bounded by:

∑

A∈L

∣∣∣∣∣∣
⋂

B⊆A,B∈L
B

∣∣∣∣∣∣
= 2 + 2 + 2 + 2 = 8.

Moreover, this bound is tight, taking into account that P0(A) >
1

1+δ ∀A ∈ L, and applying Propo-
sition 7. �
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p(x1)

p(x2)

p(x3)

P1
0
P2
0

P∩
0

M(P1
0 , δ1) ∩M(P2

0 , δ2)

(a) Conjunction.

p(x1)

p(x2)

p(x3)

P1
0

P2
0

P∪
0

M(P∪
0 , δ

∪)

(b) Disjunction (approximated).

p(x1)

p(x2)

p(x3)

P1
0

P2
0

P ε
0

εM(P1
0 , δ1) + (1− ε)M(P2

0 , δ2)

(c) Average.

Figure 1: Illustration of combination rules. Initial credal sets are in light grey and delimited by
dashed lines, combination results in dark grey.

However, when the additional condition given in Proposition 7 is not satisfied, the formula of
Eq. (11) provides only an upper bound of the number of extreme points.

Example 4 Take X = {x1, x2, x3}, the uniform distribution P0 on P(X ) and δ = 0.5. It holds
that L = {{x1, x2}, {x1, x3}, {x2, x3},X}. By Eq. (11), the number of extreme points is bounded
above by:

∑

A∈L

∣∣∣∣∣∣
⋂

B⊆A,B∈L
B

∣∣∣∣∣∣
= 2 + 2 + 2 + 0 = 6.

However,M(P0, δ) has only three extreme points: (0.5,0.5,0), (0.5,0,0.5) and (0,0.5,0.5). Thus, the
bound given by Eq. (11) is not tight. Note moreover that in this case P0({x1, x2}) = 2

3 = 1
1+δ . �

5. Information Fusion of PMMs

When two credal sets M(P 1
0 , δ1) and M(P 2

0 , δ2) are provided to describe our uncertainty over
X , one often needs to combine them into a single model. Three classical ways to achieve such a
combination are to consider the conjunction (intersection), the disjunction (union) or the average
(convex mixture) of the models. The results of these combinations is illustrated in Figure 1, where
the specific used models are described in Examples 5, 6 and 7 for the conjunction, disjunction and
average, respectively.

Before studying these three cases, we show a useful result which can be derived from Lemma 4.

Proposition 8 Let M(P0, δ) denote the credal set associated with a PMM (P0, δ) by means of
Eq. (2). Then, a probability measure P belongs toM(P0, δ) if and only if:

P ({x}) ≤ (1 + δ)P0({x}) ∀x ∈ X .
Thus, the credal set M(P0, δ) is not only determined by the restrictions of the lower and upper
probabilities to singletons (as we know from the connection with probability intervals established
in Theorem 1) but moreover that only the upper bounds on the singletons are necessary. This fact is
instrumental in the derivation of the results of this section.
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5.1 Conjunction

LetM(P∩0 , δ
∩) :=M(P 1

0 , δ1) ∩M(P 2
0 , δ2) denote the credal set obtained by conjunctively com-

biningM(P 1
0 , δ1) andM(P 2

0 , δ2). We then have the following result.

Proposition 9 The setM(P∩0 , δ
∩) is non-empty if and only if

∑

x∈X
min

{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x}), 1

}
≥ 1. (12)

In that case, it is induced by the PMM (P∩0 , δ
∩) such that

δ∩ =

(∑

x∈X
min

{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
)
− 1 (13)

P∩0 ({x}) =
min

{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}

1 + δ∩
. (14)

In the particular case where P 1
0 = P 2

0 , Eq. (12) is always satisfied because:

∑

x∈X
min

{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x}), 1

}

=
∑

x∈X
min

{
(1 + min{δ1, δ2})P0({x}), 1

}
≥
∑

x∈X
P0({x}) = 1,

and the values of δ∩ and P∩0 given in Eqs. (13) and (14) become δ∩ = min{δ1, δ2} and P∩0 = P0.

Example 5 Consider the space X = {x1, x2, x3} and the two models given by δ1 = δ2 = 0.3 and:

P 1
0 = (0.3, 0.3, 0.4), P 2

0 = (0.4, 0.3, 0.3),

that are such thatM(P 1
0 , δ1) ∩M(P 2

0 , δ2) 6= ∅. Their conjunction is given by P∩0 = (1/3, 1/3, 1/3)
and δ∩ = 0.17. The result is illustrated on Figure 1a, where the initial two PMMs are in light gray,
and the resulting conjunction is in dark gray. �

5.2 Disjunction

When the intersection of two credal sets is empty (they are conflicting), an alternative is to consider
their union, that is to consider M(P 1

0 , δ1) ∪ M(P 2
0 , δ2) or its convex hull, since M(P 1

0 , δ1) ∪
M(P 2

0 , δ2) will not be convex in general.
The convex hull conv(M(P1

0, δ1)∪M(P2
0, δ2)) will also not be induced by a PMM in general.

However, we can easily provide a best outer-approximating PMM (P∪0 , δ
∪) using the fact that any

outer-approximation ofM(P 1
0 , δ1) ∪M(P 2

0 , δ2) must satisfy the constraint

max
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
≥ P ({x}) ∀x ∈ X .

Indeed, using the same arguments as in Proposition 9, we can define

δ∪ =

(∑

x∈X
max

{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
)
− 1
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and

P∪0 ({x}) =
max

{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}

1 + δ∪

so thatM(P∪0 , δ
∪) ⊇ M(P 1

0 , δ1) ∪M(P 2
0 , δ2). To see that this inclusion holds, simply note that

for any event A, we have

∑

x∈A
max

{
P

1
(x), P

2
(x)
}
≥ max

{∑

x∈A
P

1
(x),

∑

x∈A
P

2
(x)

}

where P 1
, P

2 are the upper probabilities induced by (P 1
0 , δ1) and (P 2

0 , δ2), respectively.

Example 6 Consider the space X = {x1, x2, x3} and the two models given by δ1 = 0.2, δ2 = 0.3
and:

P 1
0 = (0.3, 0.4, 0.3), P 2

0 = (0.2, 0.2, 0.6),

for whichM(P 1
0 , δ1) ∩M(P 2

0 , δ2) = ∅. Their outer-approximation is P∪0 = (0.222, 0.297, 0.481)
and δ∪ = 0.62. The result is illustrated on Figure 1b, where the initial two PMMs are in light gray,
and the resulting outer-approximation of the disjunction is in dark gray. �

5.3 Mixture

The mixture of two PMMs, that is, the computation of

M(P ε0 , δε) := εM(P 1
0 , δ1) + (1− ε)M(P 2

0 , δ2)

for a given ε ∈ (0, 1) is straightforward when applying results established by Moral and del Sagrado
(1998) for probability intervals. In particular, the modelM(P ε0 , δε) is described by the constraints

ε(1 + δ1)P
1
0 ({x}) + (1− ε)(1 + δ2)P

2
0 ({x})) ≥ P ({x}) ∀x ∈ X

on a probability measure P . From this, we easily deduce that

1 + δε =
∑

x∈X
ε(1 + δ1)P

1
0 ({x}) + (1− ε)(1 + δ2)P

2
0 ({x})

= ε(1 + δ1)
∑

x∈X
P 1
0 ({x}) + (1− ε)(1 + δ2)

∑

x∈X
P 2
0 ({x}) = ε(1 + δ1) + (1− ε)(1 + δ2)

and P ε0({x}) =
ε(1+δ1)P 1

0 ({x})+(1−ε)(1+δ2)P 2
0 ({x})

1+δε
.

Example 7 Consider the initial models of Example 6 with ε = 0.5. We obtain the model pε0 =
(0.248, 0.296, 0.456) and δε = 0.25. The result is illustrated on Figure 1c, where the initial two
PMMs are in light gray, and the resulting average is in dark gray. �

Other, more elaborate combinations can be derived from these basic ones; see for example (Moral
and del Sagrado, 1998; Walley, 1982).
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6. Conclusion

This paper presents some advances on the study of the PMM as a model within Imprecise Probability
Theory. Our results show that the PMM is a particular type of probability interval (Thm. 1). This
means that any property satisfied by a probability interval is also satisfied by a PMM. In this paper,
we have studied the extreme points of the credal set induced by a PMM, and proven that the maximal
number of extreme points coincides with that of probability intervals (Thm. 6). In addition, we
have established a formula that gives an upper bound for the number of extreme points and that is
somewhat easier to apply.

With respect to the connection with other imprecise probability models, we have also given
necessary and sufficient conditions for a PMM to induce a belief function, improving upon some
results from the literature. Our results show that those belief functions that are attained as a PMM
are quite specific, since the PMM imposes strong constraints on the focal elements. Although not
reported here, from this it is easy to characterize in which cases the lower probability of a PMM is
a minitive function. However, this only happens in even more particular scenarios.

Finally, we have also investigated the properties of the PMM when merging different sources of
information, each providing a PMM. In particular, we have seen that the conjunction or the mixture
of PMMs give rise to other PMM, while the disjunction of PMMs can be outer-approximated by a
PMM. This gives simple tools to perform such combinations.

There are other practical aspects of uncertainty models that we did not study in the present
paper, but that would deserve some attention, such as what happens when combine into a joint
model PMM models issued from marginal variables. In particular, it would be worth checking
whether such operations can be performed efficiently and preserve the form of the initial model,
i.e., is the result still a PMM?

Acknowledgements

The research reported in this paper has been supported by project TIN2014-59543-P, and by the
project Labex MS2T, financed by the French Government through the program “Investments for the
future” managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02). We
would like to thank the anonymous reviewers for their helpful comments.

References

A. Antonucci and F. Cuzzolin. Credal sets approximation by lower probabilities: application to
credal networks. In International Conference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems, pages 716–725. Springer, 2010.

P. Boodgumarn, P. Thipwiwatpotjana, and W. Lodwick. When a probability interval is a random
set. Science Asia, 39:319–327, 2013.

A. Chateauneuf and J.-Y. Jaffray. Some characterizations of lower probabilities and other monotone
capacities through the use of Möbius inversion. Mathematical Social Sciences, 17(3):263–283,
1989.

F. Cozman. Graphical models for imprecise probabilities. International Journal of Approximate
Reasoning, 39(2-3):167–184, 2005.

239



MONTES ET AL.

L. M. de Campos, J. F. Huete, and S. Moral. Probability intervals: a tool for uncertain reason-
ing. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2:167–196,
1994.

D. Denneberg. Non-Additive Measure and Integral. Kluwer Academic, Dordrecht, 1994.

S. Destercke. Independence and 2-monotonicity: Nice to have, hard to keep. International Journal
of Approximate Reasoning, 54(4):478–490, 2013.

H. Gerber. An introduction to mathematical risk theory. Huebner Foundation, 1979.

P. Guo and H. Tanaka. Decision making with interval probabilities. European Journal of Opera-
tional Research, 203(2):444–454, 2010.

S. Moral and J. del Sagrado. Aggregation of imprecise probabilities. In Aggregation and fusion of
imperfect information, pages 162–188. Springer, 1998.

R. Pelessoni, P. Vicig, and M. Zaffalon. Inference and risk measurement with the pari-mutuel model.
International Journal of Approximate Reasoning, 51(9):1145–1158, 2010.

M. Peters, A.-C. So, and Y. Ye. Pari-mutuel markets: mechanisms and performance. Lecture Notes
in Computer Science, 4858:82–95, 2007.

G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ, 1976.

D. Skulj. Discrete time Markov chains with interval probabilities. International Journal of Approx-
imate Reasoning, 50(8):1314–1329, 2009.

H. Tanaka, K. Sugihara, and Y. Maeda. Non-additive measures by interval probability functions.
Information Sciences, 164:209–227, 2004.

D. Terrell. A test on the gambler’s fallacy evidence from pari-mutuel gambles. Journal of Risk and
Uncertainty, 8(3):309–317, 1994.

B. Tessem. Interval probability propagation. International Journal of Approximate Reasoning, 7
(3–4):95–120, 1992.

R. Thaler and W. Ziemba. Parimutuel betting markets: racetracks and lotteries. Journal of Economic
Perspectives, 2:161–174, 1988.

L. Utkin. A framework for imprecise robust one-class classification models. Journal of Machine
Learning Research and Cybernetics, 5(3):379–393, 2014.

L. Utkin and A. Wiencierz. An imprecise boosting-like approach to regression. In Proceedings
of the 8th International Symposium on Imprecise Probability: Theories and Applications, pages
345–354, 2013.

P. Walley. The elicitation and aggregation of beliefs. Statistics Research Report 23, University of
Warwick, Coventry, 1982.

P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, 1991.

240



PMLR: Proceedings of Machine Learning Research, vol. 62, 241-252, 2017 ISIPTA ’17

Efficient Algorithms for Checking Avoiding Sure Loss

Nawapon Nakharutai NAWAPON.NAKHARUTAI@DURHAM.AC.UK

Matthias C. M. Troffaes MATTHIAS.TROFFAES@DURHAM.AC.UK

Camila C. S. Caiado C.C.D.S.CAIADO@DURHAM.AC.UK

Durham University
Durham (United Kingdom)

Abstract
Sets of desirable gambles provide a general representation of uncertainty which can handle partial
information in a more robust way than precise probabilities. Here we study the effectiveness of
linear programming algorithms for determining whether or not a given set of desirable gambles
avoids sure loss (i.e. is consistent). We also suggest improvements to these algorithms specifically
for checking avoiding sure loss. By exploiting the structure of the problem, (i) we slightly reduce
its dimension, (ii) we propose an extra stopping criterion based on its degenerate structure, and (iii)
we show that one can directly calculate feasible starting points in various cases, therefore reducing
the effort required in the presolve phase of some of these algorithms. To assess our results, we
compare the impact of these improvements on the simplex method and two interior point methods
(affine scaling and primal-dual) on randomly generated sets of desirable gambles that either avoid
or do not avoid sure loss. We find that the simplex method is outperformed by the primal-dual and
affine scaling methods, except for very small problems. We also find that using our starting feasible
point and extra stopping criterion considerably improves the performance of the primal-dual and
affine scaling methods.
Keywords: avoiding sure loss; linear programming; benchmarking; simplex method; affine scal-
ing method; primal-dual method; algorithm.

1. Introduction

Consider a subject modelling uncertainty about an experiment. One way of doing so, is by using
gambles. A gamble is a (for instance, monetary) transaction that depends on the outcome of the
experiment. To express her beliefs about the outcomes of the experiment, the subject can simply
state which gambles she would accept, instead of directly specifying probabilities for the outcomes.
A set of gambles that are considered acceptable to a subject is called a set of desirable gambles.

Williams (1975, 2007) was the first to give a full axiomatic treatment for sets of desirable gam-
bles, and formalized a consistency principle called avoiding sure loss. This principle dictates that
no combination of acceptable gambles should lead to a certain loss. Walley (1991, p.175) proposed
a linear programming problem for checking avoiding sure loss, which was further studied and ex-
tended by various authors (Walley et al., 2004; Quaeghebeur, 2014). These linear programming
problems can be solved by methods such as the primal-dual, simplex and affine scaling methods.

In the literature, to the best of our knowledge, there has been little to no discussion about which
algorithm should be used to solve linear programming problems for avoiding sure loss. Walley
(1991, p. 511) suggested that Karmarkar’s method may be useful for solving large problems.

The main contribution of this paper is a comparative study and analysis of how we can solve
linear programs for avoiding sure loss most effectively, by looking at the three methods mentioned
above. We exploit the structure of this program and also the interactions between the structure
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and the details of the algorithms. Specifically, we slightly reduce its dimension. We also propose an
extra stopping criterion based on its degenerate structure. Finally, we show that one can directly cal-
culate feasible starting points in various cases, therefore reducing the effort required in the presolve
phase of some of these algorithms. Through a simulation study, we compare the impact of these im-
provements in the simplex method and two interior point methods (affine scaling and primal-dual)
on randomly generated sets of desirable gambles that either avoid or do not avoid sure loss.

This paper is organised as follows. After reviewing linear programming problems and avoiding
sure loss in Section 2, we give a linear programming problem and its dual for checking avoiding
sure loss in Section 3. In Sections 4 to 6, we give a brief outline of primal-dual, simplex and affine
scaling methods. We also study the different benefits of these three methods with respect to checking
for avoiding sure loss. Algorithms for generating random sets of desirable gambles are outlined in
Section 7 followed by a comparison of the efficiency of the methods. Section 8 concludes the paper.

2. Preliminaries

2.1 Linear programming problems

A linear programming problem is a problem of optimising a linear function (objective function) sub-
ject to constraints of linear equalities and linear inequalities. Because maximising a linear function
is equivalent to minimising that function with a sign change, and because any linear inequality can
be rewritten as a linear equality by adding non-negative slack variables, we have that every linear
programming problem can be formulated as follows:

min cᵀx subject to Ax = b and x ≥ 0, (P)

where A ∈ Rm×n with rank m and m ≤ n. We call Eq. (P) the primal problem. The dual of Eq. (P)
is:

maxbᵀy subject to Aᵀy + t = c and t ≥ 0 (y free). (D)

We can solve either the primal or the dual problem because they have the same solution.
A solution that satisfies all constraints is called a feasible solution. An optimal solution is a

feasible solution that achieves the optimal value of the objective function. A basic feasible solution
is a feasible solution with at most m non-zero variables. It can be shown that every basic feasible
solution is an extreme point, and vice versa (Fang and Puthenpura, 1993).

A linear programming problem is degenerate when it has basic feasible solutions in which fewer
than m variables are non-zero. As we shall see, one way to check avoiding sure loss is by solving a
degenerate linear programming problem where b = 0. In that case, the following lemma is helpful.
It is a generalised version of an exercise in Vanderbei (2001, p. 42, exercise 3.4).

Lemma 1 The linear programming problem min cᵀx subject to Ax ≥ 0 either has an optimal
value that is zero, or is unbounded.

This lemma is very useful since it tells us that as soon as we find a feasible solution with a
negative objective function value, then the problem is unbounded.

2.2 Avoiding sure loss

Throughout this paper, let Ω be a finite set of uncertain outcomes. A gamble is a bounded real-
valued function on Ω. We think of a gamble as an uncertain reward expressed in units of utility.
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Let D be a finite set of gambles that a subject is willing to accept; we refer to D as the subject’s
set of desirable gambles. The desirability axioms state that a non-negative combination of desirable
gambles should not produce a sure loss (Walley, 1991, p.151). In that case, we say that D avoids
sure loss. Formally:

Definition 2 (Walley, 1991, p.151) The set D = {f1, . . . , fn} is said to avoid sure loss if for all
n ∈ N, λ1, ..., λn ≥ 0 and f1, ..., fn ∈ D:

max
ω∈Ω

(
n∑

i=1

λifi(ω)

)
≥ 0. (1)

3. Linear programs for checking avoiding sure loss

In this section, we study linear programming problems to check avoiding sure loss. The following
linear programming problem is given by Walley (1991, p.175):

Theorem 3 (Walley, 1991, p.175) The set D = {f1, . . . , fn} avoids sure loss if and only if the
optimal value of the following linear programming problem is zero:

(A1) min α (2)

subject to ∀ω ∈ Ω :
n∑

i=1

λifi(ω) ≤ α (3)

where λi ≥ 0. (4)

We propose an alternative linear programming problem, which is slightly smaller in size, and which
has only non-negative variables:

Theorem 4 (Nakharutai, 2015, p.32) Choose any ω0 ∈ Ω. The set D = {f1, . . . , fn} avoids sure
loss if and only if the optimal value of the following linear programming problem is zero:

(A2) min

n∑

i=1

λifi(ω
0) + α (5)

subject to ∀ω ∈ Ω \ {ω0} :

n∑

i=1

λi(fi(ω
0)− fi(ω)) + α ≥ 0 (6)

where λi, α ≥ 0. (7)

Note that (A1) and (A2) are fully degenerate because their right hand side is zero. Therefore,
Theorem 1 applies to both of these problems.

When solving linear programs, typical algorithms such as primal-dual, simplex and affine scal-
ing, require all free variables to be rewritten as a difference of two non-negative variables. So (A1)
needs the introduction of an extra variable due to the presence of a free variable. Moreover, (A2)
already has one fewer variable than (A1). Therefore, solving (A2) is easier than (A1).

Let’s consider the dual of the problem (A2).
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Theorem 5 (Nakharutai, 2015, p.49) Choose any ω0 ∈ Ω. The set D = {f1, . . . , fn} avoids sure
loss if and only if the following linear programming problem has a feasible solution.

(B1) max 0 (8)

subject to ∀fj ∈ D :
∑

ω∈Ω\{ω0}
(fj(ω

0)− fj(ω))p(ω) ≤ fj(ω0) (9)

∑

ω∈Ω\{ω0}
p(ω) ≤ 1 (10)

where p(ω) ≥ 0. (11)

How should we choose ω0? Looking at the primal problem (A2), it is not obvious which ω0 we
should choose. However, since optimality in the primal problem corresponds to feasibility in the
dual problem (Goh and X.Q.Yang, 2002, p.104), if we choose an ω0 for which most values fj(ω0)
are non-negative, then we can start (B1) closer to a feasible solution in the dual, and therefore closer
to an optimal solution in the primal. For example, if there is an ω0 for which fj(ω0) ≥ 0 for all j,
then we immediately find a feasible solution by setting p(ω) = 0 for all ω 6= ω0.

4. Checking avoiding sure loss using primal-dual methods

4.1 Primal-dual methods

The primal-dual method solves the primal and dual problems simultaneously, see Fang and Puthen-
pura (1993); Griva et al. (2009) for more detail. It finds an optimal primal-dual solution [x∗ y∗ t∗]
by repeatedly solving the following equalities:




Ax− b
Aᵀy + t− c

xᵀt


 = 0 subject to x, t ≥ 0 (12)

whilst keeping the variables x and t positive. The algorithm will stop when the primal residual
Ax−b, dual residual Aᵀy+t−c and duality gap xᵀt are small enough or when an unboundedness
criterion is satisfied in either the primal or the dual problems (Fang and Puthenpura, 1993).

Theoretically, the primal-dual method generates iterates x, y, t, where x, t > 0, that stay in
the feasible region. However, in practical implementations, keeping x, y, t in the feasible region is
very difficult because of numerical problems. Therefore, practical implementations of primal-dual
algorithms start with an arbitrary point [x y t] where x, t > 0 and generate iterate points that
converge to an optimal solution. Even though there is no convergence proof, this approach seems to
work well in practice (Fang and Puthenpura, 1993).
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4.2 Corresponding linear programming problems

The primal problem (A2) can be easily written as (P) by adding slack variables:

(A3) min

n∑

i=1

λifi(ω
0) + α (13)

subject to ∀ω ∈ Ω \ {ω0} :

n∑

i=1

λi(fi(ω
0)− fi(ω)) + α− s(ω) = 0 (14)

where λi, α, s(ω) ≥ 0. (15)

Note that these equalities are linearly independent due to the presence of distinct slack variables in
each equality, so the corresponding matrix A has full rank. This will be the case for every system
of equalities that we write down further as well; we will not repeat this point.

The dual problem (B1) can be written as (D) again by adding slack variables:

(B2) max 0 (16)

subject to ∀fj ∈ D :
∑

ω∈Ω\{ω0}
(fj(ω

0)− fj(ω))p(ω) + tj = fj(ω
0) (17)

∑

ω∈Ω\{ω0}
p(ω) + q = 1 (18)

where p(ω), tj , q ≥ 0. (19)

To apply the primal-dual method, (A3) and (B2) are easily written in the form of Eq. (12). Next, we
will investigate the structure of the problems (A3) and (B2) to choose a suitable starting point.

4.3 Starting points and extra stopping criteria

For the dual problem (B2), a starting point can be q0 = p0(ω) = 1/|Ω| for all ω ∈ Ω \ {ω0},
because these p0(ω) and q0 satisfy Eq. (18). For simplicity, we suggest choosing tj = 1 for all j.
Note that this solution may not be feasible (if it were, we would have solved the problem!).

For the primal problem (A3), we can find an initial interior feasible solution as follows:

Theorem 6 An initial interior feasible solution of the specific linear programming problem

min c1x1 + c2x2 + ...+ cnxn + α (20)

subject to ∀j = 1, ...,m :
n∑

k=1

ajkxk + α− sj = 0 (21)

where α ≥ 0, xk ≥ 0 and sj ≥ 0. (22)

is given by xk = 1, α = 1 + max{0,−δ} with δ := minj {
∑n

k=1 ajk} and sj = α+
∑n

k=1 ajk.

Proof We must show that Eq. (21) is satisfied, and that all variables are strictly positive.
Clearly, Eq. (21) is satisfied by our choice of sj , all xk = 1 > 0, and α ≥ 1 > 0. Finally, note

that also all sj > 0 because

sj = α+
n∑

k=1

ajk ≥ α+ δ ≥ 1− δ + δ > 0. (23)
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where we used the definitions of δ and α respectively.

Note that for problem (A3), even though we start with a feasible solution, the solution does not
necessarily remain feasible due to numerical rounding errors. In particular, we can apply our extra
stopping criterion from Theorem 1 only if the primal residual Ax− b is small.

In the next two sections, we look at the simplex and affine scaling methods, and we also suggest
suitable linear programming representations.

5. Checking avoiding sure loss using simplex methods

5.1 Simplex methods and pivoting

The simplex method is an iterative method. At every iteration, we move from a current extreme
point to another extreme point that decreases the objective function value. If a linear programming
problem is in the form

min cᵀx subject to Ax + s = b where x, s,b ≥ 0, (S)

then we immediately obtain a starting extreme point by setting s = b and x = 0.
A brief outline of the simplex method is given as follows (see Fang and Puthenpura (1993) for

more detail). We first write (S) in the following format:

[
cᵀ 0ᵀ 0
A I b

]
(24)

If there is a negative value in the top row, then we leave the current extreme point and move to an
improved extreme point by performing a pivot via row operations. We repeat this until there is no
negative value in the first row, or until we can no longer pivot.

5.2 Corresponding linear programming problems

Note that by multiplying Eq. (14) by −1, problem (A3) can be rewritten as (S). Since all the right
hand side constraints are zero, there is only one extreme point that is 0. Consequently, 0 is the only
extreme point. In this case either the optimal value is zero or the problem is unbounded.

Since the value of the objective function is always zero, we cannot apply Theorem 1. It is also
worth noting that problem (A3) is degenerate and that the simplex method may cycle in such cases
(Hoffman, 1953). Cycling can be detected by checking Bland’s rule or Lexicographic Rule (Fang
and Puthenpura, 1993, p.44) resulting in more calculations. Therefore, the simplex method may
perform poorly when solving problem (A3).

We now look at the dual problem (B1). To convert (B1) into the standard form (S), if there exists
fj(ω

0) < 0 for some j, then we multiply the corresponding constraint by−1 to make the right hand
side non-negative and then add artificial variables. We obtain the following linear programming
problem for which we can immediately give an initial extreme point.
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Corollary 7 The set D = {f1, . . . , fn} avoids sure loss if and only if the optimal value of the
following linear programming problem is zero.

(B3) min
∑

j∈N
tj (25)

subject to ∀j ∈ N :
∑

ω∈Ω\{ω0}
(fj(ω)− fj(ω0))p(ω)− sj + tj = −fj(ω0) (26)

∀j ∈ I \N :
∑

ω∈Ω\{ω0}
(fj(ω

0)− fj(ω))p(ω) + uj = fj(ω
0) (27)

∑

ω∈Ω\{ω0}
p(x) + q = 1 (28)

where p(ω), q, sj , tj , uj ≥ 0 (29)

with I := {1, . . . , n} and N := {j ∈ N : fj(ω
0) < 0}.

We can then choose an initial extreme point to be tj = −fj(ω0), uj = fj(ω
0), q = 1 and

p(ω) = sj = 0.

Now, to check avoiding sure loss using the simplex method, we can solve either (A3) or (B3). If we
want to avoid degeneracy and cycling, then we should solve (B3) rather than (A3).

6. Checking avoiding sure loss using affine scaling methods

6.1 Affine scaling methods

The idea of the affine scaling method is to generate a sequence of interior feasible solutions by
repeatedly solving Eq. (P) such that the corresponding objective function values are decreasing.
The assumption is that this sequence converges to the optimal solution if it exists. The method
needs a starting interior feasible point, and we stop when the difference between objective function
values is small enough or an unboundedness criterion is satisfied (see Fang and Puthenpura (1993);
Griva et al. (2009); Saigal (1995) for more detail).

6.2 Extra stopping criteria

Recall that the right hand side constraints of (A3) are zero and the affine scaling method generates
a sequence of interior feasible solutions. Therefore, we can apply Theorem 1. Specifically, the
method can stop as soon as it finds a feasible solution with a negative objective function value. In
this case, the problem is unbounded.

6.3 Initial feasible interior points

In practical implementations, there are several mechanisms for finding initial interior feasible points
which require solving another linear programming problem. For the problem (A3), we do not need
to use such mechanisms since we can apply Theorem 6 to find an initial interior feasible point. For
the problem (B2), we can apply the following mechanism to obtain a starting interior feasible point
(Fang and Puthenpura, 1993).
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Given constraints Ax = b and x ≥ 0, we choose any x0 > 0 and calculate y = b−Ax0. If
y = 0, then x0 is an interior feasible solution. Otherwise, we solve

min γ subject to Ax + yγ = b where x ≥ 0, γ ≥ 0 (30)

by the affine scaling method with an interior feasible solution [x γ] = [x0 1]. If the affine scaling
method finds an optimal solution [x∗ γ∗] such that γ∗ = 0, then x∗ is an interior feasible solution
of the original problem.

Let’s write (B2) in the explicit form of Eq. (30). Let Ω \ {ω0} = {ω1, ..., ωm}, we choose
x0 =

[
p0(ω1) ... p0(ωm) t01 ... t0n q0

]
> 0 and calculate y := b−Ax0 as follows:

yj := fj(ω
0)−

∑

ω∈Ω\{ω0}
(fj(ω

0)− fj(ω))p0(ω)− t0j (31)

z := 1−


 ∑

ω∈Ω\{ω0}
p0(ω) + q0


 (32)

Note that we can choose t0j = 1 for simplicity. We also choose q0 = p0(ω) = 1/|Ω| for all
ω ∈ Ω \ {ω0} so that z = 0.

We then solve the following problem.

(B4) min γ (33)

subject to ∀fj ∈ D :
∑

ω∈Ω/{ω0}
(fj(ω

0)− fj(ω))p(ω) + tj − yjγ = fj(ω
0) (34)

∑

ω∈Ω/{ω0}
p(ω) + q = 1 (35)

where x0 is an interior feasible point of (B4). After obtaining an optimal solution for (B4), if
γ∗ = 0, then x∗ is an interior feasible solution for (B2) (and therefore also an optimal solution for
(B2)); otherwise, there is no feasible solution.

7. Algorithms and numerical results

7.1 Algorithms for generating random sets of gambles

We give two algorithms for generating random sets of desirable gambles D that either avoid or do
not avoid sure loss. In this section, Ω denotes the set of outcomes, ∆(Ω) denotes the unit simplex
over Ω and D denotes a set of desirable gambles. Algorithm 1 generates a random set of desirable
gambles that avoids sure loss. Starting from aD that avoids sure loss, Algorithm 2 generates another
gamble that can be added to violate consistency, thereby generating a set of desirable gambles that
does not avoid sure loss.

7.2 Numerical results

We solve problem (A3) for checking avoiding sure loss by three methods. The simplex and primal-
dual methods are available in MATLAB, while the affine scaling method is not. Unfortunately,
the MATLAB implementation of the primal-dual method does not allow us to specify the initial
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Algorithm 1: Generate a random set of desirable gambles D that avoids sure loss
Input : Number of gambles J := |D|

Number of outcomes |Ω|
Number of probability mass functions k

Output: A set of desirable gambles D that avoids sure loss

Stage 1. For each i = 1 : k, sample a single pi uniformly from the unit simplex ∆(Ω) as follows:

(a) For each ω, sample qi(ω) uniformly from (0, 1).

(b) For each ω, set pi(ω) := (− ln qi(ω)) / (−∑ω ln qi(ω)).

Stage 2. Generate a set of desirable gambles D

(a) For each ω and j, sample gj(ω) uniformly from (0, 1).

(b) For each j, set P (gj) := mink
i=1

∑
ω pi(ω)gj(ω).

(c) Set D := {gj − P (gj); j ∈ J}.

Algorithm 2: Generate a random set of desirable gambles D that does not avoid sure loss
Input : A set of desirable gambles E = {f1, . . . , fJ} that avoids sure loss

δ > 0
Output: A set of desirable gambles D that does not avoid sure loss

(a) For each ω, sample g(ω) uniformly from (0, 1).

(b) Solve the following linear program:

(C) min β

subject to ∀ω ∈ Ω :
J∑

j=1

λjfj(ω)− β ≤ −g(ω)

where λi ≥ 0 (β free).

(c) Set P (g) := β + δ.

(d) Set D := E ∪ {g − P (g)}.
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starting point and to add an extra stopping criterion (Theorem 1). To compare these three methods,
we wrote our own implementation of the improved affine scaling and the improved primal-dual
methods. Specifically, the extra stopping criterion and our method for the initial interior feasible
point were included in our implementation of these two algorithms.

We generate two types of random sets of desirable gambles. For each type, we consider the
scenarios |D| = J = 2i for i ∈ {1, 2, . . . , 8} and |Ω| = 2j for j ∈ {1, 2, . . . , 8}. We also fixed
k = 24; varying k had little impact on the results. We first generate a set that avoids sure loss
using Algorithm 1. Next, we generate a set that does not avoid sure loss using Algorithm 2 with
δ = 0.05 and with E provided by Algorithm 1. We then benchmark the primal-dual, simplex and
affine scaling methods by measuring their computational times applied to each generated set.

For each set of desirable gambles, we assume that we do not know whether it avoids sure loss or
not, and pose the linear programming problem in the format of the primal problem (A3). We then
solve each case using these three methods. For each method, we run the algorithm twice to remove
any warm-up effects that can happen in the first run, and we only measure the corresponding com-
putational time taken in the second run. We repeat the process 1000 times and present a summary
of the results in Fig. 1.

Figure 1 shows the average computational time spent during each method when checking avoid-
ing sure loss. In the left column, the sets of desirable gambles avoid sure loss and in the right col-
umn, they do not avoid sure loss. Each row represents a different number of desirable gambles. The
vertical axis represents the computational time. The horizontal axis shows the number of outcomes.
The computational time is averaged over 1000 random sets of desirable gambles. The error bars on
the figures represent approximate 95% confidence intervals on the mean computation time. These
are barely visible due to the sufficiently large sample size.

Overall, in the first two rows, where we compare the three methods, the simplex method is
always outperformed by the improved primal-dual and the improved affine scaling methods. Re-
gardless of whether we avoid sure loss or not, the improved primal dual method is faster than the
improved affine scaling method except when we do not avoid sure loss and the number of desirable
gambles is small.

In the last two rows, we compare our suggested improvements on the primal-dual method. When
we avoid sure loss, using our feasible starting point shows a very slight improvement, although it is
barely noticeable. The extra stopping criterion does not help at all in this case, quite logically so,
because it will never be invoked in this case. What is important here is that it also does not hinder
performance; the overhead of the extra check is thus negligible. When we do not avoid sure loss,
both the extra stopping criterion and the feasible starting point considerably improve performance.
Using both improvements gives the best results.

8. Conclusion

We studied and improved methods to solve linear programming problems efficiently for checking
avoiding sure loss. By exploiting the structure of the linear programming problem, we first slightly
reduced its dimension. Secondly, we proposed an extra stopping criterion based on its degenerate
structure. We also showed that one can directly calculate feasible starting points in various cases,
therefore reducing the effort required in the presolve phase of some of these algorithms.

We compared the impact of these improvements on linear programming methods (simplex,
affine scaling, and primal-dual) on randomly generated sets of desirable gambles that either avoid
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Figure 1: Comparison plots of the average computational time for three methods and for different
improved primal-dual methods (PD).
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or do not avoid sure loss. In our simulation, we found that the improved primal-dual and improved
affine scaling methods outperform the simplex method. We found that both affine scaling and
primal-dual methods benefit from the extra stopping criterion and feasible starting points. Overall,
the improved primal-dual method is faster than the improved affine scaling method except when we
do not avoid sure loss and the number of desirable gambles is small.

In future work, we will explore suitable starting points for the dual problems, algorithms for
choosing ω0 for large problems, and different structures for the credal set.
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Abstract
In official statistics, the problem of sampling error is rushed to extremes when not only results on
sub-population level are required, which is the focus of Small Area Estimation (SAE), but also
missing data arise. When the nonresponse is wrongly assumed to occur at random, the situation
becomes even more dramatic, since this potentially leads to a substantial bias. Even though there
are some treatments jointly considering both problems, they are all reliant upon the guarantee of
strong assumptions on the missingness. For that reason, we aim at developing cautious versions
of well known estimators from SAE by exploiting the results from a recently suggested likelihood
approach, capable of including tenable partial knowledge about the nonresponse behaviour in an
adequate way. We generalize the synthetic estimator and propose a cautious version of the so-called
LGREG-synthetic estimator in the context of design-based estimators. Then, we elaborate why the
approach above does not directly extend to model-based estimators and proceed with some first
studies investigating different missingness scenarios. All results are illustrated through the German
General Social Survey 2014, also including area-specific auxiliary information from the German
Federal Statistical Office’s data report.
Keywords: Small area estimation (SAE); LGREG-synthetic estimator; missing data; partial iden-
tification; sensitivity analysis; likelihood; logistic regression; logistic mixed model; German Gen-
eral Social Survey.

1. Introduction

Survey methodology distinguishes between sampling and non-sampling errors (cf., e.g., Biemer,
2010). Sampling errors occur when only a subset, but not the whole population can be included
in a survey, yet the aim is to generalize the results beyond the units that have been sampled. The
sampling error is especially severe if the population is composed of several sub-populations and
the samples drawn from these sub-populations are not large enough to permit a satisfying precision
on sub-population level. A set of methods has been introduced to tackle such situations and is
referred to as Small Area Estimation (SAE). The main approach of SAE is to use additional data
sources, such as administrative records and census data, as auxiliary data in an attempt to increase
the effective sample size (cf., e.g., Münnich et al., 2013; Rao and Molina, 2015).

A common non-sampling error encountered in inference is item-nonresponse. Applying the
EM-algorithm and Multiple Imputations are the recent practices (cf., e.g., Little and Rubin, 2014).
Both techniques force point-identifiability, i.e. uniqueness of parameters, by requiring the assump-
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tion that the missingness is occurring randomly (MAR), i.e. independently of the true underlying
value of the variable of interest given covariates. Since the MAR assumption is generally not testable
and wrongly imposing it may cause a substantial bias, results have to be treated with caution.

According to the methodology of partial identification in the spirit of Manski (2003), one does
not have to insist on strong assumptions to obtain a result at all. Allowing for partially identified
parameters enables to incorporate tenable knowledge only. In this way, one receives imprecise – but
credible – results, which are refined if additional knowledge about the missingness is available. In
this context, there are already several approaches refraining from strong assumptions on the miss-
ingness process (cf., e.g., Couso and Dubois, 2014; Denœux, 2014). These cautious procedures
also represent a popular field of research of the ISIPTA symposia (cf.,e.g., Cattaneo and Wiencierz,
2012; Schollmeyer and Augustin, 2015; Utkin and Coolen, 2011). Since we may not conjure in-
formation about the missingness process or make other strong modelling assumptions (cf., e.g.,
Couso and Sánchez, 2016; Hüllermeier, 2014), uncertainty due to nonresponse has to be interpreted
as lack of knowledge. Thus, approaches, explicitly communicating the associated uncertainty, are
indispensable. In the context of official statistics, this point was recently stressed by Manski (2015).

Since nonresponse may seriously reduce the already small sample size in SAE, jointly consid-
ering both issues is especially challenging. As far as we know, already existing approaches dealing
with nonresponse in SAE are based on strong assumptions on the missingness process, as MAR or
the missing not at random (NMAR) assumption plus strict distributional assumptions. Thus, consid-
ering a cautious approach for dealing with nonresponse in SAE represents the core of this paper. To
pursue this goal, in Section 2 we start by introducing the notation for the setting considered here fol-
lowed by an introduction to our application using the German General Social Survey. Afterwards,
we give a basic overview about prominent design-based estimators applicable in our situation in
Section 3. Two design-based estimators, the classical synthetic estimator and the LGREG-synthetic
estimator, are generalized in Section 4. While cautious versions are given for the case of including
no missingness assumptions at all, the case of including weak assumptions is considered for both
estimators by relying on the cautious likelihood approach developed in Plass et al. (2015). In Sec-
tion 5 the results are illustrated by means of the application example. In Section 6 we discuss why
our approach cannot be directly extended to prominent model-based estimators and then perform
a first sensitivity analysis. Section 7 concludes by summarizing the major points and giving some
remarks on further research.

2. Setting

Technically, our setting is as follows: Let the population U under study have a total size of N units,
and be divided into M non-overlapping domains (areas) Ui, each containing units j, j = 1, . . . , Ni

with Ni as the size of Ui, i = 1, . . . ,M . Let Y be a binary variable of interest that is assumed
to have a relation with a set of k precisely observed categorical covariates X1, . . . , Xk through a
certain model. Cross classifying the categorical covariates forms a k-dimension table with a total
number of cells v, where the g-th cell – representing the g-th subgroup of the population – contains
known joint absolute frequencyX [g]

i , g = 1, . . . , v, i = 1, . . . ,M . To infer about πi, the probability
of a certain category of Y in area i, a sample s of size n is selected, such that a sample si of size
ni is selected from area i with

∑M
i=1 ni = n. Within si, sample units j, j = 1, . . . , ni (j ∈ si)

are selected with inclusion probability 1/wij , where wij are the usual sample weights. Sample
values of the covariates, denoted by x1ij , . . . , xkij , are assumed to be completely observed, while
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of sample values of Y , denoted by yij , some are missing. Accordingly, si is partitioned into si,obs
and si,mis that refer to sample units with observed and unobserved values of Y , respectively. If we
additionally split by g, the samples are denoted by s[g]i , s[g]i,obs and s[g]i,mis.

Application example: To illustrate the setting (and later on the results), we rely on the German
General Social Survey (GGSS) (GESIS Leibniz Institute for the Social Sciences, 2016). We are
interested in the area-specific ratio of people at risk of poverty, where German federal states are the
areas completely partitioning the overall domain “Germany” (i.e. M = 17)1. We construct a binary
response variable with values “poor” and “rich” by comparing the collected equivalent income mea-
sured on the OECD modified scale with the poverty risk threshold given by 60% of the median net
equivalent income, i.e. 986.65e for year 2014 (DESTATIS, Statistisches Bundesamt, 2016b). The
poverty variable shows 454 missing values. As covariates, we use the highest school leaving cer-
tificate, which – for ease of presentation – is dichotomized, distinguishing between categories “no
Abitur”2 and “Abitur” only, as well as sex.3 We base the analysis on the sample with |s| = 3466,
|sobs| = 3012, |smis| = 454. The German Federal Statistical Office’ data report (DESTATIS, Statis-
tisches Bundesamt, 2016a) provides area-specific totals X [g]

i , i = 1, . . . ,M , g = 1, . . . , v, split by
the values of the covariates, i.e. the absolute frequencies of the four subgroups “male-no Abitur”,
“male-Abitur”, “female - no Abitur ” and “female - Abitur” in area i.

3. Theoretical Background of Design-Based Estimators

SAE techniques result in producing estimators π̂i for area of interest i, l = 1, . . . ,M , that are either
design-based or model-based.4 In this paper, we mainly refer to design-based estimators, while we
consider model-based ones in Section 6 only. Design-based estimators are either direct estimators
that only use data from the targeted area, or indirect estimators that rely on data from other areas as
well. This is justified under the assumption of similarity between the areas made to borrow strength
from other areas.

The Horvitz-Thompson (HT) estimator (Horvitz and Thompson, 1952) π̂i,HT = 1
Ni

∑ni
j=1wijyij

for an area i, well known in sampling theory, provides a method to estimate the mean of subpop-
ulations (areas) i, thereby accounting for the different sampling probabilities of respondents by
sampling weights. The so-called synthetic estimator from SAE is a design-based indirect estimator,
which is built upon the HT estimator, incorporating not only information from the area of interest,
but averaging over all M areas. Thus, the area specific probability πi is estimated as

π̂i,SYN ≡ π̂SYN =
1

N

M∑

i=1

∑

j∈si
wijyij =

1

N

M∑

i=1

Ni · π̂i,HT , ∀i = 1, . . . ,M . (1)

Since there is no distinction between areas and sample information is included about the response
variable only, it merely serves as a basis for further estimators.

1. Although Germany is divided into 16 federal states, the GGSS differentiates between 17 ones, additionally distin-
guishing between “former East-Berlin” and “former West-Berlin”.

2. The “Abitur” is the general qualification for university entrance in Germany.
3. Since there should not be any regional differences with regard to covariate sex, the reason for the inclusion of this

covariate rather lies in the interest of illustrating the subgroup specific analysis in a proper way than in an increase of
explanatory power in the subject matter context.

4. While properties of design-based estimators (e.g. bias and variance) are evaluated under sampling distribution over
all samples with population parameters held fixed, model-based estimators usually condition on the selected sample,
and inference regarding them is carried out with respect to the underlying model (cf., e.g., Rao and Molina, 2015).
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An estimator that employs sample data as well as area specific auxiliary information on the joint
totals X1i, . . . , Xki is the GREG-synthetic estimator (cf. Särdnal et al., 1992), where we here use
its logistic version, the LGREG-synthetic estimator (cf. Lehtonen and Veijanen, 1998). Applying
the LGREG-synthetic estimator is split into two steps:

First, the regression coefficients β0, β1,. . ., βk are estimated by means of a standard logistic
regression model linking πij , i.e. the probability for individual j, j = 1, . . . , ni in si, i = 1, . . . ,M ,
to have the value yij = 1, to the linear predictor containing the individual auxiliary information,
here always assuming that all interactions are incorporated.5 Referring to the application example,
we consider two covariates, hence the model includes β0, β1, β2 and an interaction β1:2, expressing
the joint effect of both covariates. According to the aim of borrowing strength, one obtains global
regression coefficients. From the estimated global regression coefficients, by applying the response
function of a standard logistic regression model, we receive global predictions that only depend
on the values of the covariate, but are independent of the area. To stress this, we write π̂[g], g =
1, . . . , v, instead of π̂ij in our case of categorical covariates. The calculation of these predictions
becomes simpler here: Due to the strict monotonicity of the response function, the categorical
nature of the covariates and the inclusion of all interactions, a unique relation between the regression
coefficients and the predictions can be shown (as e.g., addressed in Plass et al., 2017). Consequently,
we can directly calculate the subgroup specific predictions by

π̂[g] =
M∑

i=1

∑

j∈s[g]i

yij

n[g]
, (2)

with n[g] denoting the cell-count in subgroup g, g = 1, . . . , v.
Second, area-specific information is used: In our setting, the original LGREG-estimator (cf.,

e.g., Lehtonen and Veijanen, 1998, p.52) for a certain area of interest i can be expressed as

π̂i,LGREG =
v∑

g=1

(
HT-part︷ ︸︸ ︷∑

j∈si,g
wijyij +

correction term︷ ︸︸ ︷
π̂[g] (X

[g]
i −

∑

j∈si,g
wij)

)
/Ni . (3)

It can be understood as the HT estimator corrected by a term accounting for under- and overrepre-
sentation of certain constellations of covariates in the sample, present in case ofX [g]

i >
∑

j∈si,g wij

and X [g]
i <

∑
j∈si,g wij , resprectively. The subgroup specific representation in (3) will turn out to

be beneficial in context of developing a cautious version (cf. Section 4.2 and 4.3).

4. Cautious Versions of Design-based Estimators under Nonresponse

Since the already established ways of dealing with nonresponse in SAE require strong assumptions,
we aim at improving the presented prominent estimators by striving for a proper reflection of the
available information on the missingness process. For this purpose, we use the framework of the
cautious approach developed for the more general case of coarse6 categorical data in Plass et al.

5. This is quite natural in this context, since only then the full information about the subgroup specific information, also
provided by the auxiliary information in terms of totals, is used.

6. The data problem only distinguishes between fully observed and completely unobserved values, while coarse data
additionally include partial observations, e.g. in the sense of grouped data (cf. Heitjan and Rubin, 1991).
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(2015) and further extended in Plass et al. (2017) to practically frame the inclusion of auxiliary
information. We start by recalling the basic elements of this approach in the following section.

4.1 A Cautious Approach for Dealing with Nonresponse

An observation model Q is used as a medium to frame the procedure of incorporating auxiliary
information on the incompleteness. Restricting to the missing data problem and a binary response
variable and considering the problem for subgroup g, g = 1, . . . , v, the model Q[g] is determined
by the set of missingness parameters q[g]na|y, i.e. the probability associated with refusing the answer
(“na”), given a certain subgroup g and the true value y ∈ {0, 1} of the response variable.7 In the
spirit of partial identification, one can start by incorporating “no” assumptions8 on q[g]na|y, then re-
stricting these missingness parameters successively by certain conceivable conditions. The cautious
approach includes this observation model into a classical categorical likelihood problem. For this
purpose, a connection between the parameters π[g] and p[g]y is established via the observation model,

where p[g]y refers to the observed values y ∈ {0, 1, na}, thus treating the missing values as a cate-

gory of its own. The invariance of the likelihood allows to rewrite the log-likelihood in terms of p[g]y ,
which can be uniquely maximized, in terms of the parameters of interest by relying on the theorem
of total probability, receiving

`(π[g], q
[g]
na|0, q

[g]
na|1) =n

[g]
1

(
ln(π[g]) + ln(1− q[g]na|1)

)
+ n

[g]
0

(
ln(1− π[g]) + ln(1− q[g]na|0)

)

+ n[g]na

(
ln(π[g]q

[g]
na|1 + (1− π[g])q[g]na|0)

)
, (4)

where n[g]1 , n[g]0 and n
[g]
na refer to the respective observed cell counts within subgroup g, which

later on have to be replaced by appropriate sample weights. By maximizing the log-likelihood in
(4), we determine the generally set-valued9 estimators, whose one-dimensional projections can be
represented by the lower and upper bounds of intervals, namely π̂[g], π̂

[g]
, q̂[g]na|0, q̂

[g]
na|0, q̂[g]na|1 and

q̂
[g]
na|1. Thereby, π̂[g] is attained under q̂

[g]
na|0 and q̂[g]na|1, while π̂

[g]
is associated with q̂[g]na|0 and q̂

[g]
na|1.

By considering q[g]na|1 = R·q[g]na|0, with missing ratioR ∈ R ⊆ R+
0 (also cf. Nordheim (1984)),10

andR as the set of missing ratios, assumptions about the missingness can be incorporated. Specific
values of R are associated with a particular missingness scenario, thus point-identifying π[g]. For
instance, R = 1 represents the missingness scenario under gMAR11, requiring q

[g]
na|1 = q

[g]
na|0.

Partial (weak) assumptions, like incorporating R ∈ R into (4), thus refine the result obtained from
the log-likelihood optimization without the inclusion of any missingness assumptions. Since it can
be shown that π̂[g],R, q̂

[g],R
na|0 and q̂[g],Rna|1 as well as π̂

[g],R
, q̂[g],Rna|0 and q̂

[g],R
na|1 , i.e. the bounds under

the partial assumptions expressed by R = [R,R], are achieved under missingness ratio R and R,
respectively, one does not have to optimize the log-likelihood for all values in [R, R], but optimizing
under R and R is sufficient. While R = [0, 1] corresponds to q[g]na|1 ≤ q

[g]
na|0, a cautious version of

7. Referring to the framework of analyzing contingency tables, it is natural to drop the reference to individual j.
8. In fact, we confine ourselves to very general assumptions detailed in Plass et al. (2017).
9. The mapping relating π̂[g] to p̂[g]y is generally not injective.

10. Here we consider a different R than in Plass et al. (2015).
11. Conditioning on subgroup g generalizes the typical MAR assumption.
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gMAR is given by R = [max(0, 1− τ), 1 + τ ], τ ≥ 0, where the degree of cautiousness is given
by the definition of the neighborhood τ (cf. Plass et al., 2017).

4.2 Cautious SAE: Including no Missingness Assumptions

In case of considering R = R+
0 , i.e. incorporating no assumption on the missingness, the result

of the cautious likelihood approach (Plass et al., 2015, p. 251) can be shown to correspond to the
one obtained from cautious data completion, plugging in all potential precise sample outcomes
compatible with the observations (cf. Augustin et al., 2014, §7.8). Thus, here the lower and upper
bound of the synthetic estimator in (1) can be calculated in this case by considering the extreme
cases of regarding all missing values as yij = 0, ∀j ∈ si,mis, i = 1, . . . ,M , or all as yij = 1,
∀j ∈ si,mis, i = 1, . . . ,M :

π̂i,SY N =
1

N

M∑

i=1

∑

j∈si,obs
wijyij , π̂i,SY N =

1

N

M∑

i=1

( ∑

j∈si,obs
wijyij +

∑

j∈si,mis

wij

)
. (5)

In order to study the bounds π̂i,LGREG and π̂i,LGREG, it turns out to be beneficial to break
the summation over all areas into a term for area i∗ 12 of interest and a summation over all other
areas i 6= i∗. With the regularity condition that sampling weights within area i are equal such that
wij = wi,∀j = 1, . . . , ni, and defining n[g] and n[g]i to be respectively the number of units in s and
si existing in subgroup g, g = 1, . . . , v, i = 1, . . . ,M , we can rewrite π̂i∗,LGREG in (3) as

v∑

g=1

(( M∑

i=1
i 6=i∗

∑

j∈s[g]i

yij

n[g]

)(
X

[g]
i∗ − n

[g]
i∗ wi∗

)
+
∑

j∈s[g]
i∗

yi∗j

n[g]

(
X

[g]
i∗ − wi∗(n

[g]
i∗ + n[g])

))
/Ni∗ , (6)

with
∑

j∈s[g]i

yij

n[g]
=

∑

j∈s[g]i,obs

yij

n[g]
+

∑

j∈s[g]i,mis

yij

n[g]
and

∑

j∈s[g]
i∗

yi∗j

n[g]
=

∑

j∈s[g]
i∗,obs

yi∗j

n[g]
+

∑

j∈s[g]
i∗,mis

yi∗j

n[g]
,

when missing data are included. The problem consists of finding the values of yij for the nonre-
spondents that minimize (maximize) Equation (6). Since Equation (6) is a sum of subgroup specific
quantities, optimization for each subgroup g, g = 1, . . . , v, separately is sufficient. Provided that
X

[g]
i∗ ≥ n

[g]
i∗ wi∗ , we can directly infer that the term referring to the areas i 6= i∗ is minimized (maxi-

mized) if all the yij’s, j ∈ si,mis are equal to zero (one). Otherwise, the other extreme allocation of
zeros and ones is chosen to obtain the minimum (maximum). Analogous considerations can be ac-
complished in the term associated with area i∗, now based on the condition X [g]

i∗ ≥ wi∗(n
[g]
i∗ +n

[g]).

4.3 Cautious SAE: First Attempts to Include (Partial) Missingness Assumptions

When partial assumptions in the sense of R ∈ [R,R] are tenable, it is useful to express the cautious
synthetic estimator and the LGREG-synthetic estimator in terms of π̂R, q̂Rna|0 and q̂Rna|1 obtained by
optimizing a log-likelihood as given in (4) under the constraints expressed by R. By again splitting

12. Whenever a differentiation between quantities summing up over all regions and quantities referring to a specific
region is needed, we explicitly write i∗ for the region under consideration.
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j ∈ si into j ∈ si,obs and j ∈ si,mis, the lower bound for the synthetic estimator is received as13

π̂RSY N =
1

N

M∑

i=1

( ∑

j∈si,obs
wijyij + q̂R

na|i1 · π̂
R
i ·
∑

j∈si
wij

)
, (7)

where q̂R
na|i1 · π̂

R
i ·
∑

j∈si wij is the – here smallest – estimated weighted number of nonrespon-
dents with yij = 1, j ∈ si,mis, under the missingness assumption in focus. Thereby, the in-
cluded estimators are received by refraining from a subgroup specific consideration, thus regarding
`(πR, qRna|0, q

R
na|1) instead of `(π[g],R, q[g],Rna|0 , q

[g],R
na|1 ) (cf. (4)). Analogously, π̂

R
SY N is achieved by

using q̂
R
na|i1 and π̂

R
i within (7).

To derive the cautious LGREG-synthetic estimator described by π̂Ri∗,LGREG and π̂
R
i∗,LGREG,

we base our presentation on the lower bound, while the upper bound is obtained analogously vice
versa. Basically, there are two ways to generalize the LGREG-synthetic estimator to a cautious
version: One could either consider one overall likelihood or make consistent use of the fact that
the LGREG-synthetic estimator is a combination of two estimators, a global one motivated by the
idea of “borrowing strength” and another one referring to area i∗. Here, we address the second
possibility, while the first one should be studied in further research. For this purpose, we start by
maximizing two log-likelihoods, namely `(π[g],R, q[g],Rna|0 , q

[g],R
na|1 ) and `(π[g],Ri∗ , q

[g],R
na|i∗0, q

[g],R
na|i∗1),

under R and R to derive the respective projections of the generally set-valued estimators. In a next
step, we then approach the calculation of π̂Ri∗,LGREG by including those estimators that minimize

v∑

g=1

( HT-part︷ ︸︸ ︷∑

j∈s[g]
i∗,obs

wi∗yi∗j + q̂
[g],R
na|i∗1π̂

[g],R
i∗ ·

∑

j∈s[g]
i∗

wi∗j +

correction term︷ ︸︸ ︷
π̂[g],R(X [g]

i∗ − n
[g]
i∗ wi∗)

)
/Ni∗ , (8)

which is a version of the classical LGREG-synthetic estimator in Equation (3), where the HT-part
is represented in terms of π̂[g],Ri∗ and q̂[g],Rna|i∗1, guaranteeing for the partial assumptions under consid-

eration. Due to the distinct estimation of π[g] and π[g]i∗ , we try to take the associated dependence
into account: The interrelation between both estimators may be clearly inferred by considering the
representations

π̂
[g]
i∗ =

( ∑

j∈s[g]
i∗

yij

)
/n

[g]
i∗ and π̂[g] =

( M∑

i=1
i 6=i∗

∑

j∈s[g]i

yij +
∑

j∈s[g]
i∗

yij

)
/n[g] (9)

(here for ease of representation given without splitting into si,obs and si,mis), both including respon-
dents from area i∗.14 Whenever X [g]

i∗ > n
[g]
i∗ , we achieve π̂Ri∗,LGREG if π̂[g],Ri∗ , q̂[g],Rna|i∗1, π̂[g],R are

taken in (8). This choice is possible in this case, since individuals j ∈ s[g]i∗ are assumed to have the

13. For more details see the preliminary version of a technical report available at http://jplass.userweb.mwn.
de/forschung.html.

14. While in (6) a splitting into terms for area i∗ and areas i 6= i∗ was achieved, this cannot be accomplished here. Note
that

∑M
i=1
i 6=i∗

∑
j∈s[g]i

yij

n[g] and
∑

j∈s[g]
i∗

yi∗j

n[g] , appearing in Equation (6), are different from (9) and cannot be regarded

as estimated probabilities due to the different reference in numerator and denominator.
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same values within both estimated probabilities in (9). Considering the situation ofX [g]
i∗ < n

[g]
i∗ , this

is not the case. While π̂[g],R is supposed to be maximal, π̂[g],Ri∗ and q̂[g],Rna|i∗1 should be minimal to
minimize (8). To proceed, we give a reasonable way out of this situation. Thereby, we distinguish
between the case (i), where the correction term in (8) is of greater importance compared to the
HT-part and case (ii), considering the opposite situation.

Case (i): The lower bound of the LGREG-synthetic estimator should be obtained by selecting
π̂
[g],R

. In this way, for all individuals j ∈ s
[g]
i∗ the lowest possible scenario compatible with the

partial knowledge is assumed, such that the inclusion of π̂
[g],R

and q̂
[g],R
na|i∗1 directly follows. This

is supported by Equation (6), indicating that bounds of π̂[g],Ri∗ are included instead of estimators
referring to a scenario between.15

Case (ii): π̂[g],R, π̂[g],Ri∗ and q̂[g],Rna|i∗1 are incorporated for π̂Ri∗,LGREG, while π̂[g],R is improvable
by assuming the upper missingness scenario for individuals from i 6= i∗. A practical compromise is
the inclusion of a pooled estimator

π̂
[g]
pooled =

(
π̂
[g]
i 6=i∗ · n[g]i 6=i∗ + π̂

[g]
i∗ · n

[g]
i∗

)
/n[g] , (10)

to receive π̂Ri∗,LGREG, where π̂[g],Ri 6=i∗ can also be obtained from the cautious log-likelihood calculated
based on all data except from area i∗. Analogously, a pooled version can be determined for the
calculation of π̂

R
i∗,LGREG.

Because of the under-/overweighting of certain subgroups in the sample, automatically some
(X

[g]
i∗ − n

[g]
i∗ wi∗) will be positive and others negative, such that the distinction of different cases

can not be avoided. The development of an criterion evaluating the “importance” of the HT-term
and the correction term used in our argument should be part of further research. Thereby, also the
results and conditions from Section 4.2 should be taken into consideration. Up to then, we choose
the minimum of the results from case (i) and (ii) to obtain a suggestion for π̂Ri∗,LGREG.

5. Results from the Application Example

The area-specific poverty rate is the focus of our illustration explained in Section 2. Yet, we ex-
plicitly avoid making conclusions on the poverty in a substance matter sense, considering this ap-
plication as a first illustration of technical aspects of the elaborated cautious estimators only. Here,
additionally to the case without assuming anything about the missingness process, we studied the
weak assumption that rich respondents tend to refuse the income question more often compared to
poor ones, i.e. R ∈ [0, 1] (assum. 1), as well as a cautious version of MAR, here incorporating
R ∈ [0.3, 1.7] (assum. 2). Although subgroup specific assumptions were feasible in the context of
the LGREG-synthetic estimator, we here impose the same missingness assumption on all subgroups.

By applying Equation (7) and (8) to the (weighted) marginal sample data,16 we can calculate
the cautious synthetic estimator and the LGREG-synthetic estimator for the different situations of

15. From Equation (6) we could conclude that either all or no virtual values yij , j ∈ si∗,mis, have to be equal to 1 to
obtain π̂i∗,LGREG and π̂i∗,LGREG in the case of no assumptions. If partial assumptions are included, this applies in
the sense that this does not have to be satisfied for all, but for the minimum/maximum number of virtual values that
is consistent with the partial missing assumption ending up with π̂[g],R

i∗ or π̂
[g],R
i∗ .

16. In the GGSS, respondents from East-Germany are oversampled, such that weights are required in the analysis (0.564
(East Germany), 1.205 (West Germany), cf. Koch et al. (1994))
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no assum. assum. 1 assum. 2

[π̂SY N , π̂SY N ] [0.167, 0.300] [0.167, 0.193] [0.175, 0.208]

Table 1: Bounds for the synthetic estimator under various missingness assumptions

no assum. assum. 1 assum. 2

Federal state π̂i,LGREG π̂i,LGREG π̂i,LGREG π̂i,LGREG π̂i,LGREG π̂i,LGREG

BW 0.129 0.366 0.129 0.210 0.141 0.224
BY 0.088 0.233 0.088 0.133 0.091 0.141
HB 0.077 0.405 0.115 0.193 0.125 0.206
HH 0.009 0.196 0.014 0.075 0.019 0.083

Table 2: Bounds for the LGREG-synthetic estimator under various missingness assumptions

partial knowledge (cf. Table 1 and Table 2, respectively). The practically weak assumptions al-
ready induce a remarkable refinement of the intervals obtained under no assumptions.17. Due to the
separate likelihood optimization that in some cases led us to the pooled version, including different
bounds for i∗ and i 6= i∗, the lower bound from “no assum.” and “assum. 1” do not necessarily
have to coincide here. This gives rise to an overall likelihood approach that admittedly refrains from
“borrowing strength” within the missingness process, but implicitely accounts for interrelations.

6. First Studies Towards a Cautious Model-based Estimator under Nonresponse

Until now, we focused on models dealing with the small sample size by incorporating observa-
tions from other areas on the one hand and area-specific auxiliary information on the other hand.
To account for between-area variation beyond that explained by auxiliary variables, model-based
estimators relying on mixed models establish a basis. Model-based estimators incorporate data
from different areas through a model that depends on the level of aggregation of the auxiliary
variables. The well known Fay-Herriot (FH) area-level model, introduced by Fay III and Herriot
(1979) for linear regression, has been further developed for categorical regression by MacGibbon
and Tomberlin (1989). By relying on the logistic mixed model, they include area specific random
effects ui

iid∼ N(0, σ2u) into the linear predictor of a standard logistic regression model. Based on
this model, we can make predictions contributing to the final model-based estimators.

Since we aim at applying the cautious likelihood approach, we consider the likelihood in the
mixed model context first. Generally, the marginal likelihood of the i-th area is received by aver-
aging over the probability distribution of the random effects ui (cf., e.g., Booth and Hobert, 1999).
Since thereby almost always intractable integrals are involved, numerical methods are required for
the maximization. Consequently, the cautious likelihood approach is stretched to the limits of its
direct applicability if model-based estimators are of interest.

Nevertheless, we proceed with some studies to get a first impression about the predictions ob-
tained from a mixed model if refrained from strong assumptions on the missingness process. Since

17. We use the official abbreviations of the federal states, here BW and BY for Baden-Wuerttemberg and Bavaria, and
HB and HH for the federal city states (hanse town (H)) Bremen and Hamburg.
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the random effects ui and the regression coefficients are estimated simultaneously with the aid of
approximation methods, we can no longer establish a direct connection between the subgroup spe-
cific probabilities and the regression coefficients, as we did in Section 4. Hence, we here start with
a first sensitivity analysis, estimating β0, . . . , βk and ui under different types of missingness mech-
anisms. Since for a part of our research question, i.e. getting a first impression about the bounds
of the estimated random effects, an area-specific missingness behaviour is of high interest, we sim-
plify the databases classifying the federal states into four regions (“northeast”,. . . , “southwest”),
thus substantially reducing the scenarios that have to be considered within an corresponding miss-
ing type. Moreover restricting to the covariate “Abitur” (yes/no), we investigate the impact of two
different missing types over a grid of values: The first missing type requires independence of the
covariates, whereas the second type depends on the covariate and the area.

While the estimated random effects tend to show no systematic reaction to different missing-
ness scenarios, the regression estimates18 attain the bounds in the extreme missingness situations.
Consequently, by focusing on the scenarios that either regard all or no missing values as yij = 1,
we apparently can at least give an estimator based on the best-worst-case estimation of the regres-
sion coefficients, here denoted by π̂β ∈ [π̂β, π̂

β
]. For this purpose, we use β̂0, . . . , β̂k, ûi obtained

for the extreme cases to determine the individual prediction bounds. Again, in our categorical case
it turns out to be sufficient to calculate the bounds of π̂[g],β , now not only split by the values of
the covariate, but also the region. Using π̂[g],β and the area-specific totals X [g]

i , the bounds of a
model-based estimator, relying on the best-worst estimation of β, can be calculated.

7. Conclusion

By exploiting the cautious likelihood approach (cf. Plass et al., 2015), we considered an opportunity
to adapt the LGREG-synthetic estimator for nonresponse, without the need of strict and often prac-
tically untenable assumptions about the missingness process. The included observation model is a
powerful medium to make use of frequently available, partial assumptions about the missingness,
where results from the application example corroborated that very weak assumptions may already
suffice to substantially refine the results obtained without the inclusion of any missingness assump-
tions. Further research should be devoted to a more extensive consideration of the here proposed
method characterized by separate likelihood optimizations. Although some first investigations of
cautious model-based estimators were accomplished, due to the technically different situation, a
more detailed study should be part of future research. In addition, comparing the magnitude of
both principally differing sources of uncertainty induced by the problems in focus (i.e. sampling
uncertainty as well as lack of knowledge associated to SAE and nonresponse, respectively) is no-
tably worthwhile. For this purpose, uncertainty regions (cf. Vansteelandt et al., 2006), covering both
types of uncertainties, should be investigated.
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Abstract
Dempster-Shafer (DS) belief theory is a powerful general framework for dealing with a wider va-
riety of uncertainties in data. As in Bayesian probability theory, the conditional operation plays
a critical role in DS theoretic strategies for evidence updating and fusion. A major limitation as-
sociated with the application of DS theoretic techniques for reasoning under uncertainty is the
absence of a feasible computational framework to overcome the prohibitive computational burden
this conditional operation entails. This paper addresses this critical challenge via a novel general-
ized conditional computational model — DS-Conditional-One — which allows the conditional to
be computed in significantly less computational and space complexity. This computational model
also provides valuable insight into the DS theoretic conditional itself and can be utilized as a tool for
visualizing the conditional computation. We provide a thorough analysis and experimental valida-
tion of the utility, efficiency, and implementation of the proposed data structures and algorithms for
carrying out both the Dempster’s conditional and Fagin-Halpern conditional, the two most widely
utilized DS theoretic conditional strategies.
Keywords: Dempster-Shafer belief theory; Dempster’s conditional; Fagin-Halpern conditional;
data structures; algorithms; computational complexity.

1. Introduction

The Dempster-Shafer (DS) belief theory (Dempster, 1967, 1968; Shafer, 1976), also referred to as
evidence theory, is a powerful and convenient framework that can handle a wide variety of data im-
perfections (Shafer, 1990; Smets, 1999). With the greater expressiveness and flexibility in evidential
reasoning and decision-making that they offer, DS theoretic (DST) methods are finding increased
utilization in numerous application scenarios and have generated an active research field (Yager and
Liu, 2008; Denœux, 2016).

Motivation. As in the Bayesian methods, the conditional operation plays a pivotal role in DST
strategies for evidence updating and fusion, and in general, for reasoning under uncertainty. Among
these various notions that have been proposed over the years, perhaps the most widely used DST
conditional notion is the Dempster’s conditional (Shafer, 1976; Klawonn and Smets, 1992; Nguyen
and Smets, 1993; Xu and Smets, 1996; Smets, 2002). On the other hand, the Fagin-Halpern (FH)
conditional can be considered as the most natural generalization of the probabilistic conditional
notion because of its close connection with the inner and outer conditional probability measures
(Fagin and Halpern, 1990). The recent work on the DST conditional approach (Premaratne et al.,
2009; Wickramarathne et al., 2011) is based on this FH conditional.

Challenges. In spite of the advantages they offer, DST implementations in current use are re-
stricted to smaller frames of discernment (FoDs) because of the prohibitive computational burden
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that larger FoDs impose on existing methods. While this difficulty has been addressed via several
approximation methods (Yager and Liu, 2008; Denœux, 2016), such approaches usually require
one to compromise the quality of the generated results for computational efficiency, and some ap-
proaches cannot be extended for computing the DST conditionals. Exact (or sufficiently precise)
computation of conditionals is of paramount importance because the quality of results generated
from DST strategies depend directly on the precision of the conditional. A review of current imple-
mentations (Yager and Liu, 2008; Augustin et al., 2014; Denœux, 2016; SIPTA, 2017) confirms that
work is needed to overcome these computational limitations associated with the DST conditionals.
A fast Möbius transform (FMT), which is analogous to the fast Fourier transform (FFT), has been
developed and employed for efficient precise computation of DST notions (Thoma, 1989; Kennes,
1992). Polpitiya et al. (2016) proposes several data structures which enable highly efficient exact
computation of the DST notions of belief and plausibility, but it does not address the computation
of DST conditionals.

As for the Dempster’s conditional, perhaps the most thorough discussion for carrying out its
precise computation appears in Klawonn and Smets (1992) and Smets (2002). It provides a matrix
calculus based algorithm to compute Dempster’s conditional masses. However, this approach is
feasible only on smaller frames because of the matrix operations it requires. It is not applicable for
FH conditional computation. As for the FH conditional, the work in Wickramarathne et al. (2013)
provides a method to identify the propositions that retain non-zero support after FH conditioning,
but it does not address conditional computation of these propositions.

Contributions. The main contribution of this paper is a completely new generalized model
for computing DST conditionals. This conditional computational model — DS-Conditional-One
— offers significantly greater flexibility and computational capability for implementation of DST
conditional strategies. We provide the DS-Conditional-One computational model along with its
complexity analysis, experimental validation of the utility, efficiency, implementation of the asso-
ciated data structures and algorithms. This model can be employed to compute both the FH and
Dempster’s conditional beliefs of an arbitrary proposition. This is exactly the challenge that Shafer
refers to in Shafer (1990, p.348), viz., “It remains to be seen how useful the fast Möbius trans-
form will be in practice. It is clear, however, that it is not enough to make arbitrary belief function
computations feasible.”

By reducing the number of operations being executed, the proposed approach takes significantly
less computational and space complexity when compared with other approaches for conditional
computation. As an example, our experiment results demonstrate that the average computational
time taken to compute the conditional belief of an arbitrary proposition by the proposed approach is
less than 2 (µs) for a FoD of size 10 and 0.7 (ms) for a FoD of size 20 (∼1 million focal elements).
This new model can also be utilized as a visualization tool for conditional computations and in an-
alyzing characteristics of conditioning and updating operations. All software routines are available
at ProFuSELab (2017). We believe that this computational model and the associated data structures
constitute a significant step toward filling the void between what the DST framework can offer for
reasoning under uncertainty and the practical implementation of DST strategies.

This paper is organized as follows: Section 2 provides a review of essential DST notions and
computational tools. Our DS-Conditional-One computational model and our algorithms for efficient
computation of DST conditionals appear next in Sections 3 and 4, respectively. The experimental
results are provided next in Section 5. Finally, Section 6 offers some concluding remarks.
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2. Preliminaries: DS Belief Theory

2.1 DST Basic Notions

In DS theory, the frame of discernment (FoD) refers to the set of all possible mutually exclusive and
exhaustive propositions (Shafer, 1976). We consider the case where the FoD is finite and we denote
it as Θ = {θ0, θ1, . . . , θn−1}. Proposition {θi}, which is referred to as a singleton, represents the
lowest level of discernible information. The power set of Θ, denoted by 2Θ, form all the propositions
of interest in DS theory. A proposition that is not a singleton is referred to as a composite. The set
A \B denotes all singletons in A ⊆ Θ that are not included in B ⊆ Θ, i.e., A \B = {θi ∈ Θ | θi ∈
A, θi /∈ B}. We use A to denote Θ \A and |A| to denote the cardinality of A. Note that |Θ| = n.

In DS theory, the ‘support’ that is being strictly allocated to a proposition is captured via

Definition 1 (Basic Belief Assignment (BBA) or Masses) The mapping m : 2Θ 7→ [0, 1] is said
to be a basic belief assignment (BBA) or a mass assignment if

m(∅) = 0 and
∑

A⊆Θ

m(A) = 1.

The mass of a composite proposition is free to move into its individual singletons, which allows
one to model the notion of ignorance. Complete ignorance can be modeled via the vacuous BBA,
viz., m(Θ) = 1 and m(A) = 0, ∀A 6= Θ. Propositions that possess nonzero mass are referred to as
focal elements; the set of all focal elements in a FoD is referred to as its core F, i.e., F = {A ⊆ Θ |
m(A) > 0}. Note that |F| is the number of focal elements. E = {Θ,F,m(·)} is referred to as the
body of evidence (BoE).

Definition 2 (Belief) Given a BoE E = {Θ,F,m(·)}, the belief and plausibility functions are the
mappings Bl : 2Θ 7→ [0, 1] and Pl : 2Θ 7→ [0, 1], respectively, where

Bl(A) =
∑

B⊆A
m(B); Pl(A) =

∑

B⊆Θ
B∩A6=∅

m(B).

The belief assigned to a proposition takes into account the support for all of its subsets. It
is easy to see that, Pl(A) = 1 − Bl(A) ≥ Bl(A), ∀A ⊆ Θ. So, the plausibility measures the
extent to which a proposition is plausible, i.e., the amount of belief not strictly supporting the
complement of the proposition. Propositions that possess nonzero belief are denoted by F̂, i.e.,
F̂ = {A ⊆ Θ | Bl(A) > 0}.

Given a valid belief function Bl : 2Θ 7→ [0, 1], one may generate the corresponding BBA
m : 2Θ 7→ [0, 1] via the Möbius transform (Shafer, 1976)

m(A) =
∑

B⊆A
(−1)|A\B|Bl(B), ∀A ⊆ Θ. (1)

The following notation will be useful for our work:

S(A;B) =
∑

∅6=C⊆A;
∅6=D⊆B

m(C ∪D). (2)

So, S(A;B) denotes the sum of all masses of propositions that ‘straddle’ both A ⊆ Θ and B ⊆ Θ.
The following result is of critical importance for our work.
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Proposition 3 Consider the BoE E = {Θ,F,m(·)} and A ⊆ Θ. For B ⊆ Θ, consider the map-
pings ΓA : 2Θ 7→ [0, 1] and ΠA : 2Θ 7→ [0, 1], where

ΓA(B) =
∑

∅6=X⊆A
m((A ∩B) ∪X); ΠA(B) =

∑

Y⊆(A∩B)

ΓA(Y ).

Then the following are true:
(i) ΓA(A ∩B) = ΓA(B) and ΠA(A ∩B) = ΠA(B). So, w.l.o.g., we assume that B ⊆ A.
(ii) ΓA(∅) = Bl(A).

Proof These follow by direct substitution.

2.2 Fagin-Halpern (FH) Conditional

FH conditional can be considered the most natural generalization of the probabilistic conditional
notion because of its close connection with the inner and outer conditional probability measures in
probability theory (Fagin and Halpern, 1990).

Definition 4 (Fagin-Halpern (FH) Conditional) (Fagin and Halpern, 1990) Consider the BoE E =
{Θ,F,m(·)} and A ∈ F̂. The conditional belief Bl(B|A) of B given the conditioning event A is

Bl(B|A) =
Bl(A ∩B)

Bl(A ∩B) + Pl(A ∩B)
.

The conditional plausibility Pl(B|A) of B given A is computed as Pl(B|A) = 1 − Bl(B|A).
Of course, once the conditional beliefs of all the propositions are computed, one may obtain the
corresponding conditional BBA via a Möbius transform of the type in (1).

Suppose the BoE {Θ,F,m(·)} is being conditioned w.r.t. the proposition A ∈ F̂. The propo-
sitions that retain a nonzero mass after conditioning are referred to as the conditional focal ele-
ments; the set of all such conditional focal elements is referred to as the conditional core FA, i.e.,
FA = {B ⊆ A ∈ F̂ | m(B|A) > 0}.

In our work, we will exploit several previous results related to the conditional core (Kulasekere
et al., 2004; Wickramarathne et al., 2013). Of particular importance is the following result:

Lemma 5 (Kulasekere et al., 2004) Consider the BoE E = {Θ,F,m(·)} and A ∈ F̂. Then,
(i) m(B|A) = 0 whenever A ∩B 6= ∅, and
(ii) Bl(B|A) can be expressed as

Bl(B|A) =
Bl(A ∩B)

Pl(A)− S(A;A ∩B)
, B ⊆ A.

Note that, (i) states that FH conditioning annuls those propositions that ‘straddle’ the condition-
ing proposition A and its complement A. So, w.l.o.g., for FH conditioning, one may consider only
those propositions B ⊆ A.

For our work, we will need the following alternate expression for the FH conditional:

Proposition 6 Consider the BoE E = {Θ,F,m(·)} and A ∈ F̂. Then, we may express Bl(B|A) as

Bl(B|A) =
Bl(A ∩B)

1−Bl(A)− S(A;A ∩B)
, B ⊆ Θ.

Proof This follows directly from Lemma 5(ii) by using the fact that Bl(A) = 1− Pl(A).
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2.3 Dempster’s Conditional

Dempster’s conditional is perhaps the most widely employed DST conditional notion.

Definition 7 (Dempster’s Conditional) (Shafer, 1976) Consider the BoE E = {Θ,F,m(·)} and
A ⊆ Θ s.t. Bl(A) 6= 1, or equivalently, Pl(A) 6= 0. The conditional belief Bl(B‖A) of B given
the conditioning event A is

Bl(B‖A) =
Bl(A ∪B)−Bl(A)

1−Bl(A)
.

One may compute the corresponding conditional mass m(B‖A) and Pl(B‖A) from Bl(B‖A).
Similarly to FH conditioning, Dempster’s conditioning also annuls masses of all those propositions
that ‘straddle’ the conditioning proposition A and its complement A. So, w.l.o.g., for Dempster’s
conditioning, one may consider only those propositions B ⊆ A.

For our work, we will need the following alternate expression for the Dempster’s conditional:

Proposition 8 Consider the BoE E = {Θ,F,m(·)} and A ⊆ Θ s.t. Bl(A) 6= 1. Then, Bl(B‖A)
can be expressed as

Bl(B‖A) =
Bl(A ∩B) + S(A;A ∩B)

1−Bl(A)
, B ⊆ Θ.

Proof This follows directly from Definition 7 by using the fact thatBl(A∪B) = Bl(A∪(A∩B)) =
Bl(A) +Bl(A ∩B) + S(A;A ∩B).

Propositions 6 and 8 highlight an important fact: the three quantities Bl(A), Bl(A ∩ B), and
S(A;A∩B) fully determine both FH and Dempster’s conditionalsBl(B|A) andBl(B‖A), respec-
tively. It is this fact that we exploit for computing the conditionals of an arbitrary proposition.

2.4 The REGAP Property

The work in Polpitiya et al. (2016) proposes new data structures — DS-Vector, DS-Matrix and DS-
Tree — and computationally efficient algorithms for computing the basic DST operations of belief
and plausibility. For this purpose, the authors utilize what is referred to as the REGAP (REcursive
Generation of and Access to Propositions) property.

To be more specific, consider the FoD Θ = {θ0, θ1, . . . , θn−1}. Suppose we desire to determine
the belief potential Bl(A) associated with A = {θk0 , θk1 , . . . , θk|A|−1

} ⊆ Θ. Then, REGAP (A)

recursively generates all the 2|A| − 1 propositions whose masses are required to compute Bl(A),
viz., all subsets ofA (includingA itself). It is implemented in the following manner: Start with {∅}.
First insert the singleton {θk0} ∈ A. Only one proposition is associated with this singleton, viz.,
{∅}∪ {θk0} = {θk0} itself. Next insert another singleton {θk1} ∈ A. The new propositions that are
associated with this singleton are {∅} ∪ {θk1} = {θk1} and {θk0} ∪ {θk1} = {θk0 , θk1}. Inserting
the next singleton {θk2} ∈ A brings the new propositions {∅} ∪ {θk2} = {θk2}, {θk0} ∪ {θk2} =
{θk0 , θk2}, {θk1} ∪ {θk2} = {θk1 , θk2}, and {θk0 , θk1} ∪ {θk2} = {θk0 , θk1 , θk2}. In essence, when
a new singleton is added, new propositions associated with it can be recursively generated by adding
the new singleton to each existing proposition. Of course, all propositions of interest within the FoD
Θ can be generated by REGAP (Θ), i.e., when A = Θ.
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The propositions recursively generated via the REGAP property can be represented as a vector,
DS-Vector, a matrix, DS-Matrix, or a tree, DS-Tree, and utilized to capture a BoE. We will utilize
this REGAP property and the DS-Matrix structure in this work too.

3. DS-Conditional-One Computational Model

DS-Conditional-One is a computational model that enables one to compute the FH and Demp-
ster’s conditional beliefs of an arbitrary proposition. DS-Conditional-One model facilitates the
representation, access, and efficient computation of the quantities that are needed to compute these
conditionals (see Propositions 6 and 8).

Henceforth, we will denote the conditioning proposition A, its complement A, and the condi-
tioned proposition B as {a0, a1, . . . , a|A|−1}, {α0, α1, . . . , α|A|−1}, and {b0, b1, . . . , b|B|−1}, re-
spectively. Here, Θ = {θ0, θ1, . . . , θn−1} denotes the FoD and ai, αj , bk ∈ Θ. When dealing with
FH and Dempster’s conditioning, it is implicitly assumed that A ∈ F̂ and Bl(A) 6= 1, respectively.

Furthermore, we will represent singletons of the conditioning event A = {a0, a1, . . . , a|A|−1}
as column singletons and singletons of the complement of conditioning event A = {α0, α1, . . . ,
α|A|−1} as row singletons in a DS-Matrix. See Fig. 1.

∅ a0 a1 a0a1 a2 a0a2 · · · a0. . .
. . .a|A|−1

α0 a0α0 a1α0 a0a1α0 · · · · · · · · · · · ·

α1 a0α1 a1α1 a0a1α1 · · · · · · · · · · · ·

α0α1 a0α0α1 a1α0α1 a0a1α0α1 · · · · · · · · · · · ·

α2 · · · · · · · · · · · · · · · · · · · · ·

...
...

...
...

...
...

...
...

α0. . .
. . .α|A|−1

· · · · · · · · · · · · · · · · · · · · ·

ΓA(∅) ΓA(a0) ΓA(a2) ΓA(a0a2) · · · ΓA(α0. . .
. . .α|A|−1)

columns(j)

row
(i)

REGAP (A)×REGAP (A ∩B)→ S(A;A ∩B)

REGAP (A ∩B)→ Bl(A ∩B)

REGAP (A)

REGAP (A)→ Bl(A)

Figure 1: DS-Conditional-One model. Quantities related to Bl(B|A) computation when A =
{a0, a1, . . . , a|A|−1} and A = {α0, α1, . . . , α|A|−1}, and B = {a0, a2} ⊆ A.
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The proposed DS-Conditional-One computational model allows direct identification of REGA
P (A),REGAP (A),REGAP (A∩B), (REGAP (A)×REGAP (A∩B)), (REGAP (A)×REG
AP (A)), and ΓA(C), ∀C ⊆ B. Among these, the following three quantities are required to com-
pute both FH and Dempster’s conditional beliefs (see Propositions 6 and 8): (a) REGAP (A ∩B):
Use this to compute Bl(A ∩ B) (see Algorithm 1). (b) REGAP (A): Use this to compute Bl(A)
(see Algorithm 2). (c) (REGAP (A)×REGAP (A ∩ B)), the Cartesian product of REGAP (A)
and REGAP (A ∩B): Use this to compute S(A;A ∩B) (see Algorithm 3).

Fig. 1 depicts these quantities for A = {a0, a1, . . . , a|A|−1} and B = {a0, a2} ⊆ A
In the algorithms to follow, we use a lookup table named power to enhance the computational

efficiency. It contains 2 to the power of singleton indexes in increasing order and it is implemented
using a dynamic array that replaces run-time computation of 2 to the power values with a simpler
array indexing operation. power[i], the i-th entry of the power table, refers to 2i. index[] is a
dynamic array which keeps the indexes of subset propositions of A ∩B.

Algorithm 1 Compute Bl(A ∩B) (with complexity O(2|A∩B|))
1: procedure BLB(Singletons A, Singletons B, DS-Matrix BBA)
2: belief ← 0
3: count← 0
4: for each ai in A ∩B do
5: index[count]← power[i]
6: temp← count
7: count← count+ 1
8: for j ← 0, temp− 1 do
9: index[count]← index[j] + power[i]

10: count← count+ 1
11: end for
12: end for
13: for i← 0, power[|A ∩B|]− 2 do
14: belief ← belief +BBA[0][index[i]]
15: end for
16: Return belief
17: end procedure

Time Complexity of Algorithm 1. This computesBl(A∩B) inO(2|A∩B|) complexity. Line #1:
The algorithm inputs are the conditioning event A, conditioned event B, and the DS-Matrix BBA.
Lines #4-12: The outer loop is executed |A ∩ B| times. Lines #8-11: The inner loop is executed
temp− 1 times. It can be shown that for ` = 0, 1, 2, . . . , |A ∩ B| − 1, temp = (2` − 1). Lines #5
and #9 are constant time operations. Thus, the computational complexity of lines #4-12 is given by

|A∩B|−1∑

`=0

(1 + temp) =

|A∩B|−1∑

`=0

2` = 2|A∩B| − 1 = O(2|A∩B|). (3)

Lines #13-15: The required number of iterations is 2|A∩B| − 1 and the complexity of this segment
is O(2|A∩B|). Line #16: The algorithm output is Bl(A ∩B).
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Algorithm 2 Compute Bl(A) (with complexity O(2|A|))

1: procedure BLCOMP(Singletons A, DS-Matrix BBA)
2: belief ← 0
3: for i← 1, power[|A|]− 1 do
4: belief ← belief +BBA[i][0]
5: end for
6: Return belief
7: end procedure

Time Complexity of Algorithm 2. This computes Bl(A) in O(2|A|) complexity. Line #1: The
algorithm inputs are the complement of conditioning eventA and the DS-MatrixBBA. Lines #3-5:
The required number of iterations is 2|A| − 1 and the computational complexity of this segment is
O(2|A|). Line #6: The algorithm output is the belief potential Bl(A).

Algorithm 3 Compute S(A;A ∩B) (with complexity O(2|A|+|A∩B|))

1: procedure STRAD(Singletons A, Singletons A, Singletons B, DS-Matrix BBA)
2: belief ← 0
3: count← 0
4: for each ai in A ∩B do
5: index[count]← power[i]
6: temp← count
7: count← count+ 1
8: for j ← 0, temp− 1 do
9: index[count]← index[j] + power[i]

10: count← count+ 1
11: end for
12: end for
13: for i← 1, power[|A|]− 1 do
14: for j ← 0, power[|A ∩B|]− 2 do
15: belief ← belief +BBA[i][index[j]]
16: end for
17: end for
18: Return belief
19: end procedure

Time Complexity of Algorithm 3. This computes S(A;A ∩B) in O(2|A|+|A∩B|) complexity.
Line #1: The algorithm inputs are the complement of conditioning event A, the conditioning and
conditioned propositions A and B, respectively, and the DS-Matrix BBA. Lines #4-12: Subset
propositions of A ∩ B are generated via REGAP (A ∩ B). Computational complexity of this
segment is O(2|A∩B|), which can be obtained from equation 3. Lines #13-17: The outer loop is
executed (2|A|−1) times. Lines #14-16: The inner loop is executed (2|A∩B|−1) times. Complexity
of an access operation is O(1). Thus, the computational complexity of lines #13-17 is (2|A| −
1) (2|A∩B| − 1) = O(2|A|+|A∩B|). Line #18: The algorithm output is S(A;A ∩B).
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Space Complexity of Algorithms 1, 2, and 3. The matrix in Fig. 1 is of size 2|A|×2|A|. Hence,
the space complexity associated with each algorithm above is O(2|Θ|).

Note that, in the DS-Conditional-One model, REGAP (A) captures all propositions that may
contribute to the conditional core FA, and REGAP (A) and (REGAP (A)×REGAP (A)), the
Cartesian product of REGAP (A) and REGAP (A), capture all propositions whose masses are
annulled (as identified by Lemma 5 (Kulasekere et al., 2004)). See Fig 1.

4. Efficient Computation of DST Conditionals

4.1 Computation of the FH Conditional Belief of an Arbitrary Proposition

To compute the FH conditional belief of an arbitrary proposition B, one can now use the expression
in Proposition 6, where Bl(A ∩B), Bl(A) and S(A;A ∩B) are obtained via Algorithms 1, 2, and
3, respectively. Thus the computational complexity of this computation remains as O(2|A|+|A∩B|).

As an example, to compute Bl(B|A), where B = {a0, a2}, we may proceed as follows:
(a) REGAP (A ∩ B) captures the propositions that contribute to Bl(A ∩ B). Use Algorithm 1
to compute this. (b) REGAP (A) captures the propositions that contribute to Bl(A). Use Al-
gorithm 2 to compute this. Note that Bl(A) is represented by ΓA(∅) in Fig. 1. (c) The Cartesian
product (REGAP (A)×REGAP (A∩B)) captures the propositions that contribute to S(A;A∩B).
Use Algorithm 3 to compute this. S(A;A ∩B) = ΓA({a0}) + ΓA({a2}) + ΓA({a0, a2}).

Then, Bl(B|A) for B = {a0, a2} is computed as

Bl(B|A) =
Bl(A ∩B)

1− ΓA({∅})− ΓA({a0})− ΓA({a2})− ΓA({a0, a2})
. (4)

4.2 Computation of the Dempster’s Conditional Belief of an Arbitrary Proposition

To compute the Dempster’s conditional belief of an arbitrary proposition B, one can use the expres-
sion in Proposition 8, where Bl(A∩B), Bl(A) and S(A;A∩B) are obtained via Algorithms 1, 2,
and 3, respectively. Thus the computational complexity is O(2|A|+|A∩B|).

Consider the same example as before, viz., B = {a0, a2}. Then, we may compute Bl(B‖A) as

Bl(B‖A) =
Bl(A ∩B) + ΓA({a0}) + ΓA({a2}) + ΓA({a0, a2})

1− ΓA({∅}) . (5)

Computation of the Dempster’s Conditional Mass Using Specialization Matrix. It is note-
worthy that Klawonn and Smets (1992) and Smets (2002) have proposed a matrix calculus based
algorithm for direct computation of Dempster’s conditional masses. It employs a 2|Θ| × 2|Θ|-sized
stochastic matrix SA (with each entry ‘0’ or ‘1’) referred to as the conditioning specialization ma-
trix and a 2|Θ|×1-sized vectorm(·) containing the BoE’s focal elements. Thenm(·‖A) = SA ·m(·)
yields Dempster’s conditioning masses without normalization. The computational and space com-
plexity of the specialization matrix multiplication is O(2|Θ| × 2|Θ|), a prohibitive burden even for
modest FoD sizes.

5. Experiments

Recall that Algorithms 1, 2, and 3 yield all the parameters (viz.,Bl(A∩B),Bl(A), and S(A;A∩B))
required for both FH and Dempster’s conditional belief computations. Once these quantities are
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computed, computational times for both conditional belief computations are similar because they
require constant time (see Propositions 6 and 8).

For a given FoD size, we selected a random set of focal elements, with randomly selected mass
values, and conducted 10,000 conditional computations for randomly chosen propositions A and
B ⊆ A. Table 1 lists the average computational times taken by the DS-Conditional-One model and
the specialization matrix based method in Klawonn and Smets (1992) and Smets (2002).

With the DS-Conditional-One model (which applies to both FH and Dempster’s conditionals),
we use a ‘brute force’ approach to compute all the conditional beliefs (i.e., compute the conditional
belief of every proposition); we then use the FMT to get the conditional masses for all the propo-
sitions (Shafer, 1976; Fagin and Halpern, 1990). The specialization matrix based method (which
applies to the Dempster’s conditional only) yields the conditional masses of all propositions, but
the time taken already far exceeds what the DS-Conditional-One model takes (even including the
FMT). So we did not compute the conditional beliefs with the specialization matrix based method
(which would have required the FMT).

All conditional computations for an arbitrary proposition were done on an iMac running Mac
OS X 10.12.3 (with 2.9GHz Intel Core i5 processor and 8GB of 1600MHz DDR3 RAM). Condi-
tional computations for all propositions were done on the same iMac for smaller FoDs and on a
supercomputer (http://ccs.miami.edu/pegasus) for larger FoDs (underlined in Table 1).
The complete C++ library is available at ProFuSELab (2017).

Method→ DS-Conditional-One Model Specialization Matrix
Conditional→ FH or Dempster’s Dempster’s

Bl(B|A) Bl(B|A) m(B|A)
FoD or Bl(B‖A) or Bl(B‖A) or m(B‖A) m(B‖A)

|Θ| Max. |F| (Arbitrary) (All) (All) (All)
2 3 0.0005 0.0011 0.0016 0.0011
4 15 0.0005 0.0038 0.0050 0.0063
6 63 0.0006 0.0128 0.0170 0.0696
8 255 0.0009 0.0517 0.0679 1.0154

10 1,023 0.0017 0.2428 0.3090 93.1590
12 4,095 0.0040 1.3528 1.6186 1485.6300
14 16,383 0.0120 18.4885 22.4995 25051.8200
16 65,535 0.0405 146.1480 151.9600 ***
18 262,143 0.1516 1,087.2800 1,113.5300 ***
20 1,048,575 0.6011 8,485.4500 8,862.9800 ***

Table 1: DS-Conditional-One model versus specialization matrix based method. Average compu-
tational times (ms). (*** denotes computations not completed within a feasible time).

The significant speed advantage offered by the proposed computational model over the special-
ization matrix based approach is evident from Table 1. For larger FoDs, the computational burden
associated with the specialization matrix based approach becomes prohibitive because of its space
complexity of O(2|Θ| × 2|Θ|). For example, an FoD of size 20 would need 128 (= 220 × 220/8)
GB of memory to represent the specialization matrix, if each matrix entry occupies only 1 bit.

274



EFFICIENT COMPUTATION OF BELIEF THEORETIC CONDITIONALS

With increasing FoD size, the computational time requirement of the DS-Conditional-One model is
significantly less compared to what the specialization matrix based approach requires.

6. Concluding Remarks

This paper provides a general framework for computation of DST conditionals. The DS-Conditional-
One model that we propose can also serve as a tool for visualization and further analysis of the
conditional computation process. We believe that the algorithms we have developed constitute a
significant step forward in harnessing the strengths of DST methods in practical applications.

The efficiency of these algorithms is mainly because of the significantly reduced number of
operations that are executed. Computational complexity associated with conditional belief com-
putation of an arbitrary proposition is O(2|A|+|A∩B|). This is a significant improvement over the
O(2|Θ| × 2|Θ|) complexity associated with the specialization matrix based approach. The DS-
Conditional-One model also provides a significant advantage in terms of memory usage: it requires
a O(2|Θ|) space complexity versus O(2|Θ| × 2|Θ|) for the specialization matrix based approach.

Another advantage of the proposed approach is that it can be utilized for either the FH condi-
tional or Dempster’s conditional belief computations. An outcome of this research is a conditional
computation library (in C++) which is available at ProFuSELab (2017). We expect that this library
will be useful for practical application of DST methods.

Our current research work is focused on conditional computations on potentially dynamic FoDs
(where the singletons may have to be removed or new singletons may have to be appended as oper-
ations are carried out). This would be of immense value for enhanced resource utilization. It also
appears possible to further enhance the algorithms that we have developed via parallel computing
optimizations because of the underlying matrix structure.
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Abstract
We present an interface for eliciting sets of acceptable gambles on a three-outcome possibility
space, discuss an experiment conducted for testing this interface, and present the results of this
experiment. Sets of acceptable gambles form a representation for imprecise probabilities that is close
to human behavior and eliciting them directly may improve the quality of the resulting uncertainty
model. The experiment consisted of a betting competition for the 2014 FIFA World Cup: For each
match bets were assigned based on the sets of acceptable gambles elicited from the participants. A
new algorithm was designed for generating fair bets for assignment. Participant feedback indicated
that improving the usability and transparency of the interface would ease the elicitation procedure.
The experiment’s results underlined that imprecision is an essential aspect of real-life uncertainty
modeling.
Keywords: elicitation; gamble; acceptability; desirability; user interface; experiment; fair bet.

1. Introduction

In practical applications of uncertainty models, e.g., in expert systems, we need concrete values
for their parameters. For example, the conditional probability tables of a Bayesian network need
to be filled in. Such values can be obtained by learning them from data or by eliciting them from
domain experts, or a combination thereof (Druzdzel and van der Gaag, 2000). This paper introduces a
procedure for eliciting quantities describing the uncertainty about some phenomenon or experiment.

Typically, the uncertainty is modeled in terms of probabilities, such as in a Bayesian network.
Elicitation of probabilities is commonplace and well-studied (Spetzler and Staël von Holstein, 1975;
Cooke, 1991; Renooij, 2001; O’Hagan et al., 2006). Apart from other issues such as various biases,
there is agreement that eliciting probabilities directly and as precise numbers is often problematic
due to a lack of familiarity with probability theory and the absence of a concrete context. Therefore,
(i) targeted graphical interfaces such as scales and lottery wheels are designed, (ii) verbal descriptions
of probability values are used, or (iii) the elicitation problem is reformulated as a betting problem.
Another recurring idea is to use qualitative information such as comparative probability (see, e.g.,
Druzdzel and van der Gaag, 1995).

Uncertainty can also be modeled in alternative ways. One approach is to use generalizations of
probabilities, such as imprecise-probabilistic models (Walley, 1991; Augustin et al., 2014). Given that
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the theory of imprecise probabilities encompasses probability intervals and comparative probability,
imprecise-probabilistic techniques are better suited to deal with the results of an elicitation procedure,
as even some of the most ardent ‘precise’ probabilists admit (O’Hagan and Oakley, 2004, Section 3.3).

In this paper, assuming the elicitation problem can be formulated in betting terms, we discuss
an interface to elicit coherent sets of acceptable gambles, also called desirable gambles (Walley
1991, Appendix F; Quaeghebeur 2014). Roughly speaking, the gambles (random variables) in such
a set are those for which the elicitee’s expectation is at least zero. Our interface can then, e.g., be
used for eliciting the parameters of a credal network that is defined in terms of sets of acceptable
gambles (De Bock and de Cooman, 2015). Moreover, sets of acceptable gambles can equivalently
be transformed into the more classical imprecise-probabilistic models, credal sets (convex sets of
probabilities) and lower expectations (previsions); so the procedure can also be used for eliciting,
e.g., the parameters of classical—credal set based—credal networks. One can always obtain a single
probability measure by selecting it from an elicited credal set in a principled way (see, e.g., Druzdzel
and van der Gaag, 1995), opening up the option for also eliciting, e.g., Bayesian networks.

The interface for eliciting sets of acceptable gambles we present is designed for three-outcome
possibility spaces, i.e., involving three mutually exclusive and exhaustive events. The design ideas
could be adapted for the much simpler case of a two-element possibility space. For larger possibility
spaces, the interface can be used in combination with an appropriate decomposition thereof. For
example, a marginal extension theorem (Quaeghebeur, 2014, Theorem 1.2) guarantees that we
can coherently combine a (marginal) coherent set of desirable gambles on some partition and
(conditional) coherent sets of desirable gambles on the partition elements. So working with a
hierarchical partitioning of the possibility space with partition elements of cardinality three or less is
an option; using two-outcome spaces only would result in reduced expressiveness.

Next to the interface itself, we discuss a real-life experiment conducted as an exploratory test of
our elicitation interface. It was organized around the 2014 FIFA World Cup. But first, we start by
giving a brief primer on the theory of coherent sets of acceptable gambles.

2. Sets of Acceptable Gambles

Coherent sets of acceptable gambles are an imprecise-probabilistic model originally introduced by
Williams (1976, Section IV). The idea essentially lay dormant until this model was advocated by
Walley (1991, Appendix F; 2000, Section 6) using the term ‘desirable gambles’.

2.1 Essential Concepts

The possibility space Ω describes the events about which there is uncertainty. For this paper we
may assume it is a finite set. Formally, a gamble is a real-valued function on the possibility space. It
represents a positive or negative payoff that depends on the unknown actual realization ω ∈Ω .

An elicitee finds a gamble g on Ω acceptable if she is in some sense committed to the following
transaction: Once the realization ω ∈Ω is determined, she gets the payoff g(ω). The set of gambles
the elicitee assesses to be acceptable is denoted by A . We assume it to be finite, which is reasonable
in an elicitation context. A consequence is that all nontrivial checks and computations can be done
using linear programming (Quaeghebeur, 2013).

We consider accepting a gamble that is everywhere negative to be irrational. Based on the assump-
tion that the gamble payoffs are expressed in a linear utility—e.g., small amounts of money—we
also consider positive linear combinations of acceptable gambles to be acceptable. Consequently,
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an assessment A , even if it does not contain negative gambles, may nevertheless be irrational; to
wit, the elicitee can be forced to incur a sure loss by combining some of the gambles she accepts.
Formally, this happens if there are real coefficients λg ≥ 0 such that ∑g∈A λgg < 0, where the sum
and inequality are taken pointwise, i.e., hold for all ω in Ω .

To the above assumptions, we add that it is irrational to not accept nonnegative gambles. So we
arrive at the following set of coherence axioms, which describes the essential properties a deductively
closed set of acceptable gambles D should satisfy:

Avoiding Sure Loss: g < 0⇒ g /∈D , Addition: g,h ∈D ⇒ g+h ∈D ,

Accepting Partial Gains: g≥ 0⇒ g ∈D , Positive Homogeneity: g ∈D ,λg > 0⇒ λgg ∈D .

This set of axioms forces D to be a convex cone in the linear space of gambles on Ω that includes
the positive orthant and does not intersect the negative orthant. Note that this set of axioms allows
gambles that are strictly negative on some nontrivial event B⊂Ω and zero on its complement to be
acceptable: this is interpreted as the elicitee considering the event B to be (practically) impossible.

Given an elicited assessment A that avoids sure loss, we can use the last three axioms in a
generative way, to extend the assessment to a coherent set of acceptable gambles

D :=
{

f +∑g∈A λgg : gamble f ≥ 0,coefficients λg ≥ 0
}
.

This deductive closure is called the natural extension of A . An illustration of an assessment that
avoids sure loss and its natural extension is given in Figure 1a.

IW IL

ID

2IW− 1
3

IWD− 1
3

4
3 IL− 1

3 IW

(a) The dashed triangle delimits the positive octant. It
is spanned by the space’s unit vectors Iω —white
dots—which we will often look at as single-
ton indicator functions: Iω ′(ω) with ω,ω ′ ∈ Ω
is equal to 1 if ω = ω ′ and 0 otherwise. Also,
Iωω ′ := Iω + Iω ′ . An interpretation example: ac-
cepting the gamble 2IW− 1

3 = ( 5
3 ,− 1

3 ,− 1
3 ) means

being prepared to lose 1
3 for the opportunity of

winning 5
3 when W occurs. The drawing depicts

an assessment A of acceptable gambles—black
dots—, which avoids sure loss, and its natural ex-
tension D—shaded—, which is the convex conic
hull of A and {IW, ID, IL}.

pW pL

pD

E(2IW− 1
3) = 0 or p(W)≥ 1

6

E(IWD− 1
3) = 0

or p(W)+ p(D)≥ 1
3

E(4
3 IL− 1

3 IW) = 0 or p(L)≥ 1
4 p(W)

(b) The dashed triangle delimits the probability sim-
plex, which is spanned by the degenerate probabil-
ity mass functions—white dots—for which pω ′(ω)
is equal to 1 if ω = ω ′ and 0 otherwise. This draw-
ing depicts the credal set associated to the assess-
ment presented in Figure 1a—shaded—and the
lower expectations that define it—stubbled lines.

Figure 1: We consider the possibility space {W,D,L} (for ‘Win’, ‘Draw’, and ‘Loss’). Of the
resulting 3-dimensional space of gambles, Figure 1a shows the plane with gambles whose
payoffs sum to one. Figure 1b shows the plane containing the resulting probability simplex.
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2.2 Relationship with Other Models

Although modeling the uncertainty of an elicitee with the set of gambles she accepts is quite natural
and direct, it does differ from the usual, probability-based approach. Let us therefore have a look at
how a coherent set of acceptable gambles is related to more common models: expectation operators
and sets of probability mass functions.

A coherent set of acceptable gambles D determines, for any gamble h on Ω , the supremum
acceptable buying price E(h) := sup{α ∈ R : h−α ∈ D} and infimum acceptable selling price
E(h) := inf{β ∈ R : β −h ∈D}=−E(−h). The nonlinear operators E and E are called lower and
upper expectations or previsions (Walley, 1991). They satisfy E ≤ E pointwise, i.e., for all gambles.
So the gambles the elicitee finds acceptable are essentially those with lower expected payoff greater
than or equal to zero.

With a lower expectation E, we can associate a credal set M := {p : E ≤ Ep}, consisting of all
the probability mass functions p whose expectation Ep dominates E. In this definition, the inequalities
are again pointwise. Our set of axioms forces M to be a convex subset of the probability simplex.
We give an illustration in Figure 1b.

3. The Elicitation Interface

We first briefly discuss elicitation of probability mass functions and credal sets to provide some
context and contrast. Then we move on to acceptable gambles.

3.1 Probability Elicitation

Looking at Figure 1b, an interface to elicit a probability mass function on a possibility space of three
elements presents itself naturally: Allow the elicitee to indicate a point of the probability simplex.

To elicit a credal set, the above idea should be extended in a way that allows the elicitee to delimit
a convex subset of the probability simplex. The three most obvious general approaches are:
• A direct approach is to allow multiple points to be selected and take their convex hull. The main

advantage is the point-and-click nature, but the elicitee will have difficulty interpreting her actions.
• Bounding the expectation of gambles or, more specifically, providing probability intervals is easier

to interpret. This can be achieved by ‘placing’ stubbled lines (see Figure 1b), but will result in a
more involved interface.

• An interpretation-agnostic approach is to partition the simplex into a limited number of points and
convex sets which can be selected and combined, e.g., based on comparative probabilities. The
main advantage is the point-and-click nature, but there will be non-expressible elicitee attitudes.

The literature focuses mostly on interfaces for eliciting precise probabilities and continuous
distributions, nowadays often interactive and on-line (Bastin et al., 2013; Morris et al., 2014). In the
imprecise probabilities literature we can find thoughtful consideration of the issue of elicitation (see,
e.g., Piatti et al., 2010), but mostly only elicitation interfaces for binary variables—e.g., ‘Win’ vs.
‘No Win’—are considered.

3.2 Gamble Space Representation

Walley (1991, Section 4.1) already considered the direct elicitation of acceptable gambles. But, since
the credal set representation of imprecise probabilities has received most attention, it seems that these
ideas never led to the concrete design of elicitation interfaces until now.
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The space of gambles we have to consider is three-dimensional, because—as with the probability
simplex interface—we require our interface to be two-dimensional due to practical display technology
limitations. But doing this for sets of acceptable gambles is not so straightforward as for credal sets
(cf. Section 3.1): The representation of Figure 1a was based on the restriction to the plane of gambles
whose values sum to one. However, not all coherent sets of acceptable gambles can be compactly
depicted in such a representation; as an extreme example, the above-mentioned plane is strictly
contained in the coherent set consisting of those gambles with components that sum to zero or more.

Nevertheless, because of the Positive Homogeneity axiom, we know that we can represent a
coherent set of acceptable gambles—a convex cone—on a two-dimensional surface. For example, we
could take its intersection with a sphere centered at the origin or some other suitable two-dimensional
surface and then do a projection.

The nature of the projection is influenced by the following considerations: (i) because of the
Accepting Partial Gains and Avoiding Sure Loss axioms, the positive octant and the negative octant
do not need to be represented prominently or faithfully; (ii) the representation should be essentially
invariant under a permutation of the elementary events to avoid introducing biases between them;
and (iii) to allow for intuitive exploration by the elicitee, the representation should be a continuous
deformation of the points in all but the positive and negative octants.

These considerations lead us to a polar projection, where the poles are defined
by the line corresponding to constant gambles, i.e., those for which the payoff is
equal for all possible outcomes. On the right, we show the example of a spherical
such projection found in the United Nations emblem.

To decide on the exact surface to project and the projection center—our ‘North
Pole’—we refocus on the interpretation of the projection points as gambles. To
provide the elicitee with a reference value when selecting acceptable gambles, we should anchor
them by fixing either their maximum or minimum value. We fix the minimum value, as this bounds
potential losses and so may—hypothetically—mitigate effects of risk-aversion. We here take −1
as the normalized minimum value. Consequently, the surface we consider is the set of gambles
{ f : min f = −1}, namely, the convex cone with apex (−1,−1,−1) and extreme rays (1,0,0),
(0,1,0), and (0,0,1). The apex is also the projection center. The projection is illustrated in Figure 2.

The illustration of our representation provided by Figure 3a allows us to pinpoint an important
deficiency: the limited range due to the linear scale used. For example, the difference between gamble
values one and two times the stake is practically speaking much more important than between five
and six times the stake. (The same argument can be used for probability values.) In such a context
where relative magnitude takes precedence over absolute magnitude, using a logarithmic scale is a
better choice. Because nonpositive values are used in our representation and the constant gamble −1
corresponds to the center of our representation, we use a custom scaling that is based on a ‘saturating’

−1 1 ba

2
3

1

logarithm:

f a
b (x) =





0− 1
a logb(−x), x ∈ [−1,−b−a), (values in [0,1))

1, x ∈ [−b−a,b−a], (saturating value 1)
2+ 1

a logb(x), x ∈ (b−a,ba], (values in (1,3])

(1)

where b > 1 and a > 0 determine the smallest representable absolute value b−a and a practical upper
bound ba. The impact on our representation of this scale is illustrated in Figure 3b.

The considerations underlying our representation and its technical details are quite involved.
However, the elicitee need not be aware of these to use our concrete implementation, described next.
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Figure 2: This is a polar projection of the gamble-
space subset { f : min f = −1}. The white
dots correspond to gambles of interest: The
central one represents the apex, the gamble
with constant value −1. The others—some la-
beled—represent differences of event indicator
functions; for example −ILD = (0,−1,−1) and
IL− IW = (−1,0,1). The thick and thin axes
point towards gambles with higher payoffs for
the corresponding events. The dashed lines form
the set of contingent gambles, i.e., those that are
zero on some event. The dotted line indicates
the set of ‘even’ gambles, with a maximum pay-
off equal to the stake, i.e., one.
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ID− IW
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3IWD−1

6IW−1

4IL− IW

(a) This drawing uses our proposed projection of the
gamble space. In comparison to Figure 2, the scale
we use here is smaller and we now show dotted
lines for the loci of gambles with maximum payoff
one to six.

D

LW
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WD LD

3IWD−1

6IW−1

4IL− IW

(b) This is Figure 3a rescaled using the function of
Equation (1) with parameters b = 2 and a = 4. The
effect of the logarithm can, e.g., be seen in the
nonlinearity of lines connecting the assessment
gambles—black dots. A consequence of saturation
is the disappearance of lines between white dots
‘into’ the negative octant (central hexagon).

Figure 3: Translations of Figure 1a to alternate gamble space representations (renormalization to
satisfy min f =−1). The gambles in the set A assessed to be acceptable are represented
by black dots. Their natural extension D , represented by a closed convex polytope before,
is now (partially) represented by the disconnected shaded area on the outside. We have
added the pointwise additive inverse of the gambles assessed to be acceptable—white-filled
dots. These determine the open convex polytope of ‘rejected’ gambles—shaded area in the
center—that would cause a sure loss if one or more of them were to be assessed acceptable.
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3.3 Eliciting Acceptable Gambles

With deployment convenience in mind, our representation was turned into a concrete elicitation
interface by implementing it in SVG and Javascript (ECMAscript) so that it can be used in current
web browsers. We relied on the library d3js (Bostock et al., 2011) for visualization and the library
NumericJS (Loisel, 2012) for linear programming functionality.

The biggest and only substantive change we had to make was a discretization of the gamble
space. There are two reasons for this:
• We have not found a way to calculate and represent the sets of acceptable and rejected gambles

(cf. Figure 3a) fast enough to obtain a responsive interface. This is mainly due to the nonlinear
character of their borders, which is a result of the logarithmic rescaling. We can work around this
issue by discretizing the representation.

• We wish to show the values of the gamble over which the elicitee is hovering with her pointer. We
do not want to show a large number of significant digits of these values, because it is unrealistic to
expect the elicitee’s uncertainty attitudes to be so fine-grained; this would therefore be distracting.
But now, if we show only a few significant digits and wish to make sure that the numbers shown
correspond to the gamble under the pointer, we must discretize the representation.

The result is shown in Figure 4a; it can be used without detailed knowledge of the representation.
The biggest computational challenge we faced when implementing the interface was finding

the natural extension D efficiently enough to make it responsive. To tackle this, we split up the
problem into different subroutines. The ones that provide the most important efficiency gain are the
propagation routines:
• In our interface, for each dot—i.e., gamble f in the discretization—, there is a unique dot in its

negation’s neighborhood whose negation—up to scaling—strictly dominates the gamble f ; e.g.,
(−1

2 ,1,−1) negation-dominates (1
4 ,−1, 1

2). We pre-calculate this negation structure. So when a
dot is marked as accepted, we can mark the dot it is negation-dominated by as rejected due to the
Avoiding Sure Loss and Addition axioms.

• In our interface, for each dot, the neighboring dots either pointwise dominate it or are dominated by
it; e.g., (1

4 ,−1, 1
2) dominates (1

4 ,−1, 1
4). We pre-calculate this dominance structure. So when a dot

is marked as accepted (or rejected), we can recursively propagate this status to all its dominating
(dominated) dots due to the Accepting Partial Gains and Addition axioms. All unmarked dots that
neighbor an accepted (rejected) dot are gathered in a list of accept (reject) candidates, which is
kept up to date while propagating.

In our procedure, whenever a dot is marked as accepted or rejected, this change is fully propagated
before continuing with the outer search routine:
• We iterate over the accept (or reject) candidates and check whether they should be marked

acceptable (rejected). The iteration order is determined by the heuristic that dots ‘low’ (‘high’)
in the dominance structure should come first, as they are most promising from the propagation
perspective. The candidate lists are pre-populated by applying propagation to the assessment.

The subroutine that checks the status of a dot effectively calculates the natural extension by determin-
ing whether the dot’s lower (or upper) expectation is nonnegative (strictly negative). Calculating a
lower (upper) prevision requires linear programming, a relatively computationally demanding task in
a web browser. Propagation sufficiently reduces the number of prevision calculations in practice.

Once the interface was ready for action, we moved to test it in a practical experiment with the
goal of getting usage data and general feedback. This is the topic of the next section.
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(a) This shows the interface we implemented with
{−1,− 1

2 ,− 1
4 ,− 1

8 ,0,
1
8 ,

1
4 ,

1
2 ,1,2,4,8} as the dis-

cretization values. We have chosen the assessment
gambles—e.g., (4,−1,−1)—to mimic Figure 3b.

(b) This shows the experiment’s interface variant,
with {−1,− 1

2 ,− 1
4 ,0,

1
4 ,

1
2 ,1,2,4} as the set of dis-

cretization values. The assigned gamble appears as
the light (yellow) dot hovered over by the pointer.

Figure 4: Elicitation interface screenshots. Each dot represents a gamble; when hovering over it, the
payoff for each outcome is shown; assessment dots are a bit darker and have a border.

4. The Experiment

In 1982, Walley (1991, Appendix I) ran an experiment for eliciting lower and upper probabilities
concerning the outcome of matches in that year’s FIFA World Cup. There were 17 academic
participants. Their assessments were evaluated using the possible pairwise bets between them (cf.
Section 4.2). This experiment has later been repeated in the imprecise probabilities community,
but more as a diversion than in search of data. Others, such as Winkler (1971), ran earlier, precise
probability elicitation experiments organized around sports competitions.

We organized our experiment around the 2014 FIFA World Cup. Whereas in 1982 pen and paper
was used, we can now deliver a point-and-click interface accessible over the internet. Moreover, we
can calculate the natural extension on-line and thus make sure the elicitee avoids sure loss.

4.1 A Betting Competition Website

We set up the competition as a betting website. We provided the following instructions:

The [. . . ] Competition is a game in which you gamble against other participants. Each of the
possibly many matches for which you enter the ‘gambling pool’, you stake C1 (or [. . . ], e.g.,
$1), so you can only lose this amount or less per match. The exact amounts you can win or lose
depend on the other players’ choices.

You play by expressing your opinion about the outcome of the match in terms of gambles
that are acceptable to you. [. . . ] An algorithm will look for a fair bet between you and the other
participants. [A bet is a set of gambles assigned to the participants.] If a bet is found, and you
are included in it, a single acceptable gamble will be assigned to you and appear in the gamble
selection interface for that match. This assigned gamble determines your potential winnings [. . . ]

284



THE CWI WORLD CUP COMPETITION: ELICITING SETS OF ACCEPTABLE GAMBLES

and losses. You may change your set of acceptable gambles up until an hour before the start of
the match; [. . . ]. The match’s outcome determines your actual winnings or losses.

Actually, any winnings will not go to you, but, by participating, you commit yourself to pay
your losses to the Red Cross/Crescent [. . . ]

The website and its backend were developed using the Django framework. Figure 4b shows a
match screen with an assigned gamble.

Participants were recruited by word of mouth initially, then through academic mailing lists, and
via social networks near the end of the competition. Participation was anonymous; only a hash of
the sign-up email address was stored. A total of 80 people participated, providing assessments for
32 of the 64 matches (due to time constraints, the website was launched and tweaked while the
World Cup was already ongoing), for a total of 488 gambles assessed to be acceptable. For 20 of
those 32 matches bets were possible, for a total of 100 assigned gambles (cf. Section 4.2). The sum
of the lower common expected winnings for those gambles was 37.86 currency units, and in the
end the total amount won—and lost—was 47.19 currency units. Even though we could not enforce
participants paying to the Red Cross/Crescent, adding the element of having real money at stake, even
if not much, was important because it incentivizes them to take the elicitation task more seriously.

This experiment is not just meant as a one-off setup to test our gamble selection interface. Many
of its elements can be used as inspiration for practical elicitation experiments. The competitive aspect
can be used when eliciting from multiple experts (cf. Lichtendahl and Winkler, 2007). The repetition
aspect is relevant when considering time series, e.g., in a context of weather forecasting.

4.2 Generating Fair Bets

For his experiment, Walley (1991, Appendices I and H6) scored the participants by arranging specific
pairwise bets between them for each match, whenever possible. These bets assigned opposite gambles
to each that were acceptable given their assessments. The gambles were moreover fair in the sense
that their lower expectations—supremum acceptable buying prices (see Section 2.2)—coincided.

We used the same acceptability requirement but moved away from the pairwise approach to a
global one, in which for each match a single bet was generated, i.e., the assigned gambles sum to zero.
One reason is that we wished the stake per match to be at most one. An advantage of such a setup is
that the set of potential bets is in general much larger—e.g., it includes all convex combinations of
pairwise bets. Therefore we needed a criterion to choose a single one: we decided on a utilitarian one
by maximizing the sum of identical acceptable buying prices for the assigned gambles. Our notion of
fairness is this maximal common price instead of Walley’s common maximal price.

A bet satisfying the constraints described above can be computed using mixed-integer linear
programming. Its formulation is independent of the size of the possibility space Ω . Participant j
in J has specified an assessment A j. He may be included in the bet or not, encoded by the binary
variable b j. If included, he will be assigned a nontrivial gamble h j. His acceptable buying price for
this gamble is α j and must—by fairness—be identical to the common buying price α∗. So we have
the following program (gamble constraints must be read pointwise):

maximize ∑ j∈J α j = α∗∑ j∈J b j (2)

subject to ∑ j∈J h j = 0, (3)

and for all j in J: h j−α j ≥ ∑g j∈A j λ j,g j g j with λ j,g j ≥ 0, (4)

0≤ α j = b jα∗ and −1≤ h j = b jh j with b j ∈ {0,1}. (5)
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Constraint (4) expresses that h j−α j must lie in the cone D j spanned by A j and the first orthant (cf.
Section 2.1). Objective (2) then forces α j to be an acceptable buying price of h j (cf. Section 2.2).
Constraint (3) guarantees that the h j gambles form a bet between the participants. Constraints (5) give
us the freedom to exclude participants from the bet, force the acceptable prices for those included to
coincide, and force the stakes to be one or less.

However, the products b jα∗ and b jh j make the Constraints (5) nonlinear. Luckily, we can replace
them by an equivalent set of linear constraints: Notice first that h j ≥−1 together with Constraint (3)
implies the bound h j ≤ |J|−1. Then the Constraint (4) with all λ j,g j = 0 further implies that also
α j ≤ |J|−1. The existence of these bounds allows us—given b j ∈ {0,1}—to replace (5) by

α∗− (|J|−1)(1−b j)≤ α j ≤ α∗, 0≤ α j ≤ (|J|−1)b j, −b j ≤ h j ≤ (|J|−1)b j. (6)

We used the linear programming library GLPK (Makhorin, 2014) without practical efficiency
issues. An instance of an assigned gamble calculated using this program can be seen in Figure 4b.

4.3 Experimental Results

The aim of our exploratory experiment was to obtain feedback about the gamble selection interface,
get a view of the types of assessments people provide, test the fair bet generation procedure on
real-life data, and have some fun doing it.

We provided a form where participants could optionally enter feedback and information about
themselves, such as gender, age, and experience relevant to the competition. However, almost no one
made use of it. We did get quite a bit of feedback through personal communications with participants
we knew, both laymen and people experienced in uncertainty modeling. As was anticipated by the
human-computer interaction (HCI) expert in our team, the interface was found to be too complex: it
needs to be simplified, explained more extensively, or a combination thereof.

There were 194 match assessments in total, of which a good 20% was complete in the sense that
all dots were marked—after natural extension—, so corresponding to some probability mass function.
(A nice anecdote: The few participants who used complete models almost exclusively all had greater
losses than winnings.) For the others, with strictly imprecise-probabilistic assessments, the degree of
completeness varied over the whole range between just a few and all but a few marked dots.

Something generally orthogonal to completeness is the number of selected dots per assessment:

#dots: 1 2 3 4 5 6 7 8
#assessments: 54 52 47 26 8 5 1 1

We see that the number of selected dots is mostly concentrated in relatively small numbers. In fact,
whenever four or more dots were registered, there usually were some that were actually redundant
after natural extension, i.e., were implied by other selected dots. So participants kept things simple.

Regarding the distribution of the dot selection, Figure 5 shows that mainly dots on the axes
and corresponding to contingent gambles were chosen, but not overwhelmingly so. It nevertheless
indicates that restricting attention to these loci may be a way to simplify the interface.

The bet generation procedure worked as intended, but we noticed that on average a third and
sometimes up to more than 60% of the participants that gave an assessment for a match—typically
relatively more imprecise (incomplete)—were not included in the bet. Once the match outcome is
determined, the assigned gamble results in a payoff; such feedback gives the participant an idea of
the quality of his assessments (cf. scoring rules; see, e.g., Winkler, 1971). Therefore it would be
useful to modify the bet generation procedure to include more participants.
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Figure 5: This drawing depicts the observed relative
dot selection frequency. Because of sym-
metry—outcome identity irrelevance—all
dots were mapped to the subregion of dots
(−1,d, l) (cfr. Figure 3b). The possible val-
ues for d and l are respectively shown on
the right and at the bottom of the drawing.
The area of the circles is proportional to
the relative number of selections of that
dot; the largest circle, at (−1,−1,4), cor-
responds to 12.5% of selections.
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5. Conclusions

We designed a gamble selection interface that is based on a representation of the space of gambles tai-
lored to elicitation. We coded an efficient—responsive—implementation and used it in an experiment.
In support of this experiment, we developed a novel procedure for generating fair bets.

From the experiment, we learned that the interface can be effectively used, but also that it needs
to be made more usable and transparent. Furthermore, given that the majority of assessments made
by the participants were imprecise, a more generally important conclusion is that imprecision is a
non-negligible aspect of uncertainty: models that do not allow for it to be expressed may lead to
gambles—i.e., any decision under uncertainty—that its users are actually not willing to commit to.

Follow-up work should focus on improvements to the interface, user guidelines, and bet generator,
and experimental comparison to alternative interfaces (see, e.g., Section 3.1).
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Abstract

Coherent lower previsions are general probabilistic models allowing incompletely specified prob-
ability distributions. However, for complete description of a coherent lower prevision – even on
finite underlying sample spaces – an infinite number of assessments is needed in general. There-
fore, they are often only described approximately by some less general models, such as coherent
lower probabilities or in terms of some other finite set of constraints. The magnitude of error in-
duced by the approximations has often been neglected in the literature, despite the fact that it can be
significant with substantial impact on consequent decisions. An apparent reason is that no widely
used general method for estimating the error seems to be available at the moment. The goal of this
paper is to provide such a method. The proposed method allows calculating an upper bound for
the error of a finite approximation of coherent lower prevision on a finite underlying sample space.
An estimate of the maximal error is especially useful in the cases where calculating assessments is
computationally demanding. Our method is based on convex analysis applied to credal sets, which
in the case of finite sample spaces correspond to convex polyhedra.

Keywords: lower prevision, partially specified lower prevision, credal set, convex polyhedron,
quadratic programming.

1. Introduction

One of the most popular and also most general models of imprecise probabilities are coherent lower
previsions (see, e.g., Miranda, 2008; Troffaes and De Cooman, 2014). A coherent lower prevision
P is an imprecise probability model based on judgements about the lower or upper expectations
on a set of bounded maps K from a sample space X to real numbers, also called gambles. The
set of all gambles on a given underlying sample space will be denoted by L. In this paper, all
sample spaces are finite, therefore, we do not address any measurability or countable additivity
conditions. The judgement or assessment P (f) = a states that every precise probability distribution
P compatible with P must satisfy EP (f) ≥ a, that is P (f) means that the expectation of f is at
least a. Coherence in this context means that the judgements on the set of gambles allow, for
every gamble f , the existence of at least one precise probability distribution P compatible with P
for which EP (f) = P (f). The expectation functionals with respect to precise (finitely additive)
probability distributions are often called linear previsions.

A coherent lower prevision P specified on a set of gambles K can have multiple possible exten-
sions to a larger set, say H ⊃ K. In other words, there can be multiple coherent lower previsions
that coincide on a set of gambles. In particular, a coherent lower prevision may be approximated
by a more specific model, such as coherent lower probability (see, e.g., Antonucci and Cuzzolin,
2010), in which case its restriction to indicator gambles is only known, i.e. an indicator gamble 1A
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is a map X → R such that 1A(x) equals 1 if x ∈ A and 0 otherwise. We will write 1x instead of
1{x} for elements x ∈ X .

In this paper we investigate the following problem. Let P be a coherent lower prevision on the
set L of all gambles on a finite sample spaceX . Its full description would in general require detailed
information on the set of compatible precise models, called credal set, which often is unavailable.
Suppose that instead we know the values of P on a set of gambles K. The restriction PK approxi-
mates P and the natural question arises, how accurate is this approximation. Given the restriction,
P is an extension of PK, which in general is not unique. Therefore, we would like to know by how
much can another extension deviate from P . That is, we want to find the maximal distance between
two arbitrary extensions of a coherent lower prevision on a finite set K to the set of all gambles.

In our analysis we first show that the maximal possible distance is always reached when one of
the extensions is the natural extension. Consequently, much of the analysis is done on the credal set
of the natural extension with the special emphasis on its extreme points. Our main result gives an
upper bound for the maximal distance in terms of distances between the extreme points.

The paper is structured as follows. In Section 2 we review basic concepts of imprecise proba-
bilities with the emphasis on coherent lower previsions. In Section 3 we analyze basic properties of
credal sets as convex polyhedra and apply some general concepts of convex analysis to the case of
credal sets. Our main results are stated in Section 4.

2. Notation and basic results

In this section we introduce the notation and review the concepts used in the paper. When possible
we will stick with the standard terminology used in the theory of imprecise probabilities, which
will sometimes be supplemented by the standard terminology of convex analysis, linear algebra and
optimization.

GAMBLES.

Throughout this paper let X represent a finite set, a sample space, and L the set of all real-valued
maps on X , also called gambles. Equivalently, L may be viewed as the set of vectors in R|X |. The
set of gambles will be endowed by the standard inner product f · g =

∑
x∈X f(x)g(x), which

generates the l2 norm: ‖f‖ =
√
f · f =

√∑
x∈X f(x)2, and the Euclidean distance between

vectors: d(f, g) = ‖f − g‖, which will be used by default throughout the paper.

LINEAR PREVISIONS.

A linear prevision P is an expectation functional with respect to some probability mass vector p on
X . It maps a gamble f into a real number P (f). Usually, we will write P (f) =

∑
x∈X p(x)f(x) =:

P · f . The set of linear previsions is therefore a subset of the dual space of L. The inner product
notation is introduced because we will often use linear functionals of the form f 7→ p · f where
the vector p will not necessarily be a probability mass vector. We will then use the inner product
notation to avoid misinterpretations. Without danger of confusion we will therefore interpret a linear
prevision P as a vector with the same length as gambles in L.
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x y

z

P (z)

P (y)

P (x)

P = (1/2, 1/4, 1/4)

Figure 1: Probability simplex: the distance from a side denotes the probability of the element at the
opposite vertex.

PROBABILITY SIMPLEX.

If the sample space X contains exactly three elements, say X = {x, y, z}, the probability mass vec-
tors can be represented as points of the form (p(x), p(y), p(z)) in R3. However, since the restriction
p(x)+p(y)+p(z) = 1 applies, they in fact form a two dimensional space, which can be depicted as
an equilateral triangle with vertices x, y and z. Given any point in this triangle, the sum of distances
to its sides is constantly equal to its altitude, which equals

√
3
2 a, where a is the common length of

the sides. Taking a = 2√
3

makes the altitude equal to 1. The distance of a point from each side
now denotes the probability of the point in the opposite vertex. (See Figure 1.) Probability simplex
diagrams are very useful to illustrate concepts of imprecise probabilities; however, one needs to be
cautious not to be mislead by specifics of low dimensional probability spaces.

COHERENT LOWER PREVISIONS.

A coherent lower prevision on an arbitrary set of gambles K is a mapping P : K → R that allows
the representation

P (f) = min
M

P (f) (1)

for every f ∈ K, whereM is a closed and convex set of linear previsions. Note that unless K is
the set of all gambles, there may be multiple sets M that fit into equation (1) (this is also one of
the motivations for this paper); however, there is a unique maximal such set. We will denote the
maximal such set withM(P ) and call it the credal set of P .

THE NATURAL EXTENSION.

Given a coherent lower prevision P on K, it is possible to extend it to the set of all gambles L in
possibly several different ways, and again, there is unique minimal extension, called the natural
extension:

E(f) = min
P∈M(P )

P (f). (2)
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Note that replacingM(P ) with another setM of linear previsions satisfying the equation (1) would
result in some other extension of P .

A mapping P : K → R, where K is a linear (vector) space, is a coherent lower prevision if and
only if it satisfies the following axioms (Miranda, 2008) for all f, g ∈ K and λ ≥ 0:

(P1) P (f) ≥ infx∈X f(x) [accepting sure gains];

(P2) P (λf) = λP (f) [non-negative homogeneity];

(P3) P (f + g) ≥ P (f) + P (g) [superlinearity].

An easy consequence of the definitions is :

(P4) P (f + λ1X ) = P (f) + λ for any λ ∈ R and f ∈ L [constant additivity].

3. Credal set as a convex polyhedron

A credal set is a closed and convex set of linear previsions. Since every linear prevision can be
uniquely represented as a probability mass vector, a credal set can be represented as a convex set
of probability mass vectors. The setM is therefore the maximal set of |X |-dimensional vectors p
satisfying:

p · f ≥ P (f) for every f ∈ K, (3)

p · 1x ≥ 0 for every x ∈ X and (4)

p · 1X = 1. (5)

In the sequel we will assume that the set K is finite. When needed, we will index its elements as fi
for i ∈ {1, . . . , n}.

According to the above, it would be suitable to extend the domain of P with the gambles of
the form 1x for every x ∈ X . Doing so, though, may result in a non-coherent lower prevision,
because other constraints my already imply that P (1x) ≥ 0, where the inequality may even be
strict. Therefore we adopt the following convention:

Convention 1 The domain K of all lower previsions used will contain all gambles of the form 1x
together with the value P (1x) = 0, unless P (1x) ≥ 0 is already implied by other values of P on K.

Assuming the above convention, the credal set of coherent lower prevision P is the set of vectors p
satisfying constraints (3) and (5).

In the case where K is finite, the corresponding credal set is a convex polyhedron. Strictly
speaking, it is an H-polyhedron, which means that it is bounded and an intersection of a finite
number of half spaces. According to Theorem 14.3 in Gruber (2007) everyH-polyhedron in an Rm
is also a V-polyhedron, which means that it is a convex combination of a finite number of extreme
points.

Example 1 Let P be a lower prevision on K = {f1, . . . , f5} where

f1 = (0, 1, 0.5) f2 = (0, 0.5, 1) f3 = (0.15, 0, 1)

f4 = (1, 0, 0.6) f5 = (0.2, 1, 0)
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x y

z

Mf1

f2 f3

f4

f5

Figure 2: Credal set from Example 1 as an
intersection of half planes: their
support lines are dashed, gambles
fi ∈ K+ are depicted as normal
vectors to faces.

MNM(E1)

NM(E5)

E1

E2

E3

E4

E5

Figure 3: Normal cones at extreme points
are the non-negative hulls of the
normal vectors of adjacent faces.

and

P (f1) = 0.46 P (f2) = 0.4 P (f3) = 0.25

P (f4) = 0.44 P (f5) = 0.4

The credal set corresponding to P is depicted in Figure 2 as an intersection of half-planes.

FACES AND EXTREME POINTS OF A FINITELY GENERATED CREDAL SET.

The faces of a credal setM are the sets of the formMf = {P ∈ M : P (f) = E(f)}, where f is
an arbitrary gamble. The smallest faces are exactly the extreme points and the faces of codimension
1 are called facets1. The set of all extreme points ofM will be denoted by E(M) or simply E . The
set of extreme points of a faceMf will be denoted by Ef , and Ef ⊆ E holds.

Example 2 The extreme points of the credal set from Example 1 are

E1 = (0.4, 0.32, 0.28) E2 = (0.43, 0.35, 0.23) E3 = (0.39, 0.42, 0.19)

E4 = (0.32, 0.48, 0.20) E5 = (0.15, 0.37, 0.48)

(See Figure 3.)

Let f ∈ K be a gamble and P (f) its lower prevision. Then the lower prevision of the gamble
f − P (f)1X equals 0. Moreover, setting P (f − P (f)1X ) = 0 is equivalent to setting the lower
prevision of f to P (f), by constant additivity. Following this idea, we extend a credal setM to the
set of vectors

M̂ = {p : p · (f − P (f)1X ) ≥ 0, for every f ∈ K}, (6)

1. The codimension 1 is meant relative to the dimension ofM. That is dimMf = dimM− 1. Note also that a credal
set is at most of dimension |X | − 1 because of the constraint P (1X ) = 1.
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which is a convex cone, with the basisM. This means that every p ∈ M̂ is of the form p = λP
for some λ ≥ 0 and P ∈ M. This is easily seen by noticing that every p ∈ M̂ has non-negative
components, which is guaranteed by Convention 1. Dividing 0 6= p ∈ M̂ by the sum of its
components then results in a vector P whose components are non-negative, sum to one and clearly
satisfy the same linear constraints as p, except (5).

Given a credal setM, the cone of (almost) desirable gambles contains exactly those gambles in
L whose lower prevision is non-negative:

D = {f ∈ L : P (f) ≥ 0 for every P ∈M} = {f ∈ L : P (f) ≥ 0}. (7)

The gambles f with P (f) = 0 are sometimes called marginally desirable.

3.1 Normal cones of credal sets

THE NORMAL CONE.

Let
C = {x ∈ Rn : Ax ≤ b}, (8)

where A is an m × n matrix and b ∈ Rm a vector, be a convex polyhedron and x a point on its
boundary. According to Gruber (2007), the normal cone at x is the set

NC(x) = {u : u · y ≤ u · x for all y ∈ C} = {u : u · (y − x) ≤ 0 for all y ∈ C}. (9)

In our case, let M be a credal set defined by constraints of the form (3) and (5) and E its
boundary point. The normal cone ofM at E is the set

NM(E) = {f : E(f) ≤ P (f) for every P ∈M}. (10)

The normal cone is thus the set of gambles f that satisfy E(f) = P (f).

Proposition 2 (Gruber (2007) Proposition 14.1.) Let C be a convex polyhedron defined as in (8)
and x its boundary point. Let ai ·x = bi hold for exactly i ∈ I ⊆ {1, . . . ,m}, where ai denotes i-th
row of the matrix A. Then NC(x) = pos {ai : i ∈ I}, where pos denotes the non-negative hull.

Corollary 3 Let M be a credal set defined by constraints (3) and (5). Then the set of (almost)
desirable gambles D corresponding to M is the normal cone of M̂ at 0 and we have that D =
pos {f − P (f)1X : f ∈ K}.

Proof The set M̂ is a convex cone whose support hyperplanes are exactly the sets of the form
Hf = {p : p · (f −P (f)1X ) = 0} for f ∈ K, and the origin is exactly the intersection of all support
hyperplanes: 0 · (f − P (f)1X ) = 0 for every f ∈ K. We can therefore apply Proposition 2.

Remark 4 In Augustin et al. (2014) Chapter 1, the set constructed as D in Corollary 3 is called
the natural extension of the assessment K. The fact that the set of desirable gambles is the non-
negative hull of marginally desirable assessments in K with included strictly positive gambles can
also be found in Chapter 2 of the mentioned book. In our case, strictly positive gambles are included
because of Convention 1.
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Corollary 5 LetM be a credal set defined by constraints of the form (3) and (5), E ∈ M a linear
prevision and h a gamble such that E(h) = P (h). For every gamble f ∈ K let f̃ = f − P (f), and
thus P (f̃) = 0 for all f ∈ K.

Suppose that E(f̃i) = 0 for exactly i ∈ I ⊆ {1, . . . , n}. Then there exist αi ≥ 0 for every i ∈ I
and β ∈ R so that

h =
∑

i∈I
αif̃i + β1X . (11)

Proof Let h ∈ L be a gamble such that E(h) = P (h). Set g = h − P (h). Then, for every
p ∈ M̂ (see (6)), p = αP for some P ∈ M and α ≥ 0. Therefore p · g = αP · g ≥ 0 = E · g,
whence g ∈ NM̂(E). By Proposition 2, g =

∑
i∈I αif̃i for some non-negative constants αi. Hence

h =
∑

i∈I αif̃i + P (h)1X , which proves the proposition.

Note that Equation (11) still holds if f̃i are replaced by fi.

4. The distance between coherent lower previsions

4.1 The definition of the distance

Let P and P ′ be two coherent lower previsions on the set of all gambles L on a finite set X . We
define the distance2 between P and P ′ as

d(P , P ′) = max
f∈L
|P (f)− P ′(f)|

‖f‖ , (12)

where the norm ‖f‖ =
√
f · f is the Euclidean norm in R|X |. Clearly, the following alternative

definition is equivalent: d(P , P ′) = max f∈L
‖f‖=1

|P (f)− P ′(f)|.
It is readily verified that the above distance function induces a metric in the set of all lower

previsions onL. In this section we will analyze the maximal possible distance between two coherent
lower previsions that coincide on a finite set of gambles.

Suppose that P is a lower prevision on L, and the only information about it are the values on a
finite set of gambles K ⊂ L. That is, P (f) are given for every f ∈ K. We denote the restriction of
P to K by PK. We also adopt Convention 1. The natural extension E is the minimal (or the least
committal) extension of PK. This implies that P (f) ≥ E(f) for every f ∈ L. Therefore, given
another extension P ′ of PK, we have that

|P (f)− P ′(f)| ≤ max{P (f)− E(f), P ′(f)− E(f)}, (13)

which implies that d(P , P ′) ≤ max{d(P ,E), d(P ′, E)}. As we are interested in the maximal
possible distance between coherent lower previsions coinciding on K, it will therefore be enough to
focus to the case where one of them is the natural extension of PK.

4.2 Maximal distance to the natural extension

Let E and P be respectively the natural extension of PK and another extension, and M and C
respectively their credal sets. As described in previous sections, both are convex sets and the natural
extension is a convex polyhedron with extreme points E(M).

2. For another distance function between coherent lower previsions, see, e.g., Škulj and Hable (2013).

295
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Assuming the above notations, we start with the following proposition.

Proposition 6 Take some f ∈ K and letMf be the corresponding face ofM. Then C ∩Mf 6= ∅.

Proof Clearly, Mf contains exactly all linear previsions P inM such that P (f) = P (f). If no
P ∈ C belongs toMf , this then implies that P (f) > P (f) for every P ∈ C, and since C is compact,
this would imply that minP∈C P (f) > P (f), which contradicts the assumptions.

Corollary 7 Let h ∈ L be an arbitrary gamble. Then:

(i) P (h) ≤ maxP∈Mf
P (h) for every f ∈ K;

(ii) P (h) ≤ minf∈K maxP∈Mf
P (h); the inequality is tight in the sense that for every h ∈ L an

extension of PK exists that gives equality in the equation.

(iii) P (h) ≤ minf∈K maxE∈Ef E(h) where Ef is the set of extreme points of the face Mf ; and
the inequality is again tight.

Proof (i) is an immediate consequence of Proposition 6.
The inequality in (ii) is a direct consequence of (i). It remains to prove that there is an extension

of PK where the equality is reached.
Let Mf be a face of M and let Pf ∈ arg maxP∈Mf

P (h). Let M′ be the convex hull of
{Pf : f ∈ K} and P ′ the corresponding coherent lower prevision, which coincides with P on K by
construction, and thus must satisfy the inequality (ii). For every P ∈M′, on the other hand, we have
that P =

∑
i∈K αfPf , for some collection of values αf ≥ 0 for every f ∈ K and

∑
f∈K αf = 1.

Thus,
P (h) =

∑

f∈K
αfPf (h) ≥ min

f∈K
Pf (h) = min

f∈K
max
P∈Mf

P (h) (14)

Hence, P ′(h) = minP∈M′ P (h) ≥ minf∈K maxP∈Mf
P (h), which combined with the above

reverse inequality gives the required equality.
The fact that extremal values are reached in extreme points easily implies (iii).

Now we can express the maximal possible distance between two arbitrary extensions of PK in
terms of its natural extension alone.

Corollary 8 Let E be the natural extension and P and P ′ two other extensions of PK, and h ∈ L
a gamble. Then |P (h)− P ′(h)| ≤ minf∈K maxP∈Ef P (h)− E(h) and

d(P , P ′) ≤ max
‖h‖=1

min
f∈K

max
P∈Ef

P (h)− E(h). (15)

Proof The first inequality is a direct consequence of Corollary 7(iii) and Eq. (13). The second
inequality is an immediate consequence of the first one, definition of the distance between two
coherent lower previsions and the fact that E(h) is less than P (h) for every feasible P .

Equation (15) gives the maximal possible distance between two unknown extensions of PK entirely
in terms of its natural extension. However, as an optimization problem it is not solvable in any
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apparently applicable way. We will therefore apply it to derive a practically computable upper
bounds.

By the definition of E we have:

d(P , P ′) ≤ max
‖h‖=1

max
E∈E

min
f∈K

max
P∈Ef

P (h)− E(h) (16)

= max
E∈E

max
‖h‖=1

min
f∈K

max
P∈Ef

P (h)− E(h) (17)

by interchanging max‖h‖=1 and minf∈K:

≤ max
E∈E

min
f∈K

max
P∈Ef

max
‖h‖=1

P (h)− E(h) (18)

= max
E∈E

min
f∈K

max
P∈Ef

d(P,E), (19)

where d(P,E) is the Euclidean distance between extreme points P and E.
Now denote

d̄(E, f) = max
P∈Ef

d(P,E), (20)

which is the maximal Euclidean distance between an extreme point E and a face Mf . Thus we
obtain the following formula:

d(P , P ′) ≤ max
E∈E

min
f∈K

d̄(E, f). (21)

Since E and P in the above expressions are (extreme) points in R|X |, their Euclidean distances
can be found easily by calculating the Euclidean norms ‖P − E‖. Particularly, calculating d̄(E, f)
requires calculating the Euclidean distances between E and all extreme points of the face Mf .
Finally, the RHS expression in (21) is calculated by finding d̄(E, f) for all pairs of extreme points
and gambles in K.

4.3 Improved bounds

Equation (21) gives an upper bound for the difference between coherent lower previsions coinciding
on a set of gambles, however, the estimate is systematically too conservative. This is caused by the
fact that extreme points E can only maximize expression (16) for some h if E(h) = E(h). This
means that the domain for h in (18) should be restricted to those gambles h that reach the lowest
value E(h) in E. In other words, h should belong to the normal cone NM(E).

Therefore, instead of taking the Euclidean distance between E and P in (20), we should take
the following distance:

dE(E,P ) = max
h∈NM(E)

|P (h)− E(h)|
‖h‖ , (22)

which we call the normed distance between E and P .
The geometrical intuition behind replacing Euclidean distance with the above distance function

is the following. Given a gamble h, the difference P (h)−E(h) can be viewed as the inner product
(P − E) · h, which depends on the angle between (P − E) and h. As the normal cone contains
elements that are orthogonal to P −E for adjacent extreme points P , we may expect that the other
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elements are nearly orthogonal too, especially in the case of narrow normal cones. In Figure 3 such
situation can be observed in the case of the normal cone of E1, in contrast to the case of E5, where
the normal cone is wide. Therefore, we would, for instance, expect that the normed distances be-
tweenE1 and its adjacent extreme points would be significantly smaller than the Euclidean distance,
in contrast the case of E5. Analytically we demonstrate this in Example 3.

In the sequel we represent the calculation of the normed distance in the form of a quadratic
programming problem.

MINIMUM NORM ELEMENTS OF THE NORMAL CONE.

Consider an element h of the form (11). Given a pair of expectation functionals E and P , the
distance P (h) − E(h) does not depend on β. In order to maximize the normed distance (22), we
must consider the representative with the minimum norm, as the norm appears in the denominator
of the expression. The characterization of the minimal norm element of the form (11) follows.

Proposition 9 Let h be a gamble. Then ‖h+β1X ‖ ≥ ‖h‖ for every β ∈ R if and only if h ·1X = 0.

Proof We have that ‖h + β1X ‖2 = ‖h‖ + β2 + 2βh · 1X , which has minimum in β = −h · 1X .
Hence the minimizing β equals 0 exactly if h · 1X does.

Corollary 10 LetE, h and I be as in Corollary 5 and let f ′i be the unique vectors such that fi−f ′i =
c1X and f ′i · 1X = 0 for every i ∈ I . Then, as follows from Corollary 5, there exist some α′

i ≥ 0 for
every i ∈ I and β′ ∈ R so that

h =
∑

i∈I
α′
if

′
i + β′1X . (23)

Moreover, ∥∥∥∥∥
∑

i∈I
α′
if

′
i

∥∥∥∥∥ ≤
∥∥∥∥∥
∑

i∈I
α′
if

′
i + β1X

∥∥∥∥∥ for every β ∈ R. (24)

Proof Since f ′i · 1X = 0, we have that
(∑

i∈I α
′
if

′
i

)
· 1X = 0, whence by Proposition 9 it follows

that this is the minimal-norm gamble of the form (23).

Let I and f ′i , for i ∈ I , be as in Corollary 10 and let α : I → [0,∞) be a map and β ∈ R a
constant (we will write αi instead of α(i)). Then we define h(α, β) =

∑
i∈I αif

′
i + β1X . Clearly,

h(α, β) ∈ NM(E) and every element of NM(E) is of the form h(α, β), by Corollary 5.

Corollary 11 The following equality holds:

max
(α,β)

|E(h(α, β))− P (h(α, β))|
‖h(α, β)‖ = max

α

|E(h(α, 0))− P (h(α, 0))|
‖h(α, 0)‖ (25)

Proof Since |E(h + β1X ) − P (h + β1X )| = |E(h) − P (h)|, the maximum of the expression is
achieved at h with the minimum norm, which is the one with β = 0.
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THE CALCULATION OF THE NORMED DISTANCE BETWEEN EXPECTATION FUNCTIONALS.

Take two linear expectation functionals P and E ∈ M and let I and f ′i for i ∈ I be as in Corol-
lary 10. Our goal is to find the normed distance (22). The absolute value in the numerator of (22)
can be omitted because E(h) = minP∈M P (h) for every h ∈ NM(E). By Corollary 11, every
h ∈ NM(E) that can minimize the above expression is of the form h(α, 0). Since E and P are
themselves vectors too, we can denote D = P −E, and write P (h)−E(h) = (P −E) ·h = D ·h.

Now we can decompose every f ′i for i ∈ I as f ′i = λiD + ui, so that D · ui = 0. Given that
h =

∑
i∈I αif

′
i , we obtain h = (α · λ)D + α · U, where U is the matrix whose rows are ui, λ is

the column vector with components λi and the vectors f ′i are also written as row vectors. We also
assume α to be a column vector.

Further we have that ‖h‖2 = h · h = ‖D‖2αλλtαt + αUU tαt. Now denote Π = ‖D‖2λλt +
UU t and write ‖h‖2 = αΠαt. Clearly, Π is a symmetric and positive semi-definite matrix.

Moreover, we have that P (h)−E(h) = D·(α·λ)D = (α·λ)‖D‖2.Our goal is the maximization
of expression (22). Thus we need to maximize

ϕ(α) =
(α · λ)‖D‖2√

αΠαt
(26)

over the set of all I-vectors α with non-negative components. Clearly, for every non negative
constant k we have that ϕ(kα) = ϕ(α). Moreover, only those α for which the numerator in ϕ(α)
is positive are of interest, and then multiplying α by a suitable positive constant can ensure that the
numerator is 1. Maximizing ϕ(α) is then equivalent to minimizing the nominator, which yields the
following quadratic programming problem:

Minimize:

αΠαt (27)

subject to

(α · λ)‖D‖2 = 1 (28)

α ≥ 0 (29)

Example 3 Consider the lower previsionP from Example 1. We will calculate the distance dE1(E1, E5),
where E1 = (0.4, 0.32, 0.28) and E5 = (0.15, 0.37, 0.48). First we have:

D = E5 − E1 = (−0.2462, 0.0492, 0.1969),

and its norm, which is the Euclidean distance between the two extreme points is ‖D‖ = 0.3191.
The positive basis of NM(E1) consists of the transformed gambles

f ′1 = f1 − f1 · 1X /3 = (−0.5, 0.5, 0)

f ′5 = f5 − f5 · 1X /3 = (−0.2, 0.6,−0.4).

(see Corollary 10).
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We have f ′1 = 1.451D + (−0.1429, 0.4286,−0.2857), and since f ′5 is orthogonal to D, it

follows that u5 = f ′5 and λ2 = 0. Thus λ =

[
1.451

0

]
and U =

[
−0.14 0.43 −0.29
−0.20 0.60 −0.40

]

which gives Π = ‖D‖2λλt + UU t =

[
0.5 0.4
0.4 0.56

]
. Taking α = (α1, α2)

t, we obtain the objective

function to be minimized: αΠαt = 0.5α2
1+0.8α1α2+0.56α2

2 subject to ‖D‖2α ·λ = ‖D‖2λ1α1 =
1 whence α1 = 6.7708. Substituting α1 in the objective function we obtain αΠαt = 22.9219 +
5.41664α2 + 0.56α2

2, which has to be minimized subject to α2 ≥ 0. The minimum is obtained for
α2 = 0, with the minimal value of objective function αΠαt equal to 22.9219. Now dE1(E1, E5) =
ϕ(α) = 1/

√
22.9219 = 0.2089. Note that this is significantly less than the Euclidean distance

between the points, which is equal to ‖D‖ = 0.3191.

5. Conclusions and further work

This paper provides as its main contribution a practically computable upper bound for the difference
between any two extensions of a coherent lower prevision given on an arbitrary finite set of gam-
bles. The problem is relevant for many applications of the theory of imprecise probabilities, where
complete description of lower previsions or their credal sets is often infeasible.

A drawback of the proposed method is that it requires finding all extreme points of credal sets
in question. The number of the extreme points in general grows exponentially with the number of
constraints, which makes the method computationally demanding.

In future, faster and perhaps less accurate methods could be developed to quickly asses maxi-
mal possible error of finite approximation of coherent lower previsions could be developed based
on the results proposed in this paper. The method might also be simplified for special cases of
approximations, such as coherent lower probabilities.
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Abstract
This paper presents an investigation of approaches to modeling lower and upper subjective prob-

abilities. A relatively unexplored approach is introduced, based on the fact that every cumulative
distribution function (CDF) with support (0,1) has a “dual” CDF that obeys the conjugacy relation
between coherent lower and upper probabilities. A new 2-parameter family of “CDF-Quantile”
distributions with support (0,1) is extended via a third parameter for the purpose of modeling lower-
upper probabilities. The extension exploits certain properties of the CDF-Quantile family, and the
fact that continuous CDFs on (0,1) random variables form an algebraic group that is closed under
composition. This extension also yields models for testing specific models of lower-upper proba-
bility assignments. Finally, the new models are applied to a real data-set, and compared with the
alternative approaches for their relative advantages and drawbacks.

Keywords: Probability judgment, distribution, quantile regression, generalized linear model.

1. Introduction

This paper presents an investigation of approaches to modeling lower and upper subjective prob-
abilities. This investigation springs from two motivational sources. First, it is motivated by the
many applications in which interval-valued probability assignments play a role in human probabil-
ity judgments, whether as input into decision making and forecasting or as risk communication (e.g.,
Budescu et al., 2014). Second, it is motivated by recent developments for modeling random vari-
ables on the (0,1) interval, which have resulted in a new family of probability distributions with (0,1)
support, described by Smithson and Merkle (2014) and elaborated in Smithson and Shou (2017).

We begin with a brief description of conventional methods for modeling lower-upper probabil-
ities, followed by the introduction of a heretofore unexplored modeling approach. Then the new
family of distributions is introduced, and extended for the purpose of modeling lower-upper proba-
bilities via the methods described previously. Finally, the models are applied to real data-sets, and
compared for their relative advantages and drawbacks.

Conventional statistical approaches to modeling lower-upper probability assignments treat them
as a pair of dependent random variables. One type of method ignores the ordering and simply
models the dependency either via a “subject-effect” parameter or a covariance. A somewhat more
sophisticated regression-style approach uses a binary dummy predictor that takes a value of 0 for
the lower probabilities and 1 for the upper probabilities and respects the ordering by restricting the
coefficient to being non-negative by exponentiating it (e.g., Smithson et al., 2012).

This paper introduces another approach to modeling lower-upper probabilities, in which the
probability distributions modeling the lower and upper probability assignments share parameters
but take two different forms. This pair of distributions is determined by the so-called “conjugacy”
relation between coherent lower and upper probabilities. Let pL (A) = W (p (A) , θ), be a lower
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probability with respect to probability p(A) so that 0 ≤ W (p (A) , θ) ≤ p(A), for real-valued θ.
The conjugate upper probability is pU (A) = 1−pL (∼ A) , so that pU (A) = 1−W (1− p (A) , θ) .

A version of this relationship may be identified in cumulative distribution functions (CDFs) for
random variables on the (0,1) interval. Consider a CDF, G(x, θ), for 0 ≤ x ≤ 1, with a location
parameter, θ, so that G(0, θ) = 0, G(1, θ) = 1, and G is monotonically increasing in x. Define
GD(x, θ) = 1 − G(1 − x, θ), which clearly also is a CDF. GD is the conjugate dual of G, which
follows by observing that

1−GD (1− x, θ) = 1− [1−G (1− (1− x) , θ)] = G (x, θ) (1)

As a simple example, consider G(x, θ) = xθ, for θ > 0. Then GD(x, θ) = 1 − (1 − x)θ. When
θ < 1G is the upper CDF, when θ = 1 we have the uniform distribution so thatG = GD, and when
θ > 1 G is the lower CDF.

A second example is the beta distribution. It is easy to show that if X is distributed beta(ω, τ)
then GD is the CDF of a random variable, XD, say, that is distributed beta(τ, ω), i.e., the PDF
of X flipped around 1/2. The absolute difference between their means, |(ω − τ)/(ω + τ)|, gives a
convenient index of the distance between the lower and upper distributions. Reparameterizing the
beta distribution so that the parameters are the mean, µ = ω/(ω + τ), and precision, φ = ω + τ , it
is clear that the mean and precision of X jointly determine the magnitude of the difference between
its distribution and that of and its conjugate dual XD.

One- and two-parameter distributions of the kinds illustrated here have very limited flexibility
regarding the location of G and GD; typically the corresponding PDFs are mirror-images of one
another centred on 1/2. Nevertheless, while these pairs of distributions may not be very useful for
modeling real data, the concepts involved turn out to have such applications when applied to the
family of distributions introduced in the next section.

2. CDF-Quantile Distributions

The family of distributions presented here is elaborated in Smithson and Shou (2017) and Shou and
Smithson (2016) implement them in the R package cdfquantile for generalized linear model-
ing. This family is a special case of the T-X family presented by Aljarrah, et al. (2014), although it
was independently described in Smithson and Merkle (2014). Let G(x, µ, σ) denote a CDF for ran-
dom variable X with support (0, 1), a real-valued location parameter µ and positive scale parameter
σ. We define G as follows:

G(x, µ, σ) = F [U(H−1(x), µ, σ)] (2)

where F is a CDF with support denoted by D1, H is an invertible CDF with support denoted by D2,
and U : D2 → D1 is an appropriate transform for incorporating parameters µ and σ. We limit the
domains D1 and D2 to pairs taken from (−∞,∞) and/or (0,∞), and the following cases of U.

For D1 = (−∞,∞) and D2 = (−∞,∞) we put

U(y, µ, σ) = (y − µ)/σ. (3)

For D1 = (−∞,∞) and D2 = (0,∞) we put

U (y, µ, σ) = (log (y)− µ)/σ. (4)
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For D1 = (0,∞) and D2 = (−∞,∞) we put

U (y, µ, σ) = exp (−µ/σ) exp (y/σ) . (5)

Finally, for D1 = (0,∞) and D2 = (0,∞) we put

U (y, µ, σ) = exp (−µ/σ) y1/σ. (6)

If all the functions are differentiable then the PDF g(x, µ, σ) has an explicit expression. If F is
invertible, then for every γ such that G(x, µ, σ) = γ, the quantile functions corresponding to the
cases described in equations (3) to (6) are as follows. For D1 = (−∞,∞) and D2 = (−∞,∞) we
put

G−1 (γ, µ, σ) = H
[
σF−1 (γ) + µ

]
. (7)

For D1 = (−∞,∞) and D2 = (0,∞) we put

G−1 (γ, µ, σ) = H
[
exp

(
σF−1 (γ) + µ

)]
. (8)

For D1 = (0,∞) and D2 = (−∞,∞) we put

G−1 (γ, µ, σ) = H
[
µ+ σ log

(
F−1 (γ)

)]
. (9)

Finally, for D1 = (0,∞) and D2 = (0,∞) we put

G−1 (γ, µ, σ) = H
[
exp (µ)

(
F−1 (γ)

)σ]
. (10)

Smithson and Shou (2017) present 36 members of the CDF-Quantile family by employing six
standard distributions for F and H: The logistic, Cauchy, t with df = 2, arc-sinh, Burr VII, and
Burr VIII distributions. All of these have explicit PDF, CDF, and quantile functions. Smithson and
Shou observe that F and H may exchange roles. The resulting pairs of distributions are”quantile-
duals” of one another in the sense that one’s CDF is the other’s quantile, with the appropriate
parameterization. This duality is due to the fact that (0, 1) is both the domain and range of these
functions. Smithson and Shou denote these distributions with the nomenclature F-H (e.g., Cauchit-
Logistic and Logit-Cauchy).

Smithson and Shou (2017) show that the CDF-Quantile family members share the following
properties:

1. The family can model a wide variety of distribution shapes, with different skew and kurtosis
coverage from the beta or the Kumaraswamy.

2. (Proposition 1, from Smithson and Shou (2017)) Members are self-dual in the sense that
g (x, µ, σ) = g (1− x,−µ, σ). Moreover, G = GD, so the conjugate-CDF duals in this
family consists of identical distributions.

3. (Proposition 2) The median is solely a function of µ, so that µ is genuinely a location param-
eter.

4. (Proposition 3) The parameter σ is a dispersion parameter.
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5. (Proposition 4) Members of this family fall into four subfamilies distinguished by behavior at
the boundaries of the [0, 1] interval, including a subfamily whose density is finite in the limits
at 0 and at 1.

Thus, the CDF-Quantile family enables a wide variety of quantile regression models for random
variables on the (0, 1) interval with predictors for both location and dispersion parameters, and sim-
ple interpretations of those parameters. Smithson and Shou demonstrate that members of the family
can out-perform the beta and other two-parameter distributions in fitting real data. Because they
have explicit CDFs and quantile functions, the CDF-Quantile family is well-suited for multivariate
models using copulas, and an example of this application will be presented later in this paper. Shou
and Smithson (2017) fit a trivariate copula model to real data as a demonstration of how this may
be done using their cdfquantreg package in conjunction with the R package copula.

3. Introducing a Third Parameter to the CDF-Quantile Family

The fact that G = GD for the entire CDF-Quantile family implies that they may be well-suited to
testing the conjugate-CDF model of lower and upper probabilities via the introduction of a third
parameter. Unlike two-parameter distributions such as the beta distribution, for a three-parameter
distribution the third parameter can determine the difference between a CDF and its conjugate dual
CDF.

There are several ways to introduce a third parameter, but we will focus on doing so through
a composition operator. Marshall and Olkin (2007, pp. 494-495) state that the class G of CDFs
G whose support is (0,1) form an algebraic group. This is true of continuous CDFs. The class of
continuous CDFs is closed under the composition operation G1 •G2 = G1 (G2), and this operation
also is associative. The uniform distribution is the identity. Likewise, for any G in G, the quantile
function G−1 also is in G. The quantile-dual relation described in the preceding section is a special
case of this type of closure.

A straightforward way to introduce a third parameter is via an invertible monotonic function
applied either at the outermost or innermost level of the CDF or the quantile function. Applying an
invertible (0, 1)→ (0, 1) transformationW to the innermost level of the CDF, for instance, we have

G (x, µ, σ, θ) = F
[
U
(
H−1 (W (x, θ)) , µ, σ

)]
(11)

and
G−1 (γ, µ, σ, θ) =W−1

[
H
(
U−1

(
F−1 (γ) , µ, σ

))
, θ
]

(12)

If we additionally require that W (0, θ) = 0, W (1, θ) = 1 and W monotonically increasing in x,
then W behaves as a CDF. The conjugate dual CDF therefore is

GD (x, µ, σ, θ) = F
[
U
(
H−1 (1−W (1− x, θ)) , µ, σ

)]
. (13)

Several kinds of CDFs for W and application of the CDF-composition operator are available
from the literature on lifetime distributions. A power (resilience) parameter or a frailty parameter
can be introduced in this way, by applying the CDF-composition operator. The relevant CDF is
xθ, for some θ > 0. Slightly less obviously, introducing a tilt parameter also involves a CDF-
composition, because, for θ > 0, it is a composition of the CDF x/(x+ θ (1− x)) with G(x, µ, σ).
Likewise, a hazard parameter can be introduced via composition using the CDF
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1− exp
[
−(− log (1− x))θ

]
, for θ > 0; and a Laplace transform parameter with the CDF

(
1− e−θx

)/(
1− e−θ

)
, for real θ.

In the cases where the composition is G •W , the introduction of the third parameter yields a
three-parameter CDF-Quantile family with distinct CDFs and conjugate dual CDFs (i.e., G 6= GD)
and possessing certain properties paralleling those derived by Smithson and Shou (2017) for the
two-parameter family. The following Proposition is an extension of Proposition 1 (the self-dual
property) from Smithson and Shou (2017).

Proposition 5.1: Let W (x, θ) be defined as earlier, so that it behaves as a CDF. Let

G (W (x, θ) , µ, σ) = F
[
U
(
H−1 (W (x, θ)) , µ, σ

)]
.

Then if the CDFs F and H satisfy certain symmetry conditions (in the 4 cases detailed below),

1−G (W (1− x, θ) ,−µ, σ) = G (1−W (1− x, θ) , µ, σ) . (14)

Now define
G−1 (Z1 (γ, µ, σ) , θ) =W−1

[
H
(
U−1

(
F−1 (γ) , µ, σ

))
, θ
]
,

and
G−1 (Z2 (γ, µ, σ) , θ) = 1−W−1

[
1−H

(
U−1

(
F−1 (γ) , µ, σ

))
, θ
]
.

These are the quantile functions corresponding to the conjugate dual CDFs G (W (x, θ) , µ, σ) and
G (1−W (1− x, θ) , µ, σ) , respectively. Then G−1 (Z1 (γ, µ, σ) , θ) and G−1 (Z2 (γ, µ, σ) , θ)
behave as conjugate lower-upper probabilities.

Proof : The identity in equation (14) has four cases, corresponding to the four combinations of
domains in the CDF-Quantile family.
Case 1: For D1 = (−∞,∞) and D2 = (−∞,∞) when −H−1 (x) = H−1 (1− x) and f (x) =
f (−x), 1−G (W (1− x, θ) ,−µ, σ, θ) = 1− F

[(
H−1 (W (1− x, θ)) + µ

)/
σ
]

= 1− F
[(
−H−1 (1−W (1− x, θ)) + µ

)/
σ
]
= F

[(
H−1 (1−W (1− x, θ))− µ

)/
σ
]

= G (1−W (1− x, θ) , µ, σ, θ) .
Case 2: For D1 = (−∞,∞) and D2 = (0,∞) when H−1 (x) = 1

/
H−1 (1− x) and f (x) =

f (−x), 1−G
(
W−1 (1− x, θ) ,−µ, σ, θ

)
= 1− F

[(
log
(
H−1 (W (1− x, θ))

)
+ µ

)/
σ
]

= 1− F
[(
− log

(
H−1 (1−W (1− x, θ))

)
+ µ

)/
σ
]
= F

[(
log
(
H−1 (1−W (1− x, θ))

)
− µ

)/
σ
]

= G (1−W (1− x, θ) , µ, σ, θ) .
Case 3: For D1 = (0,∞) and D2 = (−∞,∞) when H−1 (x) = 1

/
H−1 (1− x) and F (x) =

1− F (1/x) , 1−G (1− x,−µ, σ) = 1− F
[(
H−1 (W (1− x, θ)) exp (µ)

)1/σ]

= 1− F
[(
H−1 (1−W (1− x, θ))

)σ
(exp (µ))1/σ

]
= F

[(
H−1 (1−W (1− x, θ)) exp (−µ)

)1/σ]

= G (1−W (1− x, θ) , µ, σ, θ) .
Case 4. For D1 = (0,∞) and D2 = (0,∞) when −H−1 (x) = H−1 (1− x) and F (x) =
1− F (1/x) , 1−G (1− x,−µ, σ) = 1− F

[
exp

((
−H−1 (W (1− x, θ)) + µ

)/
σ
)]

= 1− F
[
exp

((
−H−1 (1−W (1− x, θ)) + µ

)/
σ
)]

= F
[
exp

((
H−1 (1−W (1− x, θ))− µ

)/
σ
)]

= G (1−W (1− x, θ) , µ, σ, θ) .
The conjugacy relationship immediately follows immediately by observing that, in the definition of
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the quantile functions, H
(
U−1

(
F−1 (γ) , µ, σ

))
fulfills the role of x in the function W−1. End of

proof.
The conjugate dual CDFs straddle the CDF G (x, µ, σ) and the resultant lower and upper quan-

tile functions straddle the quantile functionG−1 (γ, µ, σ) . That is, the location of the conjugate-dual
pair is determined by µ, which makes them flexible enough to be worthy candidates for modeling
real data. Propositions 2-4 in Smithson and Shou (2017) also hold for these three-parameter CDF-
Quantile distributions because W is monotonically increasing in x and we can write the quantile
function as W−1

[
H
(
U−1

(
F−1 (γ) , µ, σ

))
, θ
]
. Thus, the median is solely a function of µ and

θ, and σ still is a dispersion parameter. Moreover, the θ parameter has an interpretation as a risk-
attitude parameter, because it determines the difference between the lower and upper CDFs (and
likewise the difference between the corresponding quantile functions). This three-parameter fam-
ily therefore is suited to ascertaining whether samples of lower and upper probability assignments
behave as though they come from populations with conjugate dual distributions.

4. Examples and Applications

4.1 G •W Conjugate Duals

In this subsection we will survey two examples of three-parameter CDF-Quantile distributions of the
G •W type, each one corresponding to a well-known kind of parameterization borrowed from the
life distributions literature. These include the power parameter (which in this case corresponds to a
frailty parameter) and the tilt parameter. The Cauchit-Cauchy distribution will be used throughout
this subsection for illustrative purposes (it also is employed in the data-fitting example in the next
subsection).

Starting with the power parameter, W (x, θ) = xθ and so 1 −W (1 − x, θ) = 1 − (1 − x)θ.
Applied to the Cauchit-Cauchy distribution, we have the conjugate CDF duals As its name suggests,
both F andH are Cauchy CDFs, the power parameter (exponentiated) model simply replaces xwith
xθ, and the conjugate-dual CDF pair is

G (x, µ, σ) =
1

2
+

arctan
((
tan

(
(2πxθ − π)/2

)
− µ

)
/σ
)

π
(15)

and

GD (x, µ, σ) =
1

2
+

arctan
((

tan
(
(2π

(
1− (1− x)θ

)
− π)/2

)
− µ

)
/σ
)

π
(16)

When θ < 1 then G > GD, and when θ > 1 then G < GD.
The tilt parameter, as mentioned earlier, uses the CDF W (x, θ) = x/(x+ θ (1− x)). Applying

it to the Cauchit-Cauchy distribution yields the conjugate CDF duals

G (x, µ, σ) =
1

2
+

arctan ((tan ((2πx/(x+ θ (1− x))− π)/2)− µ) /σ)
π

(17)

and

GD (x, µ, σ) =
1

2
+

arctan ((tan ((2πθx/(1 + x (θ − 1))− π)/2)− µ) /σ)
π

(18)

This model behaves as a rescaled version of the constant-odds-ratio imprecise probability model
described in Walley (1991) and elsewhere. When θ < 1 then G > GD, and when θ > 1 then
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Figure 1: Power- and Tilt-Parameter Conjugate Dual Distributions

G < GD. Figure 1 displays the pairs of CDFs and PDFs for the exponentiated and tilt parameter
models when µ = 0.1, σ = 0.5, and θ = 1.5.

Finally, it is worth mentioning that because any CDF whose support is (0,1) can play the role
of W , a one-parameter version of any member of the CDF-Quantile family may be used in that
capacity, with θ as the location parameter. These alternatives would seem to present a forbiddingly
large variety of models for analysts to consider. However, it turns out that under some conditions
all of them can be very similar to one another with appropriate choices of θ. For many practical
modeling purposes we may restrict attention to a subset of such models, such as the power and
tilt parameter (constant odds-ratio) models, but at this stage of research on these models the best
procedure for selecting among them remains an open topic for further investigation. The next section
presents examples of model-fitting with a real data-set, demonstrating that conjugate dual lower-
upper CDF models can fit lower-upper probability assignments quite well.

4.2 Fitting Models to Data

We now present an example of model-fitting that compares the conjugate lower-upper distributions
with appropriate alternatives for modeling lower-upper probability assignments. The fourth Inter-
governmental Panel on Climate Change (IPCC) report utilizes verbal phrases such as “likely” and
“unlikely” to describe the uncertainties in climate science. Budescu et al. (2009) conducted an ex-
perimental study of lay interpretations of these phrases, using 13 sentences from the IPCC report,
in which they asked 223 participants to provide lower, “best”, and upper numerical estimates of the
probabilities to which they believed each sentence referred. For example, participants were pre-
sented with the sentence “The Greenland ice sheet and other Arctic ice fields likely contributed no
more than 4 m of the observed sea level rise.”, and asked tp consider the probability they thought
the report authors may have had in mind for the term “likely” in this sentence. Participants were
required to provide their lowest, highest, and their best numerical estimates of this probability.
Budescu et al. found that participants’ “best” estimates were more regressive (toward the middle
of the [0, 1] interval) than the IPCC stipulations, but they did not report systematic analyses of the
lower and upper estimates.
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I present 11 models fitted to the lower and upper probability estimates in the Budescu et al. data.
The first three models are based on the two-parameter CDF-Quantile distribution. Model 1 is just
the two-parameter distribution, as defined in equation (3), with intercept-only submodels µ̂ = β0
and σ̂ = exp (δ0). Model 2 has conditional parameter estimates, with submodels µ̂ = β0+β1x and
σ̂ = exp (δ0 + δ1x), where x = 0 for lower probabilities and x = 1 for upper probabilities. Model
3, in addition to the submodels from Model 2, also estimates the dependency between the lower
and upper estimates via a t-copula with CDF-Quantile margins. This model therefore also includes
estimates of the t-copula dependency parameter, ρ, and degrees of freedom parameter, φ.

Models 4-7 are based on the 3-parameter power (exponentiated) CDF-Quantile distribution, as
in the CDF defined in equation (11) with W (x, θ) = xθ. Model 4 has intercept-only submodels
µ̂ = β0, σ̂ = exp (δ0), and θ̂ = exp (γ0). Model 5 is the conjugate-dual model, as defined in
equations (11) and (13). This has the same intercept-only submodels as Model 4 but is a two-
component distribution mixture model with a fixed mixture parameter, so that the first CDF, G, is
weighted 1 and the second, GD, is weighted 0 for the upper probabilities and the reverse weighting
is applied to the lower probabilities. Technically, it is a four-parameter model although the mixture
parameter is not being estimated. Model 6 has conditional parameter estimates, µ̂ = β0 + β1x
and σ̂ = exp (δ0 + δ1x) with x = 0 and 1 for lower and upper probabilities, but an intercept-only
submodel θ̂ = exp (γ0). Model 7 has the conditional µ and σ submodels in Model 6 plus θ̂ =
exp (γ0 + γ1x). Finally, models 8-11 are based on the tilt-parameter CDF-Quantile distribution, as
in the CDF defined in equation (11) with W (x, θ) = x/(x+ θ(1− x)). These models have the
same variants as Models 4-7.

The best-fitting models from the CDF-Quantile family are from the “finite-tailed” subfamily,
whose members have defined, finite densities at 0 and 1 (Smithson and Shou, 2017). The best-
fitting distribution from this subfamily is the Cauchit-Cauchy, so the models considered here are
mainly limited to that distribution. Table 1 displays goodness-of-fit statistics for the 11 models.
The top section of the table presents these results for the three models using the two-parameter
Cauchit-Cauchy. The middle section contains the power-parameter (exponentiated) models, and the
lower section contains the tilted-parameter models. The “Params” column displays the number of
parameters in each model, the “2LL” column shows twice the log-likelihood of the fitted models,
and the “AIC” column is the Akaike Information Criterion, AIC = −2LL + 2p, where p is the
number of parameters in the Params column.

Remarkably, the 4-parameter conjugate-dual models fit the data better than most of the 5- and
6-parameter conditional models and better than the 6-parameter copula model. The conjugate-
dual power-parameter model is superior to the conjugate-dual tilted-parameter model, and is out-
performed only by the 6-parameter conditional tilted-parameter model. Likewise, the conjugate-
dual tilted-parameter model is out-performed only by the 5- and 6-parameter conditional tilted-
parameter models and the 6-parameter conditional power-parameter model.

These results are not due to some kind of fluke in the Cauchit-Cauchy distribution. Other mem-
bers of the finite-tailed subfamily have similar fits for their conjugate-dual models. For instance, the
T2-T2 and the Cauchit-ArcSinh conjugate-dual power-parameter models have AIC’s of -2159 and
-2062, respectively, and both of these out-perform their respective 5- and 6-parameter conditional
power-parameter counterparts.

Figure 2 shows the fitted distributions from the conjugate-dual model (top half of the figure)
and the 6-parameter conditional exponentiated model. The two pairs of fitted distributions are strik-
ingly similar and the conjugate-dual AIC is the better of the two. The facts that the 4-parameter
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Table 1: Cauchit-Cauchy Models and Fits

Model Description Params. 2LL AIC
1 2-parameter 2 595 -591
2 2-parameter condit. µ, σ 4 1378 -1370
3 2-parameter condit. t-copula 6 1584 -1572
4 exponentiated 3-param. 3 616 -609
5 conjugate-dual exponentiated 4 2378 -2372
6 exponentiated condit. µ, σ 5 1392 -1382
7 exponentiated condit. µ, σ, θ 6 1967 -1955
8 tilted 3-param. 3 880 -874
9 conjugate-dual tilted 4 1736 -1730

10 tilted condit. µ, σ 5 2152 -2142
11 tilted condit. µ, σ, θ 6 3118 -3106

Figure 2: IPCC Data and Fitted Distributions

conjugate-dual model fits the data better than a regression model with 6 parameters and that the
fitted distribution shapes are reasonably similar to the empirical distributions lend plausibility to
the seemingly unlikely hypothesis that human lower-upper probability judgments are distributed
approximately as conjugate-dual distributions.
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The exponentiated Cauchit-Cauchy 4-parameter conjugate-dual and 6-parameter conditional re-
gression models may be compared further via the 5-number summaries in Table 2. When compared
with their empirical counterparts (rows 1 and 4 in the table), the conditional model is more accu-
rate than the conjugate-dual model at the 10th quantile, but the reverse is the case for most of the
other quantiles. Both models appear to be fairly accurate in the middle 50% of the distributions.
Again, this is an intriguing outcome for the conjugate-dual model, given that only three of its four
parameters are being estimated from the data.

Table 2: Quantiles and Exponentiated Model Quantile Estimates

Model Estimate .1 .25 .5 .75 .9
empirical lower 0.092 0.301 0.570 0.699 0.779

5 conjugate-dual lower 0.059 0.303 0.535 0.688 0.825
7 conditional lower 0.091 0.378 0.584 0.713 0.834

empirical upper 0.540 0.729 0.858 0.948 0.998
5 conjugate-dual upper 0.298 0.684 0.863 0.935 0.977
7 conditional upper 0.495 0.672 0.846 0.935 0.975

That said, there are practical and technical issues in estimating both conjugate-dual and re-
gression models for the 3-parameter CDF-Quantile distributions. For several of these distributions,
maximum-likelihood estimations of conjugate-dual models of the IPCC data failed to converge,
and regression models yielded high correlations between the parameter estimates for µ and θ (al-
though the latter problem did not occur for any of the successful conjugate-dual models). Moreover,
as Smithson and Shou (2017) observe, model diagnostics and related aspects of model evaluation
for the 2-parameter CDF-Quantile family have yet to be completely thought through. Thus, the
questions of effective estimation procedures and diagnostics for these models are active topics of
research. Nonetheless, the evidence from the example in this section suggests that a sufficiently
well-specified conjugate-dual model using 3-parameter CDF-Quantile distributions can be used to
test a specific type of coherent lower-upper probability relationship.

5. Conclusions and Future Directions

A new family of probability distributions, the CDF-Quantile family, shows promise in modeling
probability judgments. The two-parameter version of the family has been sufficiently well-explored
by Smithson and Shou (2017) to have been made available for generalized linear modeling via the
cdfquantreg package in R and a SAS macro, as presented by Shou and Smithson (2016, 2017),
and those authors also have demonstrated that these distributions can model probabilities better
than other two-parameter distributions such as the beta. This paper has presented an investigation
of the application of the CDF-Quantile family to modeling imprecise distributions of probabilities,
by extending it to incorporate a third parameter.

Because CDFs whose support is the (0,1) interval are closed under composition, and due to
the properties of the CDF-Quantile distributions, three-parameter extensions via the composition of
CDF functions yield conjugate dual pairs of CDFs. This result may hold some theoretical interest. A
future line of research may elaborate the connections between these conjugate duals and imprecise
probability frameworks. There is a natural link with probability boxes (p-boxes, as coined by Ferson
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et al. (2003)), given that the conjugate-dual CDFs form a p-box. Conjugate duals are noteworthy
cases of p-boxes because the “width” of the gap between them is determined in a different way from
the data-driven methods to which Ferson et al. (2003) refer. To my awareness, p-boxes have not
been systematically studied regarding methods of fitting them to lower-upper probability data.

Some conjugate-dual models, in turn, have been found to fit a data-set reasonably well, rais-
ing the possibility that human lower-upper probability assignments may approximate a conjugacy
relationship in their CDFs. Further research will determine whether these findings generalize to
other such data-sets, if elicitation methods influence the results, and what judgment mechanisms
or heuristics account for the phenomenon. However, perhaps the first priority is to ascertain the
connections between the θ parameter, measurement error, and sampling error.

Finally, the three-parameter CDF-Quantile distributions also beg for further investigation. The
overview in this paper only skims their characteristics, and little is known about the advantages
and drawbacks of alternative parameterization methods for θ (e.g., power versus tilt parameters).
Preliminary investigations suggest that the high correlations between parameter estimates may be a
pervasive problem for three-parameter distributions on the unit interval (including three-parameter
generalizations of the beta distribution). Likewise, as mentioned earlier, much remains to be de-
veloped and explored regarding parameter estimation methods and model diagnostics, even for the
two-parameter CDF-Quantile family. The primary goals here have been to introduce this extension
of the CDF-Quantile family and to make a case that it holds some promise for modeling distribu-
tions of lower-upper probability assignments. Accordingly, this paper may be regarded as a prelim-
inary exploration of three-parameter CDF-Quantile distributions, with the unexpected finding that
conjugate-dual distributions may be useful for modeling lower-upper probability assignments.
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Abstract
The notion of a (discrete) coherent lower probability corresponds to a game-theoretical concept
of an exact (cooperative) game. The collection of (standardized) exact games forms a pointed
polyhedral cone and the paper is devoted to the extreme rays of that cone, known as extreme exact
games. A criterion is introduced for testing whether an exact game is extreme. The criterion leads
to solving simple linear equation systems determined by (the vertices of) the core polytope (of the
game), which concept corresponds to the notion of an induced credal set in the context of imprecise
probabilities. The criterion extends and modifies a former necessary and sufficient condition for
the extremity of a supermodular game, which concept corresponds to the notion of a 2-monotone
lower probability. The linear condition we give in this paper is shown to be necessary for an exact
game to be extreme. We also know that the condition is sufficient for the extremity of an exact
game in an important special case. The criterion has been implemented on a computer and we have
made a few observations on basis of our computational experiments.

Keywords: extreme exact game; coherent lower probability; core; credal set; supermodular game;
2-monotone lower probability; min-representation; oxytrophic game.

1. Introduction

The notion of a coherent lower probability and that of an induced credal set (of discrete probability
distributions) are traditional topics of interest in the theory of imprecise probabilities. These notions
correspond to game-theoretical concepts of an exact game and its core (polytope), widely used in the
context of cooperative coalition games. The analogy is even broader: a lower probability avoiding
sure loss corresponds to a weaker concept of a balanced game while a 2-monotone lower probability
(= capacity) corresponds to a stronger concept of a supermodular game, named also a convex game.

The discrete case is considered here: the sample space (= frame of discernment) for distributions
is a fixed finite set N having at least two elements. The elements of N correspond to players in the
context of cooperative game theory and to random variables in yet another context of probabilistic
conditional independence structures. The collection of coherent lower probabilities on N , where
n = |N |, is a polytope in a 2n-dimensional real vector space, while the set of non-negative exact
games is a pointed polyhedral cone whose extreme rays are generated just by extreme points of that
polytope. This paper offers a method to test whether a ray is extreme in the cone of exact games,
which implicitly gives a method to test extreme coherent lower probabilities.

Some effort to develop criteria to recognize the extremity of an exact game was exerted earlier
by Rosenmüller (2000, § 4 of chapter 5) in his book on game theory. He offered one necessary
and one sufficient condition for the extremity based on a min-representation of the exact game;
however, these conditions have a limited scope because they are applicable only in quite special
situations. Nevertheless, in this paper we follow the idea of min-representation and propose a more
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general criterion based on the list of vertices of the respective core, which provides a standard
min-representation of any exact game. Our condition is always necessary for the extremity of an
exact game and we conjecture it is also sufficient, which is the case in a certain special case.

Being motivated by questions raised by Maass (2003), Quaeghebeur and de Cooman (2008)
became interested in extreme lower probabilities and computed these in the case of small n = |N |.
Antonucci and Cuzzolin (2010) considered an enlarging transformation of a credal set with a finite
number of extreme points, when the respective (coherent) lower probability is computed and then a
larger credal set is induced by the lower probability. Note that their second step, namely representing
a coherent lower probability by the vertices of the induced credal set, corresponds to our standard
min-representation of an exact game.

It is always useful to be aware of the correspondence between concepts from different areas.
For example, Wallner (2005) confirmed a conjecture by Weichselberger that the credal set induced
by a (coherent) lower probability has at most n! vertices. However, the same result was achieved
already by Derks and Kuipers (2002) in the context of cooperative game theory. They also made an
interesting observation that whenever a core of an exact game has n! vertices then it has the maximal
number of 2n − 2 facets and gave an example of a game in the relative interior of the exact cone
whose respective core does not have the maximal number of n! vertices.

The criterion we offer here is a modification of the criterion from (Studený and Kroupa, 2016),
where a necessary and sufficient condition was provided for a supermodular game being extreme
in the cone of (standardized) supermodular games. That result was motivated by the research on
conditional independence structures (Studený, 2005), in which context extreme supermodular games
encode submaximal structural conditional independence models. The supermodular criterion leads
to solving a simple linear equation system determined by certain combinatorial structure (of the
core), which concept was pinpointed earlier by Kuipers et al. (2010). The difference here is that
testing the extremity in the supermodular cone leads to one linear equation system, while testing the
extremity in the exact cone may require solving several such equation systems.

What is an added value of this contribution is that we have also implemented both criteria and
provide a web platform for testing the extremity of a supermodular/exact game in the respective
cone for reasonably limited number of players. Of course, this can also be used to test the extremity
of coherent lower probabilities. However, we have intentionally chosen to deal with games because
this approach allows one to utilize the profits of integer arithmetics implementation.

In our paper we assume that the reader is familiar with basic concepts in polyhedral geometry,
namely a polytope (= bounded polyhedron) and its faces/facets/vertices. The structure of the paper
is as follows. In the next section (§ 2) we recall basic concepts and facts. In § 3 the concept of a
min-representation of an exact game and the question of its uniqueness are discussed. After that our
criterion is formulated (§ 4). In Conclusions (§ 5) we give a few remarks based on our computational
experiments. The Appendix contains some proofs.

2. Notation, basic definitions and facts

Let N be a finite non-empty set of variables, |N | ≥ 2, and P(N) := {S : S ⊆ N} its power
set. The symbol RN will denote the set of real vectors whose components are indexed by elements
of N . Analogously, RP(N) is the collection of real functions on P(N) (= vectors with components
indexed by subsets of N ). Given S ⊆ N , the vector χS ∈ RN will denote the zero-one indicator
of S. Given v, x ∈ RN , their scalar product will be 〈v, x〉 :=

∑
i∈N vi · xi.
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2.1 Game-theoretic concepts

By a (cooperative) game we will understand a set function m ∈ RP(N) with m(∅) = 0.

Definition 1 (core, exact game, supermodular game)
Let m : P(N)→ R, m(∅) = 0, be a game. Its core is a polytope in RN defined by

C(m) := {x ∈ RN :
∑

i∈N
xi = m(N) & ∀S ⊆ N

∑

i∈S
xi ≥ m(S) } .

The symbol extC(m) will be used to denote the set of extreme points (= vertices) of C(m). A game
m is balanced if C(m) 6= ∅. A balanced game is called exact if

∀S ⊆ N ∃x ∈ C(m)
∑

i∈S
xi = m(S) .

A game m is supermodular if it satisfies the supermodularity inequalities

∀C,D ⊆ N m(C) +m(D) ≤ m(C ∪D) +m(C ∩D) .

A game m is called `-standardized (` stands for for “lower”; in game theory = zero-normalized) if
m(S) = 0 for any S ⊆ N , |S| ≤ 1. Denote the class of exact `-standardized games by E`(N).

A well-known fact is that any supermodular game, named traditionally convex in game theory,
is exact (Csóka et al., 2011, § 4). A non-negative exact gamem normalized bym(N) = 1 is nothing
but a coherent lower probability; see (Walley, 1991, Corollary 3.3.4).

The fact that, for any S ⊆ N , {x ∈ C(m) :
∑

i∈S xi = m(S) } is a face of C(m) allows one
to observe that any exact game m satisfies a formally stronger condition

∀S ⊆ N ∃x ∈ extC(m)
∑

i∈S
xi = m(S) . (1)

Indeed, every face of a polytope is the convex hull of extreme points of the whole polytope contained
in the face. A necessary condition for the exactness of a game m is that it is superadditive:

∀A,B ⊆ N A ∩B = ∅ m(A) +m(B) ≤ m(A ∪B) .

Indeed, given disjoint A,B ⊆ N there exists x ∈ C(m) with m(A ∪ B) =
∑

i∈A xi +
∑

i∈B xi
and one has both m(A) ≤∑i∈A xi and m(B) ≤∑i∈B xi. In particular, any `-standardized exact
game is non-decreasing with respect to inclusion and non-negative.

It can be derived from results in (Csóka et al., 2011, § 3) that the collection of exact games
is a rational polyhedral cone. Thus, non-negative exact games on P(N) form a pointed rational
cone and the same holds for E`(N). Degenerate non-negative exact games are superset indicators
for singletons in N , which correspond to crisp degenerate probabilities in the context of imprecise
probabilities. Since any non-negative exact game can be written as the sum of an `-standardized
exact game and of a conic combination of these degenerate exact games the question of testing the
extremity in the cone of non-negative exact games reduces to testing the extremity in E`(N).

Definition 2 (extreme exact game)
An `-standardized exact game m : P(N)→ R is extreme if it generates an extreme ray of E`(N).

It can be derived from the fact that E`(N) is a rational cone that any extreme `-standardized
exact game is a multiple of an integer-valued function m : P(N) → Z. In particular, when testing
the extremity of an exact game one can limit oneself to integer-valued functions.
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3. The concept of a min-representation

A useful property of an exact game is that it can be represented as the minimum of a finite collection
of additive games. Specifically, every x ∈ RN defines an additive game

x ∈ RP(N) by the formula x(S) :=
∑

i∈S
xi for any S ⊆ N,

and every exact game can be obtained as the set-wise minimum of a finite collection of such additive
games. This leads to the following concept.

Definition 3 (regular min-representation)
We say that m ∈ RP(N) has a min-representation (by additive functions) if a non-empty finite set
R ⊆ RN exists such that

∀S ⊆ N m(S) = min
x∈R

∑

i∈S
xi . (2)

Every x ∈ R is then assigned the corresponding tightness class of sets

T mx := {S ⊆ N : m(S) =
∑

i∈S
xi } . (3)

We say that a min-representationR ⊆ RN of a game m is regular if, for any x ∈ R,

(i)
∑

i∈N xi = m(N), and

(ii) the linear hull of {χS : S ∈ T mx } ⊆ RN is whole RN .

Note that an equivalent formulation of the regularity condition (ii) is that the only vector in RN
which is orthogonal to all vectors from {χS : S ∈ T mx } is the zero vector. There exists at least
one regular min-representation for every exact game.

Proposition 4 (min-representations of exact games)
A gamem ∈ RP(N) is exact iff it admits a min-representationR satisfying (i) for any x ∈ R. Every
exact game has a regular min-representation given by the list of vertices of its core: R = extC(m).
A min-representationR ⊆ RN of an exact game m is regular iffR ⊆ extC(m).

The proof of Proposition 4 is shifted to Appendix, §A.1. In particular, any exact gamem has the
largest regular min-representation which we consider to be a kind of standard min-representation
of m. Note that a simple example of a non-exact game exists which has a min-representation.

3.1 On uniqueness of regular min-representations

In general, one can have several regular min-representations of an exact game. On the other hand,
sometimes only one regular min-representation exists, which happens iff the next condition holds.

Definition 5 (oxytrophic game)
We say that an exact game m : P(N)→ R is oxytrophic if ∀x ∈ extC(m)

∃S ⊆ N with
∑

i∈S xi = m(S) such that ∀ y ∈ extC(m), y 6= x m(S) <
∑

i∈S
yi . (4)
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This relevant mathematical concept has already appeared in the literature and we have simply
taken over the terminology by Rosenmüller (2000, § 3 of chapter 5). The following gives an example
of an oxytrophic game, which is extreme in E`(N).

Example 1 Put N = {a, b, c, d} and consider R ⊆ RN consisting of 4 vectors (xa, xb, xc, xd),
namely (1, 1, 1, 1), (2, 2, 0, 0), (2, 0, 2, 0), (0, 2, 2, 0). Then the formula (2) gives

m(abcd) = 4, m(abc) = 3, m(abd) = m(acd) = m(bcd) = m(ab) = m(ac) = m(bc) = 2,

and m(S) = 0 for other S ⊆ N . One can verify by computation that R = extC(m), which
allows one to check the condition (4) for any x ∈ extC(m): (1, 1, 1, 1) has one respective set
S = abc, while (2, 2, 0, 0) has even two respective sets S = c and S = cd, etc. In particular, m is
oxytrophic. Moreover,m is also an example of an (extreme) exact game which is not supermodular:
m(ac) +m(bc) = 4 > 3 = m(abc) +m(c).

An interesting observation is that in case |N | = 3 the `-standardized oxytrophic games are just
the zero game and extreme exact games. However, in case |N | = 4 an extreme exact game exists
which is not oxytrophic. The next example is even a supermodular game.

Example 2 Put N = {a, b, c, d} and introduce m(abcd) = 2, m(abc) = m(abd) = m(acd) = 1,
and m(S) = 0 for other S ⊆ N . Then the core C(m) has seven vertices (xa, xb, xc, xd), namely
four substantial ones denoted by

R : (2, 0, 0, 0), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1),

and three additional ones, namely

(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1).

The vectors in R satisfy (4): S = bcd for (2, 0, 0, 0), S = ad for (0, 1, 1, 0), S = ac for (0, 1, 0, 1)
and S = ab for (0, 0, 1, 1). However, the remaining 3 vertices of C(m) do not satisfy (4) and m is
not oxytrophic. On the other hand, every regular min-representation involves R and vectors in R
provide a min-representation of m. Thus,R is the least regular min-representation of m.

On the other hand, an exact game can have several inclusion-minimal regular min-representations
(see later Example 5). The following example shows that an oxytrophic game need not be extreme.

Example 3 Put N = {a, b, c, d} and m(abcd) = 2, m(S) = 1 for S ⊆ N , |S| = 3, while
m(ab) = m(cd) = 1, and m(S) = 0 for other S ⊆ N . Then R = extC(m) has four vectors
(xa, xb, xc, xd), namely (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1) and (1, 0, 1, 0). The vectors in R satisfy
(4): S = ac for (0, 1, 0, 1), S = ad for (0, 1, 1, 0), S = bc for (1, 0, 0, 1) and S = bd for (1, 0, 1, 0).
Thus, m is oxytrophic. On the other hand, m is the sum of two other supermodular games m1 and
m2, where m1 is the indicator of supersets of ab and m2 is the indicator of supersets of cd.

4. The criterion: a conjecture and results

Assume now that m ∈ E`(N) is an `-standardized exact game. Then the core C(m) consists of
non-negative vectors and the same holds for its vertices: extC(m) ⊆ [0,∞)N . In this section we
formulate our linear core-based criterion.

317
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4.1 Some arrangement

To formalize our conjecture let us choose and fix an auxiliary index set Υ for the vertices of the core
of m and imagine (= have) the vertex set extC(m) arranged in the form of a real array x ∈ RΥ×N

whose rows are indexed by Υ and columns by N :

x := [x(τ, i) ]τ∈Υ,i∈N ∈ RΥ×N where extC(m) = { [x(τ, i)]i∈N : τ ∈ Υ }.
Recall that the minimization formula (2) for R = extC(m) means that m is obtained by set-wise
minimization in the array x over its rows:

∀S ⊆ N m(S) = min
τ∈Υ

∑

i∈S
x(τ, i) .

In this context, the tightness classes (3) correspond to elements of Υ:

Tτ := {S ⊆ N : m(S) =
∑

i∈S
x(τ, i) } for any τ ∈ Υ.

For computational and implementation reasons, it is advisable to consider a special big zero-one
tightness array encoding all tightness classes. This indicator array ι has rows indexed by Υ and
columns by subsets of N :

ι := [ ι(τ, S) ]τ∈Υ,S⊆N ∈ {0, 1}Υ×P(N) where ι(τ, S) =

{
1 if m(S) =

∑
i∈S x(τ, i),

0 otherwise.

Note that ι serves as computer encoding of the concept of a combinatorial core structure mentioned
in (Studený and Kroupa, 2016). By Proposition 4, the concept of a regular min-representation of m
corresponds in this context to a special subset of the set of rows, namely Γ ⊆ Υ satisfying

∀S ⊆ N m(S) = min
τ∈Γ

∑

i∈S
x(τ, i) . (5)

To test whether Γ ⊆ Υ satisfies (5) one can consider the restricted tightness array ιΓ ∈ {0, 1}Γ×P(N)

to rows in Γ and check whether each column in ιΓ contains least one 1. Thus, a computer can be
used to find all inclusion-minimal regular min-representations of m on basis of ι.

4.2 The linear equation systems

Every regular min-representation Γ ⊆ Υ satisfying (5) can be ascribed a system of linear constraints
on the respective sub-array specified by rows in Γ:

yΓ = [ y(τ, i) ]τ∈Γ,i∈N ∈ RΓ×N .

Specifically, the constraints are as follows:

(a) ∀ τ ∈ Γ ∀ i ∈ N with {i} ∈ Tτ y(τ, i) = 0 ,

(b) ∀S ⊆ N, |S| ≥ 2, ∀ τ, ρ ∈ Γ with S ∈ Tτ ∩ Tρ
∑

i∈S y(τ, i) =
∑

i∈S y(ρ, i) .

It is not difficult to observe that the starting restricted array xΓ ∈ RΓ×N satisfies the constraints
(a)-(b); this is because these constraints are determined by xΓ through ιΓ. Informally, the conjecture
is that the extremity means that, for any min-representation Γ, the equation system (a)-(b) has unique
solution up to a real multiple.
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Conjecture 6 An `-standardized exact game m ∈ E`(N) is extreme in E`(N) iff, for every Γ ⊆ Υ
satisfying (5), every real solution yΓ ∈ RΓ× N to (a)-(b) is a multiple of xΓ ∈ RΓ× N , that is,

∃β ∈ R ∀ τ ∈ Γ ∀ i ∈ N y(τ, i) = β · x(τ, i) .

The constraints (a)-(b) for fixed Γ ⊆ Υ can be written in the form of a matrix equality

CΓ · yΓ = 0, where CΓ is an appropriate constraint matrix with entries in {−1, 0,+1}.

The rows of CΓ encode the constraints and its columns correspond to the elements of Γ ×N . The
matrix is sparse: every constraint of type (a) is encoded by a row with one non-zero component
while any constraint of type (b) for S ⊆ N , |S| ≥ 2, is encoded by a row containing |S|-times a
component +1, |S|-times a component −1 and 0 otherwise.

The number of rows can be economized because some of the constraints of type (b) follow from
the others. For example, whenever S ⊆ N , |S| ≥ 2, belongs to Tτ ∩Tρ∩Tσ for different τ, ρ, σ ∈ Γ
then only two constraints

∑

i∈S
y(τ, i)−

∑

i∈S
y(ρ, i) = 0 and

∑

i∈S
y(τ, i)−

∑

i∈S
y(σ, i) = 0

are enough. Therefore, if λ(S), for S ⊆ N , denotes the number of 1’s in the respective column of
the tightness array ιΓ, then the economized number of rows in CΓ is

∑

S⊆N : |S|=1

λ(S) +
∑

S⊆N : |S|≥2

[λ(S)− 1] .

Testing of the condition from Conjecture 6 for fixed Γ ⊆ Υ can be realized by computing the nullity
of the matrix CΓ, which is the dimension of the space of solutions yΓ to CΓ · yΓ = 0. Any solution
to (a)-(b) is a multiple of xΓ iff the nullity is 1; otherwise the nullity exceeds 1.

The following observation is useful to avoid testing all regular min-representations.

Proposition 7 Given an `-standardized exact gamem ∈ E`(N) assume the situation from § 4.1 and
take Γ ⊆ Υ satisfying (5). If every real solution yΓ ∈ RΓ× N to (a)-(b) is a multiple of xΓ ∈ RΓ× N

then the same holds in case of any Σ such that Γ ⊆ Σ ⊆ Υ.

The proof of Proposition 7 is shifted to Appendix, §A.2. The consequence of this observation
is that to test the condition from Conjecture 6 it is enough to consider only the inclusion-minimal
regular min-representations; this simplification may spare the computational time. What we have
actually shown in the proof of Proposition 7 is that

whenever Γ ⊆ Υ satisfies (5) and Γ ⊆ Σ ⊆ Υ then null (CΓ) ≥ null (CΣ) ≥ 1 ,

meaning that the nullity (of constraint matrices) achieves its maximal value at one of the inclusion-
minimal regular min-representations; see later Example 4 for illustration.
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4.3 Our theoretical results

Proposition 8 Given a non-zero game m ∈ E`(N), the condition from Conjecture 6, that is,

∀Γ ⊆ Υ satisfying (5), every real solution yΓ ∈ RΓ× N to (a)-(b) is a multiple of xΓ ∈ RΓ× N ,

is necessary for m being extreme in E`(N).

The proof of Proposition 8 is shifted to Appendix, §A.3. Another comment is that, in case m is
a supermodular function, a necessary and sufficient condition for its extremity in the supermodular
cone is that the condition from Conjecture 6 holds for the largest set Γ = Υ (Studený and Kroupa,
2016). The relation is illustrated by the next example.

Example 4 Put N = {a, b, c, d}, m(abcd) = 4, m(S) = 2 for S ⊆ N with |S| = 3, m(S) = 1 for
any S ⊆ N with |S| = 2 except m(cd) = 0 and m(S) = 0 for remaining S ⊆ N . One can easily
verify that m is a supermodular game. The core R = extC(m) consists of 13 vertices. To confirm
that m is extreme in the supermodular cone one can use our method: the nullity of the respective
constraint matrix CΥ is 1. However, this is not the only Γ ⊆ Υ with null (CΓ) = 1; there exists
Σ ⊂ Υ with |Σ| = 9 such that null (CΓ) = 1 iff Σ ⊆ Γ ⊆ Υ.

On the other hand, m is not an extreme exact game for it can be written as the sum of the game

m1(abcd) = 2, m1(S) = 1 for S ⊆ N , |S| = 3, and m1(ac) = m1(bc) = m1(bd) = 1

(vanishing otherwise) and the game

m2(abcd) = 2, m2(S) = 1 for S ⊆ N , |S| = 3, and m2(ab) = m2(ad) = 1

(vanishing otherwise). Both m1 and m2 appear to be extreme in E`(N). The core C(m1) has
three vertices (xa, xb, xc, xd), namely (1, 1, 0, 0), (0, 1, 1, 0) and (0, 0, 1, 1), while C(m2) has four
of them: (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1) and (0, 1, 0, 1). The set R∗ := ext [C(m1) ⊕ C(m2) ],
where X ⊕ Y := {x + y : x ∈ X & y ∈ Y } denoted the Minkowski sum of sets X,Y ⊆ RN ,
defines a regular min-representation of m. The respective index set Γ∗ ⊆ Υ has 10 elements and
one can construct two different solutions yΓ∗ ∈ RΓ∗× N to (a)-(b) on the basis of the standard
min-representations of m1 and m2. Nevertheless, one even has null (CΓ∗) = 4 in this case.

However, Γ∗ does not provide the least regular min-representation of m. We found using a
computer 27 inclusion-minimal regular min-representations of 10 permutation types; 8 of them
have only four vectors (3 types) and 19 of them have five vectors (7 types). The nullities for the
above mentioned inclusion-minimal min-representations are 6 and 7, which is the maximal nullity.

We also achieved the following partial converse result, whose proof we skip due to lack of space.

Proposition 9 Given non-zero m ∈ E`(N) such that the least R ⊆ extC(m) satisfying (2) exists,
the condition from Conjecture 6 is sufficient for m being extreme in E`(N).

The idea of the proof of Proposition 9 is that different solutions to (a)-(b) are constructed on the
basis of standard min-representations of potential summands of m. Note that the condition from
Proposition 9 involves the special case of oxytrophic m ∈ E`(N). On the other hand, an extreme
exact game exists not having the least regular min-representation as the following example shows.
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Example 5 Put N = {a, b, c, d} and define m(abcd) = 3, m(abc) = m(abd) = m(ab) = 2,
m(acd) = m(bcd) = m(ac) = m(bc) = 1 with m(S) = 0 for remaining for S ⊆ N . Then the set
R = extC(m) has 5 vectors (xa, xb, xc, xd). Three of them satisfy the oxytrophy condition (4):

R : (2, 0, 1, 0), (0, 2, 1, 0), (1, 1, 0, 1),

and two of them not: (2, 1, 0, 0) and (1, 2, 0, 0). Adding of any of two other vectors to R turns it
into an inclusion-minimal regular min-representation.

5. Conclusions

We have prepared a web platform for testing the extremity of an `-standardized integer-valued exact
game, available at

http://gogo.utia.cas.cz:3838/exact-and-supermodular/ .

It also allows one to test the extremity of supermodular games in the supermodular cone.
We have tested our criterion on 41 permutation types of 398 extreme `-standardized exact games

over 4 variables; these were also earlier listed by Quaeghebeur and de Cooman (2008). What we
have found out is that 20 of these types are oxytrophic; one of them is mentioned in Example 1.
The remaining types are not, but for 19 of these the least min-representation exists; one of them is
mentioned in Example 2. We also found 2 types of extreme exact games for which two inclusion-
minimal regular min-representations exist; one of these 2 types is given in Example 5.

In all 41 cases the necessary condition from Proposition 8 is valid: the nullities of the respective
constraint matrices are 1. Proposition 9 is applicable in great majority of 39 cases, when the least
regular min-representation exists. Thus, in these 39 cases our linear criterion allows one to confirm
the extremity. However, in the remaining 2 cases one cannot apply Proposition 9 to confirm the
extremity and an open question is whether our condition from Conjecture 6 is sufficient for the
extremity of an exact game in general.
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Appendix A. Proofs

A.1 Proof of Proposition 4

If m has a min-representation R satisfying (i) for any x ∈ R then (2) implies ∅ 6= R ⊆ C(m)
and the condition of exactness for m is evident. Conversely, given an exact game m we put R =
extC(m) and use (1) to observe that (2) holds with R in place of R. The regularity condition (i)
for R is evident. To verify (ii) consider a fixed x ∈ R = extC(m) and realize that the vectors in
V := {χS ∈ RN : S ∈ T mx } ∪ {−χN} belong to the (inner) normal cone of (the least face of
C(m) containing) the vector x defined by

Nx := { v ∈ RN : ∀y ∈ C(m) 〈v, y〉 ≥ 〈v, x〉 } ≡ { v ∈ RN : 〈v, x〉 = min
y∈C(m)

〈v, y〉 };
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indeed, for v = χS , S ∈ T mx , one has 〈v, y〉 =
∑

i∈S yi ≥ m(S) =
∑

i∈S xi = 〈v, x〉 for any
y ∈ C(m). The cone Nx is the conic hull of V , which observation can be derived from Farkas’s
lemma: if t ∈ RN is not in the conic hull of V then w ∈ RN exists such that 〈v, w〉 ≥ 0 for any
v ∈ V while 〈t, w〉 < 0. The former condition allows one to show that yε := x + ε · w belongs to
C(m) for some small 0 < ε. The latter one implies that 〈t, yε〉−〈t, x〉 = 〈t, yε−x〉 = ε·〈t, w〉 < 0,
implying that t 6∈ Nx.

The next observation is that, for any x ∈ C(m), x is a vertex of C(m) iff its normal cone Nx is
full-dimensional. This result holds for any polytope P ⊆ RN in place of C(m). To see why this is
the case the reader is advised to consult (Ziegler, 1995, § 7.1) for basic facts about the collection of
normal cones for a polytope P , named the normal fan of the polytope. It is easy to realize that the
lattice of normal cones is anti-isomorphic to the face-lattice of P . Specifically, the latter means, for
x, y ∈ P , that one has Ny ⊆ Nx iff F [y] ⊇ F [x], where F [x] denotes the least face of P containing
x ∈ P . To this end realize that, for any v ∈ Nx and z ∈ P , 〈v, x〉 = 〈v, z〉 iff v ∈ Nz , which allows
one to observe F [x] :=

⋂
v∈Nx

{z ∈ P : 〈v, x〉 = 〈v, z〉} = {z ∈ P : Nx ⊆ Nz}. Hence,

x is a vertex of P ⇔ F [x] = {x} ⇔ Nx is a maximal cone ⇔ Nx has the dimension |N |.

By the former observation, the linear hull of Nx is the linear hull of {χS : S ∈ T mx }, which
implies the condition (ii) for x ∈ R.

Thus, it follows from above arguments that any min-representation R ⊆ extC(m) is regular.
Conversely, given a regular min-representation R of m, its elements belong to the core of m and
the second regularity condition (ii) for x ∈ R implies that the respective normal cone Nx is full-
dimensional, which happens only in case x is a vertex of C(m).

A.2 Proof of Proposition 7

In case Γ ⊆ Σ ⊆ Υ, it is evident that whenever yΣ ∈ RΣ×N satisfies (a)-(b) with Σ then its
restriction yΓ ∈ RΓ×N to Γ × N satisfies (a)-(b) with Γ. The restriction mapping yΣ 7→ yΓ is
linear and we show that it is one-to-one (under the assumptions from § 4.1). Thus, we assume that
y1

Σ, y
2
Σ ∈ RΣ×N are two solutions to (a)-(b) with Σ such that their restrictions to RΓ×N coincide,

that is y1
Γ = y2

Γ, and we are going to show y1
Σ = y2

Σ.
Consider a fixed τ ∈ Σ \ Γ and our goal is to verify that y1(τ, i) = y2(τ, i) for any i ∈ N . To

this end, we show that, for any S ∈ Tτ one has
∑

i∈S y
1(τ, i) =

∑
i∈S y

2(τ, i) and then apply the
fact that the vectors {χS : S ∈ Tτ} linearly generate RN (see Definition 3 and Proposition 4). In
case S ∈ Tτ , S = {i}, use (a) for Σ to observe y1(τ, i) = 0 = y2(τ, i). In case S ∈ Tτ , |S| ≥ 2,
use the assumption that Γ ⊆ Υ satisfies (5) and find ρ ∈ Γ such that S ∈ Tρ. The constraints (b)
with Σ then imply

∑

i∈S
y1(τ, i)

(b)
=
∑

i∈S
y1(ρ, i) =

∑

i∈S
y2(ρ, i)

(b)
=
∑

i∈S
y2(τ, i) ,

which gives what is desired. Thus, if every solution to (a)-(b) with Γ is a multiple of xΓ then every
solution to (a)-(b) with Σ must be a multiple of xΣ.

A.3 Proof of Proposition 8

To verify the necessity of the condition it is enough to show that its negation implies that m is a
convex combination of m1,m2 ∈ E`(N) none of which is a multiple of m.
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For this purpose assume, under the situation described in § 4.1, that there exists Γ ⊆ Υ satisfying
(5) such that the equation system (a)-(b) has a solution y ∈ RΓ× N which is not a multiple of
xΓ ∈ RΓ× N . Note that the facts m 6= 0 and (5) imply that xΓ 6= 0.

The first observation is that, for any y ∈ RΓ× N satisfying (a)-(b), an `-standardized game
t ∈ RP(N) exists such that

∀ γ ∈ Γ ∀S ∈ Tγ t(S) =
∑

i∈S
y(γ, i) . (6)

To this end realize that (a)-(b) for y together imply the next consistency condition

∀S ⊆ N ∀ τ, ρ ∈ Γ with S ∈ Tτ ∩ Tρ
∑

i∈S
y(τ, i) =

∑

i∈S
y(ρ, i) .

Since (5) implies P(N) =
⋃
γ∈Γ Tγ , one can correctly define t using (6). This game t is uniquely

determined through (6); moreover, the function y ∈ RΓ×N 7→ t ∈ RP(N) is linear by definition.
Finally, the fact that m is `-standardized together with the condition (a) for y imply that t must be
`-standardized, too.

Consider the line L in RΓ×N passing through y and xΓ, namely the vectors

zε := (1− ε) · xΓ + ε · y for any ε ∈ R .

Observe that L does not contain the zero vector in RΓ×N as otherwise y is a multiple of xΓ. As
vectors in L satisfy (a)-(b), `-standardized games qε, ε ∈ R, exist such that

∀ ε ∈ R ∀ γ ∈ Γ with S ∈ Tγ
∑

i∈S
zε(γ, i) = qε(S) .

The next step is to show that, for sufficiently small |ε|, one has

∀ γ ∈ Γ with S 6∈ Tγ
∑

i∈S
zε(γ, i) > qε(S) , (7)

which implies, for those small |ε|, that

qε(S) = min
γ∈Γ

∑

i∈S
zε(γ, i) for any S ⊆ N.

This implies that zε(γ, ∗) ∈ RN , γ ∈ Γ, belong to the core C(qε); in particular, qε ∈ E`(N).
To ensure (7) for small |ε|, consider a fixed γ ∈ Γ and S ⊆ N , S 6∈ Tγ , and choose π ∈ Γ such

that S ∈ Tπ, by (5). The definitions of Tγ and Tπ then imply

0 <
∑

i∈S
xΓ(γ, i) − m(S) =

∑

i∈S
xΓ(γ, i) −

∑

i∈S
xΓ(π, i) .

This allows one to write
∑

i∈S
zε(γ, i) − qε(S) =

∑

i∈S
zε(γ, i) −

∑

i∈S
zε(π, i)

= (1− ε) ·
(∑

i∈S
xΓ(γ, i)−

∑

i∈S
xΓ(π, i)

)

︸ ︷︷ ︸
>0

+ ε ·
(∑

i∈S
y(γ, i)−

∑

i∈S
y(π, i)

)
,
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and observe that the limit of this expression with ε tending to zero is positive. Therefore, after
considering all pairs (γ, S), γ ∈ Γ, S 6∈ Tγ , (7) is ensured for sufficiently small |ε|.

Thus, there exists 0 < ε such that both r := (1− ε) ·m+ ε · t and s := (1 + ε) ·m− ε · t belong
to E`(N). Clearly, m = 1

2 · r+ 1
2 · s. Neither r nor s is a multiple of m as otherwise the linearity of

the one-to-one correspondence y ∈ RΓ×N ↔ t ∈ RP(N) implies that the line L contains the zero
vector in RΓ×N , which is not the case.
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P. Csóka, P. J.-J. Herings, and L. A. Kóczy. Balancedness conditions for exact games. Mathematical
Methods of Optimization Research, 74:44–52, 2011.

J. Derks and J. Kuipers. On the number of extreme points of the core of a transferable utility game.
In P. Borm and H. Peters, editors, Chapters in Game Theory in Honour of Stef Tijs, pages 83–97.
Kluwer, 2002.

J. Kuipers, D. Vermeulen, and M. Voorneveld. A generalization of the Shapley-Ichiishi result.
International Journal of Game Theory, 39:585–602, 2010.

S. Maass. Continuous linear representation of coherent lower previsions. In J. M. Bernard, T. Sei-
denfeld, and M. Zaffalon, editors, Proceedings in Informatics 18: ISIPTA’03, pages 372–382.
Carleton Scientific, 2003.

E. Quaeghebeur and G. de Cooman. Extreme lower probabilities. Fuzzy Sets and Systems, 159:
2163–2175, 2008.

J. Rosenmüller. Game Theory: Stochastics, Information, Strategies and Cooperation. Kluwer,
Boston, 2000.
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Abstract
This brief paper is an exploratory investigation of how we can apply sensitivity analysis over im-
portance sampling weights in order to obtain sampling estimates of lower previsions described by
a parametric family of distributions. We demonstrate our results on the imprecise Dirichlet model,
where we can compare with the analytically exact solution. We discuss the computational limi-
tations of the approach, and propose a simple iterative importance sampling method in order to
overcome these limitations. We find that the proposed method works pretty well, at least in the
example studied, and we discuss some further possible extensions.
Keywords: importance sampling; lower prevision; Monte Carlo; optimisation.

1. Introduction

Various sensible approaches to sampling for lower previsions can be found in the literature. Some
of these are:
• two-level Monte Carlo sampling, where first one samples distributions over the (extreme

points of the) credal set, and then samples from these distributions,
• sampling random sets, and then evaluating the resulting belief function (Moral and Wilson,

1996), and
• perform importance sampling from a reference distribution, and then solve an optimisation

problem over the importance sampling weights (O’Neill, 2009; Fetz and Oberguggenberger,
2015; Zhang and Shields, 2016).

The first is inefficient, and only provides a non-conservative solution. The second is more efficient,
but requires a large number of optimisation problems to be solved (one for each sample), and re-
quires a suitable belief function approximation to be identified if one wants to apply this to arbitrary
lower previsions. The third can be quite effective. For example, de Angelis et al. (2015) have
successfully used sensitivity analysis over importance sampling weights with respect to the mean
parameter of a normal distribution. Fetz and Oberguggenberger (2015) used importance sampling
over both the mean and the variance parameters of a normal distribution using a 2-dimensional grid.
A case study comparing a wide range of techniques, specifically aimed at reliability analysis, can
be found in Oberguggenberger et al. (2009). Here, we are interested in seeing whether importance
sampling can be performed over larger parameter spaces and distributions with non-trivial normali-
sation constants, using standard high-dimensional optimisation procedures.

Importance sampling in imprecise probability has been studied already in the ’90s; see for ex-
ample Moral and Wilson (1996); Cano et al. (1996); Hernández and Moral (1997) for some early
works. In this paper, we follow O’Neill (2009), and look specifically at how we can use sensitiv-
ity analysis over the importance sampling weights directly in order to obtain sampling estimates,
without needing to draw large numbers of samples, and without needing to solve large numbers
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of optimisation problems. Unlike O’Neill (2009), however, we do not just look at Bayesian sen-
sitivity analysis, and admit arbitrary sets of distributions in our theoretical treatment. Also unlike
for instance O’Neill (2009); de Angelis et al. (2015); Fetz and Oberguggenberger (2015); Zhang
and Shields (2016), in this paper, we use self-normalised importance sampling instead of standard
importance sampling, as we find that this drastically speeds up calculations.

The main contribution of this paper is a simple yet novel (as far as we know) iterative impor-
tance sampling method that requires far less computational power compared to standard importance
sampling methods for sensitivity analysis, in the sense that far smaller samples can be used, and
that far smaller optimisation problems need to be solved. The key novelty is the idea of iteratively
changing the importance sampling distribution itself, in order to ensure that the final answer has an
effective sample size that is as close as possible to the actual sample size.

No novel theory is proved in the paper, however we do demonstrate the method on a fully
worked example. This leads us to conjecture that convergence of the technique can be established
under certain circumstances.

Section 2 reviews the basic theory behind importance sampling. Section 3 looks at how sensi-
tivity analysis can be applied on importance sampling. An example of this approach is discussed in
section 4, and various issues are identified. Section 5 describes a simple way of addressing some of
these issues. The example is revisited in section 6. Section 7 concludes the paper with a discussion
and some further ideas for future research.

2. Importance Sampling

In this section, we review the basic ideas behind importance sampling. For the theory behind the
results that are presented here, we refer to Owen (2013, Chapter 9).

Assume we have an i.i.d. sample x1, . . . , xn drawn from a strictly positive probability den-
sity function q. Throughout the entire paper, we will consider many different probability density
functions, but the sample x1, . . . , xn will always be one drawn from q. Assume we have a real-
valued function f(x), and we would like to calculate the expectation of f with respect to some
other probability density function p.

In case p = q, by the central limit theorem, an approximate 95% confidence interval for the
expectation of f with respect to q is then given by µ̂ ± 1.96σ̂/

√
n where

µ̂ :=
1

n

n∑

i=1

f(xi) σ̂2 :=
1

n− 1

n∑

i=1

(f(xi)− µ̂)2 (1)

Can we use the same sample x1, . . . , xn drawn from q to get an estimate for the expectation of
f with respect to p 6= q? The following equality gives a clue as to how we might do that:

∫
f(x)p(x)dx =

∫
p(x)

q(x)
f(x)q(x)dx =

∫
wp(x)f(x)q(x)dx (2)

where wp = p/q. So, the expectation of f with respect to p is the same as the expectation of wpf
with respect to q, and therefore an approximate 95% confidence interval for the expectation of f
with respect to p is then given by µ̂p ± 1.96σ̂p/

√
n where

µ̂p :=
1

n

n∑

i=1

wp(xi)f(xi) σ̂2p :=
1

n− 1

n∑

i=1

(wp(xi)f(xi)− µ̂p)2 (3)
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This estimate is called the importance sampling estimate.
Often, the normalisation constant of the densities is unknown, or is slow to compute, and we

only know w′p = cp/q for some unknown value of c. In this case, we can use the self-normalised
importance sampling estimate:

µ̂p :=

∑n
i=1w

′
p(xi)f(xi)∑n

i=1w
′
p(xi)

σ̂2p :=
1

n− 1

1
n

∑n
i=1w

′
p(xi)

2(f(xi)− µ̂p)2(
1
n

∑n
i=1w

′
p(xi)

)2 (4)

Although σ̂2p gives an indication of the quality of the estimate, one must be wary that σ̂2p is by itself
only an approximation of the true error. An additional diagnostic to consider is the effective sample
size, which can be calculated as follows:

np :=

(∑n
i=1w

′
p(xi)

)2
∑n

i=1w
′
p(xi)

2
(5)

Note that there are many different ways to define effective sample size and even more ways to define
diagnostics for importance sampling. What matters for this paper is that a low np is bad, and that
np ' n is good. For an in-depth discussion about diagnostics for importance sampling, we refer to
Owen (2013, Section 9.3).

3. Sensitivity Analysis

Importance sampling has many different uses, including variance reduction, numerical integration,
and Bayesian inference. In this paper, we aim to study importance sampling in order to do inference
over sets of distributions.

A key observation is that we can use importance sampling in order to estimate the lower previ-
sion of a gamble f . O’Neill (2009) studied this technique already in a Bayesian setting. Here, we
present the theory generally for an arbitrary set of probability density functions.

Say we have some set M of probability density functions. The lower prevision of f is then
defined as

E(f) := min
p∈M

∫
f(x)p(x)dx (6)

where we assume that the minimum is achieved, for simplicity of presentation. But we know that
µ̂p ± 1.96σ̂p/

√
n provides a confidence interval for the integral on the right hand side. So, if

p∗ := arg min
p∈M

µ̂p (7)

then µ̂p∗ ± 1.96σ̂p∗/
√
n provides a 95% confidence interval for E provided that p∗ is equal to, or

close enough to, the density that minimises the expectation in eq. (6). The key observation here is
that we only need a single sample x1, . . . , xn, and that the optimisation procedure operates on the
weights only.

One issue with this method is that σ̂p∗ can be very large. So, the method will only work if σ̂p
remains reasonably bounded. From the literature on importance sampling for variance reduction,
we know that good choices for q are those that are proportional to |f |p (Owen, 2013, Chapter 9,
p. 6). So, in case M covers a wide range of distributions p, it may be hard to identify a single
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sampling distribution q. Zhang and Shields (2016, Section 3) discuss ways of chosing optimal
sampling distributions for credal sets.

A second problem is that, in general, there is no single sampling distribtution q that can guaran-
tee a good effective sample size for all p inM. Consequently, with this approach, even if we try to
chose q optimally, the effective sample size at p∗ can still become extremely low.

A third problem is that p∗ as determined by eq. (7) may not be close at all to the density that
minimises the expectation in eq. (6), especially when the effective sample size is low. In that case,
µ̂p∗ ± 1.96σ̂p∗/

√
n may not provide a very accurate confidence interval on E. O’Neill (2009,

Section 7) derived some explicit statistical bounds on the absolute and relative errors, but these
bounds only cover standard (not self-normalising) importance sampling.

4. Example

As a first example, we demonstrate the use of importance sampling for sensitivity analysis on the
imprecise Dirichlet model, similar to the one studied in O’Neill (2009).

Denote the k-dimensional unit simplex by ∆. Consider an unknown parameter x ∈ ∆, say,
modelling the probabilities of some multinomial process. Consider the following class of probabil-
ity density functions on x:

p(x | t) =
Γ(s)

∏k
j=1 Γ(stj)

k∏

j=1

x
stj−1
j (8)

with hyperparameters s > 0 and t ∈ ∆—these are Dirichlet distributions. We are interested in
finding the lower expectation of some function f(x), over all t ∈ T ⊆ ∆ and with s = 2 fixed.

Note that in our notation, we will parameterise everything in terms of t rather than in terms of
p. So wt := wp(·|t), µ̂t := µ̂p(·|t), nt := np(·|t), and so on.

For q(x), we take the Dirchlet distribution with uniform t̃j = 1/k and with the same value for
s̃ = 2. An alternative option is to take s̃ = αk with 0 < α < 1, say α = 1/2. This will incur a
bias for sampling towards the extremes, i.e. make the tails heavier. Experimentally, we observed
that increasing the variance of the reference distribution can increase the effective sample size.

In order to apply importance sampling, we need to calculate the weight function. The unnor-
malised weights are:

wt(x) = p(x | t)/q(x) ∝
k∏

j=1

x
stj−s̃t̃j
j = w′t(x) (9)

In this case, we have a very simple closed analytical expression for w′t(x). Note that we could also
use wt(x) directly, however evaluating the normalisation constants requires several evaluations of
the Gamma function, and slows down the optimisation procedure considerably. The optimisation
problem for the lower expectation can be written as

t∗ = arg min
t∈T

∑n
i=1w

′
t(xi)f(xi)∑n

i=1w
′
t(xi)

(10)

As a numerical example, we take k = 5, T = {t ∈ ∆: tj ≥ 0.1}, and f(x) = x1 + 2x2 +
5x3 + 4x4 − 3x5. In this case, we know that the exact expectation of f , for fixed t, is given by

E(f) = t1 + 2t2 + 5t3 + 4t4 − 3t5. (11)
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So, the lower prevision of f over all t ∈ T is clearly achieved for t∗ = (0.1, 0.1, 0.1, 0.1, 0.6), and
is given by

E(f) = 0.1 + 2× 0.1 + 5× 0.1 + 4× 0.1− 3× 0.6 = −0.6 (12)

The next table summarizes our simulation results for s̃ = k/2 = 2.5:

n 5 50 500 5000
µ̂t∗ 1.50 0.13 -0.85 -0.29
σ̂t∗ 0.11 3.18 10.83 10.74

σ̂t∗/
√
n 0.048 0.45 0.48 0.15

nt∗ 1.104 15.016 6.061 141.67
t∗1 0.1 0.1 0.17 0.1
t∗2 0.57 0.1 0.1 0.1
t∗3 0.1 0.1 0.1 0.1
t∗4 0.1 0.1 0.1 0.1
t∗5 0.13 0.6 0.53 0.6

The code was implemented in R. The constrOptim function was used to do the actual optimisa-
tion, through the downhill simplex method. The cases n = 5 and n = 50 give a result instantly, for
n = 500, the simulation took about 10 seconds, and for n = 5000, the simulation took about 200
seconds. The bottleneck is clearly the optimisation procedure. We emphasize that we have not tried
to write the fastest possible code, and there might still be good opportunities for optimisation.

Unsurprisingly, the n = 5 case is quite bad: t∗ is completely off, and the stimate is completely
off the chart. Also the error is underestimated substantially, due to the very small effective sample
size. The n = 50 case fares better. Interestingly, t∗ is fully correctly identified. However, the
effective sample size is not too high, and the actual estimate is still quite far off, due to the variance
once more being underestimated.

Intriguingly, the n = 500 case has a lower effective sample size than the n = 50 case, and a
worse t∗. Nevertheless, the estimate is reasonably correct, and at least the actual value lies inside
the 95% confidence interval in this case. The n = 5000 case gives the correct estimate for t∗, and
again the actual value lies just at the edge of the 95% confidence interval.

5. Iterated Importance Sampling

We have seen that a single importance sampling distribution q may not provide a good effective
sample size across the entire set of distributions M, even if n is quite large. For instance, in the
numerical example, with n = 500 we still only had nt∗ ' 6, and with n = 5000 we had only
nt∗ ' 141.

What we conclude from this is that plain sensitivity analysis over our importance sampling
does not work very well, even in simple cases. Next we discuss some extensions of the proposed
procedure in order to make it work.

Even though the estimates are quite bad, our numerical experimentation shows that the correct
t∗, or nearly correct t∗, can be identified already with lower n. So, rather than increasing n in
order to guarantee a high nt∗ , one idea is to iterate the procedure so that q(x) eventually converges
to p(x|t∗) where t∗ is the actual optimal choice. If q(x) is equal to p(x|t∗), then all weights are
identical, and n = nt∗ . Also, in this case, it turns out that the optimisation in eq. (10) runs very
quickly, because we are already near the optimal solution.
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Here is how we might implement this in practice:
1. Set t to some reasonable initial value.
2. Generate sample from q(x) := p(x | t).
3. Find optimal t∗ through eq. (10).
4. Check if nt∗ is close to n. If yes, stop.
5. Set t = t∗, and return to item 2.

One suggestion is to take the same value for n through each step, however a case could be made
for chosing a lower value for n, and then simply to repeat the final step of the procedure for a large
value of n in order to obtain a final accurate estimate. Another option might be to increase the value
of n as the algorithm converges closer to the correct t∗.

6. Example Revisited

Let us apply the proposed iterative procedure on our Dirichlet example. For simplicity, we chose a
fixed value of n = 141; this corresponds roughly to our earlier nt∗ when n = 5000, so provides a
good basis for comparison of computational efficiency. The next table summarises the results:

iteration 1 2 3
µ̂t∗ 0.062 -0.39 -0.63
σ̂t∗ 4.28 2.00 1.76

σ̂t∗/
√
n 0.36 0.17 0.15

nt∗ 21.60 105.93 141.00
t∗1 0.16 0.1 0.1
t∗2 0.1 0.1 0.1
t∗3 0.1 0.1 0.1
t∗4 0.1 0.1 0.1
t∗5 0.54 0.6 0.6

The entire simulation took only 6 seconds, compared to 200 seconds from before for the same
effective sample size.

We see that the simulation converges in just 3 steps. In the first step, we get fairly close to the
correct t∗, even though the effective sample size nt∗ ' 22 is pretty low. The second step uses this
t∗ to draw samples, and as this distribution is much closer to the actual optimal distribution, the
effective sample size increases substantially. In this step, we also identify the correct value for t∗.
The last step uses the correct distribution for sampling, and gets a full effective sample size.

We also ran the simulations using standard (not self-normalised) importance sampling. In that
case, the entire simulation took 86 seconds, which is almost a factor 15 slower than the self-
normalised version. Undoubtedly this is due to the computational expense of calculating the normal-
isation constant during the optimisation. Unless the normalisation constant is trivial, self-normalised
importance sampling will outperform standard importance sampling for sensitivity analysis over
the weights. In addition, the self-normalised estimator has also better consistency properties, even
though it has a higher theoretical variance (Owen, 2013, Section 9.2).

7. Discussion and Conclusion

We have described how sensitivity analysis over importance sampling can be used to estimate lower
previsions. The key observation that makes this possible is that importance sampling allows us to
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estimate means not just from the distribution that we are sampling from, but from an entire neigh-
bourhood of distributions around the sampling distribution. Through straightforward optimisation
over the importance sampling weights, we can therefore estimate lower previsions without having
to, say, draw samples from all extreme points of the credal set. The technique is simple, seems
largely unknown in the community, and is readily applicable for medium sized problems.

We saw that a naive application of sensitivity analysis around the weights may not work very
well, due to poor effective sample sizes especially when the optimal distribution is far away from
the sampling distribution. We suggested simple yet novel solution for this problem: an iterative
procedure which naturally moves the sampling distribution towards the optimal distribution. We
demonstrated how this led to a much quicker estimate with far less computational power required.

Whilst the procedure that we have described will work well for medium sized problems, we
foresee that for really large scale problems, the effective sample size may still be too limited to
ensure that the optimal distribution can be identified at all. In such cases, perhaps the credal set
could scale throughout the algorithm, in order to ensure a reasonable effective sample size, and
therefore to help convergence of the algorithm.

Another idea is to use importance sampling to explore only a very small region ofM, but then
to use the resulting derivative information to move q in the right direction. A problem with this
however is that the derivatives obtained are quite noisy, and in practice we have not found a good
way of using these noisy derivatives to ensure convergence.

Obviously, this note only gave an initial exploration of what is possible with sensitivity analysis
over the importance sampling weights. It would be interesting to try out these methods on large
scale problems. Moreover, it would be great to develop theoretical guarantees and diagnostics for
convergence. Finally, it would be interesting to see if the importance sampling as described could
be integrated into Markov chain Monte Carlo methods for full robust Bayesian inference over large
sets of priors.
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Abstract
We describe a novel approach to multi-attribute utility elicitation which is both general enough
to cover a wide range of problems, whilst at the same time simple enough to admit reasonably
straightforward calculations. We allow both utilities and probabilities to be only partially specified,
through bounding. We still assume marginal utilities to be precise. We derive necessary and suffi-
cient conditions under which our elicitation procedure is consistent. As a special case, we obtain
an imprecise generalization of the well known swing weighting method for eliciting multi-attribute
utility functions. An example from ecological risk assessment demonstrates our method.
Keywords: utility; partial preference; consistency; uniqueness; multi-attribute; elicitation; impre-
cise; robust; swing weighting.

1. Introduction

In many decision problems where outcomes feature multiple attributes, additive multi-attribute util-
ity functions are a popular choice due to their simplicity (Clemen and Reilly, 2001). They split the
joint utility function into a weighted sum of marginal utility functions. Elicitation of the joint can
then be split into two elicitation procedures: one for each of the marginals, and one for the weights.

A reoccurring issue is the precision of the attribute weights. Indeed, whilst marginal utility func-
tions on separate attributes are often quite easily elicited, the way in which these attributes should
be weighed against each other is much harder to quantify precisely. Such decision problems appear
in different applications (Yemshanov et al., 2013; Hermerén et al., 2014). So, even if an additive
form can be assumed, the weights themselves might still be subject to imprecision due to incom-
plete preferences between multi-attribute lotteries. Hermerén et al. (2014) suggest different types of
value uncertainty and conclude that more work is needed to understand the cause of this uncertainty,
in order to understand how to treat it. The only applied example we identified is Yemshanov et al.
(2013), who considered uncertainty in weights by a multidimensional efficiency frontier analysis,
which treat each attribute separately. Here we are interested in the elicitation of these weights.

Swing weighting (von Winterfeldt and Edwards, 1986) is a simple and popular method for elic-
iting the weights of an additive multi-attribute utility function. Unfortunately, the standard treatment
of swing weighting uses ‘scores’ which are not usually directly interpreted in terms of preferences
over lotteries, giving it the impression of a heuristic rather than a normative method. Moreover,
swing weighting forces completeness of preferences between multi-attribute lotteries.

In this paper, we generalise swing weighting so bounds on the weights of the joint utility func-
tion can be elicited normatively. This is an important step to further widen the applicability of utility
theory in problems where the consequences of decisions have multiple aspects that cannot be easily
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weighed against each other. As an extra bonus, we also derive a normative interpretation of the
standard swing weighting procedure. The resulting problems, when both probabilities and utilities
are allowed to be imprecise, require quadratic programming, for which standard algorithms exist.

We are of course aware that decision theory has been generalised to deal with with arbitrary
partial preferences in their full generality (Seidenfeld et al., 1995). However, such theories can be
technically difficult to work with due to the fact that they lead to non-convex sets of utilities and
probabilities. Various special cases have been studied that do allow convex analysis to be used
for elicitation, modelling, and inference (Williams, 1975, 2007; Levi, 1980; Walley, 1991). These
works do not explicitly try to deal with multiple attributes. The contribution of this paper can be seen
as a practical approach towards multi-attribute decision problems where marginal utilities are still
precise, but where we wish to be a bit more cautious about modelling preferences across attributes.
It can be seen as a simple generalisation of Walley (1991) to the multi-attribute case.

The idea of generalising swing weighting to allow for partial preferences is not new either; see
for instance Mustajoki et al. (2005); Riabacke et al. (2009); Gomes et al. (2011); Riabacke et al.
(2012); Danielson et al. (2014) and references therein. Those works generally focus on reducing
the cognitive requirements on decision makers, and propose specific models for eliciting attribute
weights, but without relating the elicitation directly to preferences between multi-attribute gambles.
Instead, in this paper, we develop a general mathematical framework for eliciting attribute weights
in a directly operational way through preferences between multi-attribute gambles. We thereby
generalise the interval swing weighting method proposed by Mustajoki et al. (2005) (at least in the
cases where the reference attribute is either the worst or the best attribute). The theory that we
develop can be adapted to a wide range of situations, and possibly could accommodate cognitive
limitations in a more flexible way, although we will not fully explore this in this paper.

The paper is structured as follows. Section 2 introduces the notation and explains the assump-
tions that we make throughout the paper. Section 3 briefly describes how marginal utility functions
can be elicited, and serves as an introduction to the idea of utility elicitation. Section 4 reviews
the standard swing weighting procedure, and provides a simple normative interpretation of swing
weighting in terms of lotteries. Section 5 generalises the swing weighting procedure to allow impre-
cise weights, and section 6 identifies necessary and sufficient conditions for this elicitation proce-
dure to be consistent. Section 7 provides a fully worked example of our method, using an example
from ecological risk assessment. Section 8 concludes the paper.

2. Notation and Assumptions

Let R := A1 × · · · × An be a finite set of rewards, each reward r = (a1, . . . , an) comprising of n
attributes. A lottery ` on R is a probability mass function over R, and is interpreted as a random
reward with precisely known probabilities. The set of all lotteries overR is denoted by L(R).

Note that at this stage, we are not yet interested in modelling uncertainty. Rather, we will use
lotteries in order to elicit a subject’s attitudes towards rewards. For modelling uncertainty, one might
consider horse lotteries, which for our purpose would be mappings from some finite possibility
space Ω to L(R). This follows the traditional approach (Anscombe and Aumann, 1963; Seidenfeld
et al., 1995). In this paper, we do not consider horse lotteries, and focus purely on the utility aspect.
That said, in section 7, we will demonstrate how uncertainty can be incorporated in an example.
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So, we wish to model our preferences between lotteries over our multi-attribute rewards. A
utility function onR is any function U : R → R. We lift U to L(R) in the usual way:

U(`) :=
∑

r∈R `(r)U(r). (1)

Note that U satisfies

U(α`1 + (1− α)`2) = αU(`1) + (1− α)U(`2) (2)

for all α ∈ [0, 1]. The standard approach assumes that our preferences form a complete preorder �
on L(R) and can be represented through a utility function U , where

`1 � `2 ⇐⇒ U(`1) ≥ U(`2) (3)

for all `1 and `2 ∈ L(R). This representation can be directly motivated from some simple assump-
tions on � (Herstein and Milnor, 1953).

However, in many applications, preferences between rewards are inherently incomplete, in the
sense that there may be lotteries between which we cannot state any preference. We will assume
that our preferences form a preorder� on L(R) (so we drop completeness), and can be represented
through a set U of utility functions U : L(R)→ R:

`1 � `2 ⇐⇒ ∀U ∈ U : U(`1) ≥ U(`2) (4)

for all `1 and `2 ∈ L(R). Elicitation is then concerned with finding a procedure for identifying U .
In cases where rewards are comprised of multiple attributes, in standard utility theory, it is

customary to split the elicitation problem into two parts:
1. Elicit marginal utility functions Ui : Ai → R for each i ∈ {1, . . . , n}.
2. Assume that the joint utility function can be written as a particular function of the marginal

utility functions, and elicit the parameters of that function.
The simplest of these joint forms is the additive form:

U(a1, . . . , an) =
∑n

i=1 kiUi(ai) (5)

Again, this form can be directly motivated from some simple assumptions on� (Keeney and Raiffa,
1993). Although those assumptions are quite restrictive and are easily criticised, the simplicity of
the additive form, having only n parameters, make it one of the most commonly used models for
multi-attribute utility in practical applications.

3. Elicitation of Marginal Utility

To introduce the idea of utility elicitation, and for the sake of completeness, we mention a simple
standard method for eliciting the marginal utility functions Ui (Clemen and Reilly, 2001):

1. Identify a worst reward ai and a best reward ai in Ai.
2. For every other reward ai inAi, find α(ai) so that the subject is indifferent between (i) getting
ai with certainty and (ii) getting ai with probability 1− α(ai) or ai with probability α(ai):

ai ' (1− α(ai))ai ⊕ α(ai)ai (6)

where ⊕ denotes the combination of rewards into lotteries, so (1− α)r1 ⊕ αr2 is the lottery
` with `(r1) = 1 − α, `(r2) = α, and `(r) = 0 for all other rewards. We also denoted
indifference by ': `1 ' `2 ⇐⇒ (`1 � `2 and `2 � `1).

335



TROFFAES & SAHLIN

3. Set Ui(ai) := 0, Ui(ai) := 1, and Ui(ai) := α(ai) for every other reward ai in Ai.
Naturally, an interesting question relates to how we can relax this elicitation procedure to allow for
incomplete preferences in the marginals. As we shall see in section 5, allowing incompleteness in
both marginals and in the weights introduces non-linear constraints. So, for practical reasons, in this
paper, we only investigate incompleteness in the weights, and assume marginals to be fully precise.

4. Swing Weighting

For eliciting the weights ki in the joint utility function of eq. (5), various methods exist, but a simple
and effective method is swing weighting (von Winterfeldt and Edwards, 1986):

1. Score the following n+ 1 rewards:

reward score
r0 := (a1, a2, . . . , an) 0
r1 := (a1, a2, . . . , an) s1
r2 := (a1, a2, . . . , an) s2

...
...

rn := (a1, a2, . . . , an) sn

where the worst score is 0 (always assigned to the worst reward), the best score is 100, and
the other scores indicate the “relative improvement” from the worst reward.

2. Set

ki := si∑n
i=1 si

. (7)

Note that this formula hinges on the assumption that all marginal utility functions are renormalized
to the [0, 1] interval—this is the case if we use the marginal method as described earlier.

Although we find swing weighting a straightforward and mathematically elegant method for
eliciting the weights, what is missing is an interpretation directly in terms of preferences over lot-
teries. In fact, this is very easy to do, but much to our surprise it is not mentioned anywhere in the
literature as far as we could find:

1. Consider again the rewards r0, . . . , rn as constructed above. Clearly r0 is the worst reward.
2. Identify the best of these rewards. Without loss of generality, we may assume that this is rn

(we can always permute the order of the attributes if need be).
3. For all i ∈ {1, . . . , n}, find αi such that

ri ' (1− αi)r0 ⊕ αirn. (8)

(Note that αn = 1.)
4. Set

ki := αi∑n
i=1 αi

(9)

It is easy to see that this choice of ki is the only choice that is compatible with eq. (8). So, we
can interpret the swing weighting scores directly in terms of probabilities, which we find more
appealing. This also puts the method on a firm normative basis.
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5. Imprecise Swing Weighting

A common criticism against the swing weighting method (and, in fact, also against the marginal
method that we presented) is that all lotteries considered in the elicitation involve extremes only.
We therefore adapt the swing weighting method to allow for more flexible comparisons, not just
focusing on extremes.

Remember that we are dropping the completeness assumption, and therefore that we are inter-
ested in identifying a set U of utility functions, rather than a single utility function. To do so, we
will view all weights ki as parameters (so we have n parameters), and we will represent U through
a collection of constraints on these parameters:

1. Consider any joint rewards r0, . . . , rn such that for all j ∈ {1, . . . , n− 1} we have that

r0 � rj � rn (10)

2. For all j ∈ {1, . . . , n− 1}, find the largest αj and smallest αj such that

(1− αj)r0 ⊕ αjrn � rj � (1− αj)r0 ⊕ αjrn (11)

3. Let uj denote the vector of marginal utilities for rj , i.e. if rj = (a1, . . . , an) then uj =
(U1(a1), . . . , Un(an)). Let k denote the vector (k1, . . . , kn). With this notation, impose

∀j ∈ {1, . . . , n− 1} : (uj − (1− αj)u0 − αjun) · k ≥ 0 (12a)

∀j ∈ {1, . . . , n− 1} : (uj − (1− αj)u0 − αjun) · k ≤ 0 (12b)

1 · k = 1 (12c)

The last constraint is simply another way of writing
∑n

i=1 ki = 1, and fixes the multiplicative
scaling of the joint utility function.

To see that the other two constraints indeed represent the elicited preferences, note that eq. (11)
is equivalent to

(1− αj)U(r0) + αjU(rn) ≤ U(rj) ≤ (1− αj)U(r0) + αjU(rn) (13)

and note that U(rj) = uj · k.
These inequalities are quadratic in the marginal utilities and in the weights. However, if the

marginal utilities are precise, then we have a simple set of linear constraints on the weights kj .
Naturally, we also recover swing weighting as a special case. In the imprecise case however it

is important to realise that we cannot always take the rewards as in the standard swing weighting
method. We already argued that this might be a bad idea due to the focus on extremes, however it
may also cause a problem because the method requires that there is a single best attribute—we may
not have such best attribute if we allow for incompleteness.

6. Consistency and Uniqueness

The procedure that we described works for any choice of rewards rj . Naturally, a good choice
of rewards rj should ensure that the constraints obtained admit a solution for all possible choices
of 0 ≤ αj ≤ αj ≤ 1. In fact, we also would like this solution to be unique in the precise case
(i.e. when αj = αj for all j), so that we can at least in principle allow a complete elicitation of
preferences if possible. Both of these desirata are satisfied if:
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(i) u0 ≤ un, and
(ii) the system

∀j ∈ {1, . . . , n− 1} : (uj − (1− αj)u0 − αjun) · k = 0 (14a)

1 · k = 1 (14b)

has a unique solution, regardless our choice of α1, . . . , αn−1 ∈ [0, 1].
Note that u0 ≤ un guarantees that (uj − (1− αj)u0 − αjun) is a decreasing function of αj , so in
this case it is ensured that, say, if we solve eqs. (12b) and (12c) with equalities everywhere, then the
inequality in eq. (12a) is automatically satisfied; in other words, eq. (12) is consistent.

We will henceforth assume that u0 ≤ un, and focus on the uniqueness of the solution of eq. (14).

Theorem 1 Consider any α1, . . . , αn−1 ∈ [0, 1]. If the matrix




u1 − (1− α1)u0 − α1un
u2 − (1− α2)u0 − α2un

...
un−1 − (1− αn−1)u0 − αn−1un

1




(15)

has full rank, then eq. (14) has a unique solution.

The following theorem provides much quicker check for uniqueness, in case u0 is constant (note
that u0 being constant is a standard feature of the usual swing weighting procedure).

Theorem 2 Consider any α1, . . . , αn−1 ∈ [0, 1]. Assume that u0 is constant, and that the vectors
(u1, . . . , un−1, 1) are linearly independent. Let λj be the coefficients that decompose un as a linear
combination of (u1, . . . , un−1, 1), i.e.

un = λn +
∑n−1

j=1 λjuj (16)

Then eq. (14) has a unique solution if and only if

∑n−1
j=1 αjλj 6= 1 (17)

In particular, when λ1 ≤ 0, . . . , λn−1 ≤ 0, then eq. (14) has a unique solution, regardless our
choice of α1, . . . , αn−1 ∈ [0, 1].

Proof We need to show that the matrix



u1 − (1− α1)u0 − α1un
u2 − (1− α2)u0 − α2un

...
un−1 − (1− αn−1)u0 − αn−1un

1




(18)
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has full rank. Because u0 is constant, and so is the final row, this matrix has full rank if and only if



u1 − α1un
u2 − α2un

...
un−1 − αn−1un

1




(19)

has full rank.
Because the (u1, . . . , un−1, 1) are linearly independent, we can write un as a linear combination

of these vectors:

un = λn +
∑n−1

j=1 λjuj (20)

So, our matrix can be written as




u1 − α1un
u2 − α2un

...
un−1 − αn−1un

1




=




u1 − α1

(
λn +

∑n−1
j=1 λjuj

)

u2 − α2

(
λn +

∑n−1
j=1 λjuj

)

...

un−1 − αn−1
(
λn +

∑n−1
j=1 λjuj

)

1




(21)

=




1− α1λ1 −α1λ2 . . . −α1λn−1 −α1λn
−α2λ1 1− α2λ2 . . . −α2λn−1 −α2λn

...
...

. . .
...

...
−αn−1λ1 −αn−1λ2 . . . 1− αn−1λn−1 −αn−1λn

0 0 . . . 0 1







u1
u2
...

un−1
1




(22)

which has full rank if both matrices on the right hand side have full rank. The second matrix has
full rank by assumption. The first matrix has full rank if and only if




1− α1λ1 −α1λ2 . . . −α1λn−1
−α2λ1 1− α2λ2 . . . −α2λn−1

...
...

. . .
...

−αn−1λ1 −αn−1λ2 . . . 1− αn−1λn−1


 (23)

has full rank. This matrix can be written as

I − αλT (24)

where α = (α1, . . . , αn−1) and λ = (λ1, . . . , λn−1). This has full rank if and only if its determinant
is non-zero. We now use Sylvester’s determinant identity:

det(I − αλT ) = det(1− λTα) = 1−∑n−1
j=1 αjλj (25)

We arrive at the desired result.

This theorem applies for instance if we use the joint rewards as in standard swing weighting:
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reward uj
r0 := (a1, a2, . . . , an) (0, 0, . . . , 0)
r1 := (a1, a2, . . . , an) (1, 0, . . . , 0)
r2 := (a1, a2, . . . , an) (0, 1, . . . , 0)

...
...

rn := (a1, a2, . . . , an) (0, 0, . . . , 1)

Note that u0 ≤ un, as required. Also, u0 is constant (zero), and (u1, . . . , un−1, 1) are linearly
independent: the theorem applies. Because

un = 1−∑n−1
j=1 uj , (26)

it follows that λj = −1 for all j ∈ {1, . . . , n− 1}. The condition for uniqueness is satisfied.
We can also consider the case where un is constant:

Theorem 3 Consider any α1, . . . , αn−1 ∈ [0, 1]. Assume that un is constant, and that the vectors
(u1, . . . , un−1, 1) are linearly independent. Let λj be the coefficients that decompose u0 as a linear
combination of (u1, . . . , un−1, 1), i.e.

u0 = λn +
∑n−1

j=1 λjuj (27)

Then eq. (14) has a unique solution if and only if

∑n−1
j=1 (1− αj)λj 6= 1 (28)

In particular, when λ1 ≤ 0, . . . , λn−1 ≤ 0, then eq. (14) has a unique solution, regardless our
choice of α1, . . . , αn−1 ∈ [0, 1].

The proof is almost identical to the proof of the previous theorem, and hence is left as an exercise
to the reader. We will use this variant in the example below.

7. Example

We now provide a fully worked example to see the theory at work. In addition to imprecise utilities,
we will also admit imprecise probabilities.

Following Bohman and Edsman (2013), we are interested in an ecological management deci-
sion, namely the eradication of an invasive species that has been observed in a water system. The
following management decisions were identified:

I Do nothing.
II Mechanical removal.

III Drain the system on water and remove of individuals by hand.
IV Drain the system of water, dredge and sieve the masses to identify and remove individuals.
V Use a decomposable biocide in combination with drainage to increase the biocide concentra-

tion.
VI Increase pH in combination with drainage and removal by hand.

340



IMPRECISE SWING WEIGHTING FOR MULTI-ATTRIBUTE UTILITY ELICITATION

The decision comprises several attributes. Each decision was scored according to attributes
identified as relevant by a group of experts. For each of these attributes, a discrete scale ranging
from 1 to 4 was constructed, where 1 corresponds to the worst outcome, and 4 corresponds to the
best outcome. We will interpret these scores as marginal utility functions.

Besides the attributes, the experts also bounded the probability that the method is successful
in eradication. Note that we are using hypothetical values here, these values are not actual expert
judgements, and only serve to demonstrate the methodology. Note also that in the actual problem,
there is considerable uncertainty about whether the invasive species is present at all. For simplicity,
in this example, we assume that the alien species is present with certainty.

The following table lists all attributes considered, as well as the interpretation of the scores for
each attribute and for each management decision, and the expert assessments for the attribute scores,
in case of success:

Worst Best Decision d
Attribute (score 1) (score 4) I II III IV V VI
Biotic impact High Low 4 4 3 3 2 1
Longevity of impacts Long Short 4 4 3 3 1 2
Experience Little High 4 3 1 4 1 1
Feasibility Difficult Easy 4 4 2 3 1 2
Cost High Low 4 4 3 1 2 3

In case of failure to eradicate the invasive species, the scores for biotic impact and longevity of
impacts drop to their worst values:

Worst Best Decision d
Attribute (score 1) (score 4) I II III IV V VI
Biotic impact High Low 1 1 1 1 1 1
Longevity of impacts Long Short 1 1 1 1 1 1
Experience Little High 4 3 1 4 1 1
Feasibility Difficult Easy 4 4 2 3 1 2
Cost High Low 4 4 3 1 2 3

Bounds on the probability of successful eradication of the species under the different management
decisions are:

Decision d
Probability I II III IV V VI
p
d

0 0.05 0.3 0.4 1.0 0.7
pd 0 0.25 0.5 0.7 1.0 0.8

The joint expected utility of decision d can be written as:
∑n

j=1 kj (θU1j(ajd) + (1− θ)U2j(ajd)) (29)

where U1j are the marginal utilities as listed in the first table, and U2j are the marginal utilities as
listed in the second table (both after rescaling to 0–1).

Because the decision affects the probability of successful management (i.e. we have act-state
dependence), we will treat the problem using interval dominance.

For eliciting the weights kj of the joint utility function, we will use a variant of swing weighting,
and we will consider the following joint rewards (directly expressed in terms of marginal utilities,
rescaled to 0–1):
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rewards
u0 := (2/3, 1, 1, 1, 1)
u1 := (1, 2/3, 1, 1, 1)
u2 := (1, 1, 2/3, 1, 1)
u3 := (1, 1, 1, 2/3, 1)
u4 := (1, 1, 1, 1, 2/3)
u5 := (1, 1, 1, 1, 1)

These rewards are more natural from an ecological risk perspective compared to the rewards consid-
ered by the original swing weighting method: they consider only small changes from a normal state,
instead of extremes, and are thus easier to compare (regardless of any imprecision in preferences).

Note that u0 ≤ u5 as required for consistency. Also note that u5 is constant, so we can apply
theorem 3. We see that

u0 = 14/3−∑4
j=1 uj . (30)

Consequently all λj = −1 in theorem 3, and so the condition for uniqueness is always satisfied.
We consider biotic impact to be the most important attribute, so clearly we have that r0 � rj �

r5 for all j ∈ {0, . . . , 5}. We also assess that

0.8r0 ⊕ 0.2r5 �r1 � 0.7r0 ⊕ 0.3r5 (31)

0.5r0 ⊕ 0.5r5 �r2 � 0.4r0 ⊕ 0.6r5 (32)

0.3r0 ⊕ 0.7r5 �r3 � 0.1r0 ⊕ 0.9r5 (33)

0.2r0 ⊕ 0.8r5 �r4 � 0.1r0 ⊕ 0.9r5 (34)

With these assessments, eq. (12) becomes

((1, 2/3, 1, 1, 1)− 0.8(2/3, 1, 1, 1, 1)− 0.2) · k ≥ 0 (35a)

((1, 1, 2/3, 1, 1)− 0.5(2/3, 1, 1, 1, 1)− 0.5) · k ≥ 0 (35b)

((1, 1, 1, 2/3, 1)− 0.3(2/3, 1, 1, 1, 1)− 0.7) · k ≥ 0 (35c)

((1, 1, 1, 1, 2/3)− 0.2(2/3, 1, 1, 1, 1)− 0.8) · k ≥ 0 (35d)

((1, 2/3, 1, 1, 1)− 0.7(2/3, 1, 1, 1, 1)− 0.3) · k ≤ 0 (35e)

((1, 1, 2/3, 1, 1)− 0.4(2/3, 1, 1, 1, 1)− 0.6) · k ≤ 0 (35f)

((1, 1, 1, 2/3, 1)− 0.1(2/3, 1, 1, 1, 1)− 0.9) · k ≤ 0 (35g)

((1, 1, 1, 1, 2/3)− 0.1(2/3, 1, 1, 1, 1)− 0.9) · k ≤ 0 (35h)

1 · k = 1 (35i)

So, for each decision, we need to minimize and maximize the joint utility expressed in eq. (29),
subject to the above constraints and subject to p

d
≤ θ ≤ pd. The constraints are all linear, and the

objective function is quadratic, hence this is a quadratic programming problem. Because θ itself
only appears linearly and is constrained separately, it suffices to consider only the extreme values
for θ. Consequently, for each decision, we must merely solve two linear programs: one for θ = p

d
and one for θ = pd.

Using scipy (Jones et al., 2001–), we find the following bounds:
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Decision Lower Utility Upper Utility
I 0.25 0.37
II 0.23 0.47
III 0.18 0.31
IV 0.38 0.57
V 0.14 0.17
VI 0.11 0.17

Options I, III, V, and VI are dominated by option IV so should not be considered. Either option II
(mechanical removal) or IV (drain the system of water, dredge and sieve), could be considered.

For the sake of completeness, we also present the bounds on the attribute weights, resulting
from eq. (35):

Attribute Lower Weight Upper Weight
Biotic impact 0.36 0.43
Longevity of impacts 0.26 0.33
Experience 0.15 0.21
Feasibility 0.04 0.12
Cost 0.04 0.08

8. Conclusions

In this paper, we provided an imprecise generalisation of the swing weighting method for elicit-
ing multi-attribute utility functions. The proposed method enables us to cover a wider range of
problems where preference can only be partially specified, whilst at the same time still admitting
straightforward calculations. We studied the consistency of the elicitation procedure, and found sim-
ple conditions under which consistency is always guaranteed. We demonstrated our method using a
real example concerning the management of an invasive species featuring substantial uncertainty in
the management outcomes and ambiguity in the preferences over different impacts. In this example,
we allowed both utilities and probabilities to be only partially specified, through bounding.

We do note that our approach is still limited in that we will assume that all marginal utility
functions are precise. Relaxing this is possible but leads to fully non-linear optimisation, and more
work is needed to identify whether such treatment can be feasible in practice. Naturally, another
limitation is that we only discussed additive multi-attribute utility functions.

Another open end is that we have assumed that our preferences over horse lotteries are repre-
sentable by a convex set of weights along with a convex set of probability mass functions. Whilst
such representation is appealing mathematically (inference becomes a quadratic programming prob-
lem), it would be interesting to have an axiomatic treatment from first principles (as in Seidenfeld
et al. (1995)) identifying the conditions under which such treatment is feasible.
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ports 2013:17, Sveriges lantbruksuniversitet, Drottningholm, 2013.

R. T. Clemen and T. Reilly. Making Hard Decisions. Duxbury, 2001.

M. Danielson, L. Ekenberg, A. Larsson, and M. Riabacke. Weighting under ambiguous prefer-
ences and imprecise differences in a cardinal rank ordering process. International Journal of
Computational Intelligence Systems, 7:105–112, 2014. doi:10.1080/18756891.2014.853954.

L. F. A. M. Gomes, L. A. D. Rangel, and M. d. R. Leal Junior. Treatment of uncertainty through the
interval smart/swing weighting method: a case study. Pesquisa Operacional, 31(3):467–485, 12
2011. ISSN 0101-7438. doi:10.1590/S0101-74382011000300004.

G. Hermerén, I. Brinck, J. Persson, and N.-E. Sahlin. Value uncertainty and value instability in
decision-making, pages 100–110. Liber Amicorum Pascal Engel. University of Geneva, 2014.

I. N. Herstein and J. Milnor. An axiomatic approach to measurable utility. Econometrica, 21(2):
291–297, Apr. 1953.

E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python, 2001–. URL
http://www.scipy.org/. [Online; accessed 2017-02-20].

R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and Value Tradeoffs.
Cambridge University Press, 1993. ISBN 0-521-44185-4.

I. Levi. The Enterprise of Knowledge. An Essay on Knowledge, Credal Probability, and Chance.
MIT Press, Cambridge, 1980.
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Abstract
We investigate how to model exchangeability with choice functions. Exchangeability is a structural
assessment on a sequence of uncertain variables. We show how such assessments constitute a
special kind of indifference assessment, and how this idea leads to a counterpart of de Finetti’s
Representation Theorem, both in a finite and a countable context.

Keywords: Exchangeability; choice functions; indifference; sets of desirable gambles; represen-
tation.

1. Introduction

In this paper, we study how to model exchangeability, a structural assessment for uncertainty mod-
els that is important for inference purposes, in the framework of choice functions, an interesting
approach to modelling uncertainty. This work builds on earlier results by De Cooman et al. (2009);
De Cooman and Quaeghebeur (2012).

Choice functions are related to the fundamental problem in decision theory: how to make a
choice from within a set of available options. In their book, von Neumann and Morgenstern (1944)
provide an axiomatisation of choice based on a pairwise comparison between options. Later on,
many authors (Arrow, 1951; Uzawa, 1956; Rubin, 1987) generalised this idea and proposed a the-
ory of choice functions based on choice between more than two elements. One of the aspects
of Rubin’s (1987) theory is that, between any pair of options, the agent either prefers one of them
or is indifferent between them, so two options are never incomparable. However, for instance when
the available information does not allow for a complete comparison of the options, the agent may
be undecided between two options without being indifferent between them; this will for instance
typically be the case when there is little or no relevant information available. This is one of the
motivations for a theory of imprecise probabilities (Walley, 1991), where incomparability and in-
difference are distinguished. Kadane et al. (2004) and Seidenfeld et al. (2010) generalise Rubin’s
(1987) axioms to allow for incomparability.

Exchangeability is a structural assessment on a sequence of uncertain variables. Loosely speak-
ing, making a judgement of exchangeability means that the order in which the variables are observed
is considered irrelevant. This irrelevancy will be modelled through an indifference assessment. The
first detailed study of exchangeability was given by de Finetti (1937). We refer to the paper by De
Cooman and Quaeghebeur (2012, Sec. 1) for a brief historical overview.

In Sec. 2, we recall the necessary tools for modelling indifference with choice functions. Next,
in Sec. 3, we derive de Finetti-like Representation Theorems for a finite sequence that is exchange-
able. We take this one step further in Sec. 4, where we consider a countable sequence and de-
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rive a representation theorem for such sequences. To compare with earlier work (De Cooman and
Quaeghebeur, 2012), we also provide representation theorems for sets of desirable gambles.1

2. Choice Functions, Desirability and Indifference

Consider a real vector space V , provided with the vector addition and scalar multiplication. El-
ements u of V are intended as abstract representations of options amongst which a subject can
express his preferences, by specifying, as we will see below, choice functions. Mostly, options
will be real-valued maps on the possibility space, interpreted as uncertain rewards, and there-
fore also called gambles. The set of all gambles on the possibility space X will be denoted byL(X ). However, we will define choice functions on V rather than on L(X ), because, as we will
see later, we will need to define choice functions on equivalence classes of gambles, which are
no longer gambles themselves, but still constitute a vector space.2 Given any subset O of V , we
will define the linear hull span(O) ∶= {∑n

k=1 λkuk ∶ n ∈ N,λk ∈ R,uk ∈ O} ⊆ V and the positive hull
posi(O) ∶= {∑n

k=1 λkuk ∶ n ∈N,λk ∈R>0,uk ∈ O} ⊆ span(O), where R>0 is the set of all (strictly) pos-
itive real numbers. Furthermore, for any λ in R>0 and u in V , we let λO +{v} ∶= {λu+ v ∶ u ∈ O}.
A subset O of V is called a convex cone if it is closed under positive finite linear combinations, i.e.
if posi(O) = O. A convex cone K is called proper if K∩−K = {0}. With any proper convex coneK ⊆ V , we associate an ordering ⪯K on V as follows: u ⪯K v⇔ v−u ∈K for any u and v in V . For
any u and v in V , we write u ≺K v if u ⪯K v and u ≠ v. We collect all the options u for which 0 ≺K u
in V≻0. When we work with gambles, then V = L(X ) and the ordering will be the standard one≤, given by f ≤ g⇔ (∀x ∈X ) f (x) ≤ g(x). We collect the positive gambles—gambles f for which
0 < f —in L(X )>0. Then ≤ corresponds to ⪯K where we let K ∶=L(X )>0∪{0}.

We denote by Q(V) the set of all non-empty finite subsets of V . Elements of Q(V) are the
option sets amongst which a subject can choose his preferred options.

A choice function C on V is a map C∶Q→Q∪{∅}∶O ↦C(O) such that C(O) ⊆ O. Not every
such map represents rational beliefs; only the coherent ones are considered to do so. We call a
choice function C on V coherent3 if for all O, O1 and O2 in Q(V), u and v in V , and λ in R>0:
C1. C(O) ≠∅;
C2. if u ≺ v then {v} =C({u,v});
C3. a. if C(O2) ⊆O2∖O1 and O1 ⊆O2 ⊆O then C(O) ⊆O∖O1;

b. if C(O2) ⊆O1 and O ⊆O2∖O1 then C(O2∖O) ⊆O1;
C4. a. if O1 ⊆C(O2) then λO1 ⊆C(λO2);

b. if O1 ⊆C(O2) then O1+{u} ⊆C(O2+{u}).
Consider two isomorphic vector spaces V andW , a linear order isomorphism φ between V andW ,
and a choice function C on V . Define the choice function C′ onW as u ∈C(O)⇔ φ(u) ∈C′(φ(O))
for all O in Q(V) and u in O. Then, because φ is a bijection, C satisfies Axioms C1 and C3 if and
only if C′ does; furthermore, because φ is order preserving, C satisfies Axiom C2 if and only if C′
does; and finally, because φ is linear, C satisfies Axiom C4 if and only if C′ does: such isomorphisms
preserve coherence.

1. Due to page constraints, the proofs are not included in the paper. Readers interested in verifying the main proofs can
access them through arXiv:0801.0980.

2. This also allows us to connect our approach with the theory of coherent choice functions by Seidenfeld et al. (2010),
where the authors define their choice function on horse lotteries instead of gambles. We intend to report on this later.

3. Our rationality axioms are based on those by Seidenfeld et al. (2010), slightly modified for use with sets of desirable
options.
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A set of desirable options (or gambles) D ⊆V is essentially the restriction to pairwise comparison
of a choice function: D = {u ∈ V ∖{0} ∶ {u} =C({0,u})}. We call D coherent if 0 ∉ D, V≻0 ⊆ D,
u ∈D⇒ λu ∈D, and u,v ∈D⇒ u+v ∈D for all u and v in V and λ in R>0. D is coherent if the choice
function C it is based on, is coherent.

Since, as we will see, an exchangeability assessment amounts to a specific indifference assess-
ment, we recall how to model such assessments (Van Camp et al., 2017, Sec. 5). Next to C(O)—the
options that the agent strictly prefers from O—or D—the options that he strictly prefers to 0—we
consider the options in I ⊆ V , which the agent considers to be equivalent to the zero option. We call
a set of indifferent options I coherent if, for all u and v in V and λ in R:
I1. 0 ∈ I;
I2. if u ∈ V≻0∪V≺0 then u ∉ I;
I3. if u ∈ I then λu ∈ I;
I4. if u,v ∈ I then u+v ∈ I.
We collect all options that are indifferent to an option u in V into the equivalence class [u] ∶= {v ∈V ∶
v−u ∈ I} = {u}+ I. The set of all these equivalence classes is the quotient space V/I ∶= {[u] ∶ u ∈ V},
a linear space itself. We provide it with the natural ordering inherited from V: ũ ⪯ ṽ⇔ (∃u ∈ ũ,v ∈
ṽ)u ⪯ v, for all ũ and ṽ in V/I.

In the remainder of this section, we will recall some of the results by Van Camp et al. (2017),
needed for this paper. Consider any coherent set of indifferent options I. A choice function C is
called compatible with I if there is some representing choice function C′ on V/I such that C(O) ={u ∈ O ∶ [u] ∈C′(O/I)} for all O in Q(V). In that case, C′ is uniquely determined by C′(O/I) =
C(O)/I for all O in Q(V), and, moreover, C is coherent if and only if C′ is. Equivalently, we find
the following useful characterisation: C is compatible with I if and only if 0 ∈C(O)⇔ u ∈C(O)
for all u in I and O ⊇ {0,u} in Q(V), which corresponds to the definition of indifference given
by Seidenfeld (1988).

For desirability, compatibility with a coherent set of indifferent options I is defined as follows.
We call a set of desirable gambles D compatible with I if D+I ⊆D, and this is equivalent to D =⋃D′
where D′ ⊆ V/I is the representing set of desirable options. In that case, D′ is uniquely given by
D′ =D/I—so D =⋃u∈D[u]—and, moreover, D is coherent if and only if D′ is.

3. Finite Exchangeability

Consider n ∈N uncertain variables X1, . . . , Xn taking values in a non-empty set X . The possibility
space of the uncertain sequence (X1, . . . ,Xn) is X n .

We denote by x = (x1, . . . ,xn) an arbitrary element of X n . For any n in N we call Pn the group of
all permutations π of the index set {1, . . . ,n}. There are ∣Pn ∣ = n! such permutations. With any such
permutation π, we associate a permutation of X n , also denoted by π, and defined by (πx)k ∶= xπ(k)
for every k in {1, . . . ,n}, or in other words, π(x1, . . . ,xn) = (xπ(1), . . . ,xπ(n)). Similarly, we lift π to
a permutation πt on L(X n) by letting πt f ∶= f ○π, so (πt f )(x) = f (πx) for all x in X n . Observe
that πt is a linear permutation of the vector space L(X n) of all gambles on X n .

If a subject assesses that the sequence of variables X in X n is exchangeable, this means that he
is indifferent between any gamble f on X n and its permuted variant πt f , for all π in Pn . This leads
us to the following proposal for the corresponding set of indifferent gambles:

IPn ∶= span{ f −πt f ∶ f ∈L(X n),π ∈Pn}. (1)
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Definition 1 A choice function C on L(X n) is called (finitely) exchangeable if it is compatible
with IPn . Similarly, a set of desirable gambles D ⊆ L(X n) is called (finitely) exchangeable if it is
compatible with IPn .

Of course, so far, we do not yet know whether this notion of exchangeability is well-defined:
indeed, we do not know yet whether IPn is a coherent set of indifferent gambles. In the next section,
we will show that this is indeed the case.

3.1 Count Vectors

Let us now provide the tools necessary to prove that IPn is a coherent set of indifferent gambles, as
introduced by De Cooman et al. (2009) and De Cooman and Quaeghebeur (2012).

The permutation invariant atoms [x] ∶= {πx ∶ x ∈ X n}, x in X n are the smallest permutation
invariant subsets of X n . We introduce the counting map T ∶X n → N n ∶x ↦ T (x) where T (x) is
called the count vector of x. It is the X -tuple with components Tz(x) ∶= ∣{k ∈ {1, . . . ,n} ∶ xk = z}∣ for
all z in X , so Tz(x) is the number of times that z occurs in the sequence x1, . . . , xn . The range of T —
the setN n—is called the set of possible count vectors and is given byN n ∶= {m ∈ZX≥0 ∶∑x∈X mx = n}.
Applying any permutation to x leaves its result under the counting map unchanged. For any x inX n , if m = T (x) then [x] = {y ∈X n ∶ T (y) =m}, so the permutation invariant atom [x] is completely
determined by the count vector m of all its elements, and is therefore also denoted by [T (x)] = [m].
Remark that {[m] ∶ m ∈N n} partitions X n into disjoint parts with constant count vectors, and that∣[m]∣ = (n

m) ∶= n!∏z∈X mz!
.

In order to extend the idea of the count vectors for use with gambles, let us define the set of
all permutation invariant gambles as LPn (X n) ∶= { f ∈L(X n) ∶ (∀π ∈Pn)πt f = f} ⊆L(X n), and a
special transformation invPn of the linear space L(X n)

invPn ∶L(X n)→L(X n)∶ f ↦ invPn ( f ) ∶= 1
n!
∑

π∈Pn

πt f ,

which, as we will see, is closely linked with LPn (X n) (De Cooman and Quaeghebeur, 2012;
Van Camp et al., 2017).

Proposition 2 invPn is a linear transformation of L(X n), and
(i) invPn ○πt = invPn = πt ○ invPn for all π in P;

(ii) invPn ○ invPn = invPn ;
(iii) kern(invPn ) = IPn ;
(iv) rng(invPn ) =LPn (X n).

So we see that invPn is a linear projection operator that maps any gamble to a permutation invariant
counterpart.

As shown by De Cooman and Quaeghebeur (2012), the linear projection operator invPn renders
a gamble insensitive to permutation by replacing it with the uniform average of all its permutations.
As a result, it assumes the same value for all gambles that can be related to each other through
some permutation: invPn ( f ) = invPn (g) if f = πtg for some π in Pn , for all f and g in L(X n).
Furthermore, for any f in L(X n), its transformation invPn ( f ) is permutation invariant and therefore
constant on the permutation invariant atoms [m]: (invPn ( f ))(x) = (invPn ( f ))(y) if [x] = [y], for
all x and y in X n . We can use the properties of invPn to prove that IPn is suitable for the definition
of exchangeability.
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Proposition 3 For any n in N, the set IPn , defined in Eq. (1), is a coherent set of indifferent gambles.

Since IPn is coherent, exchangeability is well-defined, and by the discussion in Sec. 2, the repre-
senting choice function C′ is defined on L(X n)/IPn , and, similarly, the representing set of desirable
gambles D′ ⊆ L(X n)/IPn . So we can focus on the quotient space and its elements, exchangeable
equivalent classes of gambles.

But before we do that, it will pay to further explore the notions we have introduced thus far.
Consider any f in L(X n). What is the constant value that invPn ( f ) assumes on a permu-

tation invariant atom [m]? To answer this question, consider any x in [m], then (invPn ( f ))(x) =
1
n!∑π∈Pn f (πx)= 1

n!
∣Pn ∣∣[m]∣∑y∈{πx∶π∈Pn} f (y)= 1(n

m)∑y∈[x] f (y)= 1(n
m)∑y∈[m] f (y) where we used the fact

that ∣Pn ∣ = n! and ∣[m]∣ = (n
m), whence invPn =∑m∈N n Hn(⋅∣m)I[m], where Hn(⋅∣m) is the linear ex-

pectation operator associated with the uniform distribution on the invariant atom [m]:
Hn( f ∣m) ∶= 1(n

m) ∑y∈[m] f (y) for all f in L(X n) and m in N n .

It characterises a (multivariate) hyper-geometric distribution (Johnson et al., 1997), associated with
random sampling without replacement from an urn with n balls of types X , whose composition is
characterised by the count vector m.

The result of subjecting a gamble f on X n to the map

Hn ∶L(X n)→L(N n)∶ f ↦Hn( f ) ∶=Hn( f ∣⋅)
is the gamble Hn( f ) on N n that assumes the value 1(n

m)∑y∈[m] f (y) in every m in N n .

3.2 Exchangeable Equivalent Classes of Gambles

We already know that exchangeable choice functions are represented by choice functions on the
quotient space L(X n)/IPn , and similarly for sets of desirable gambles. In the quest for an elegant
representation theorem, we thus need to focus on the quotient space L(X n)/IPn and its elements,
which are exchangeable equivalent classes of gambles.

In this section we investigate how the representation of permutation invariant gambles helps us
find a representation for exchangeable choice functions. To that end, the representation will use
equivalence classes [ f ] ∶= { f}+ IPn of gambles, for any f in L(X n). Recall that the quotient spaceL(X n)/IPn ∶= {[ f ] ∶ f ∈L(X n)} is a linear space itself, with additive identity [0]= IPn , and therefore
any element f̃ of L(X n)/IPn is invariant under addition of IPn : f̃ + IPn = f̃ . Elements of L(X n)/IPn

will be generically denoted by f̃ or g̃.

Proposition 4 Consider any f and g in L(X n). Then [ f ] = [g] if and only if Hn( f ) =Hn(g).

Therefore, it makes sense to introduce the map H̃n :

H̃n ∶L(X n)/IPn →L(N n)∶ f̃ ↦Hn( f ) for any f in f̃ . (2)

Then Proposition 4 guarantees that elements of L(X n)/IPn are characterised using H̃n , in the sense
that f̃ = { f ∈L(X n) ∶Hn( f ) = H̃n( f̃ )} for all f̃ in L(X n)/IPn .
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The map H̃n takes as an argument an equivalence class of gambles, and maps it to some repre-
senting gamble on the count vectors. It will be useful later on to consider the inverse map H̃−1

n :

H̃−1
n ∶L(N n)→L(X n)/IPn ∶ f ↦ [ ∑

m∈N n
f (m)I[m]]. (3)

Proposition 5 The maps H̃n as defined in Eq. (2) and H̃−1
n as defined in Eq. (3) are each other’s

inverses.

The importance of Prop. 5 lies in the fact that now, H̃n is a bijection between L(X n)/IPn andL(N n), and therefore, exchangeable equivalence classes of gambles are in a one-to-one correspon-
dence with gambles on count vectors.

L(X n) L(N n)
L(X n)/IPn

Hn

[⋅]
H̃n

The commuting diagram shows the surjections [⋅]∶L(X n)→L(X n)/IPn ∶ f ↦ [ f ] and Hn (indicated
with a single arrow), and the bijection H̃n (indicated with a double arrow). Since the representing
choice function C′ is defined from C through [⋅]—working point-wise on sets—this already suggests
that C′ can be transformed into a choice function on L(N n). To prove that they preserve coherence,
there is only one missing link: the map H̃n should be linear and preserve the ordering betweenL(X n)/IPn and L(N n). Therefore, to define the ordering ⪯ on L(X n)/IPn , as usual, we let ⪯ be
inherited by the ordering ≤ on L(X n):

f̃ ⪯ g̃⇔ (∃ f ∈ f̃ ,∃g ∈ g̃) f ≤ g

for all f̃ and g̃ in L(X n)/IPn , turning L(X n)/IPn into an ordered linear space. It turns out that this
vector ordering on L(X n)/IPn can be represented elegantly using H̃n :

Proposition 6 Consider any f̃ and g̃ in L(X n)/IPn , then f̃ ⪯ g̃ if and only if H̃n( f̃ ) ≤ H̃n(g̃).

Props. 5 and 6 imply that Hn is a linear order isomorphism.

3.3 A Representation Theorem

Now that we have found a linear order isomorphism H̃n between L(X n)/IPn and L(N n), we are
ready to represent coherent and exchangeable choice functions.

Theorem 7 (Finite Representation) Consider any choice function C on L(X n). Then C is ex-
changeable if and only if there is a unique representing choice function C̃ on L(N n) such that

C(O) = { f ∈O ∶Hn( f ) ∈ C̃(Hn(O))} for all O in Q(L(X n)).

Furthermore, in that case, C̃ is given by C̃(Hn(O)) = Hn(C(O)) for all O in Q(L(X n)). Finally,
C is coherent if and only if C̃ is.

Similarly, consider any set of desirable gambles D ⊆ L(X n). Then D is exchangeable if and
only if there is a unique representing set of desirable gambles D̃ ⊆L(N n) such that D =⋃H̃−1

n (D̃).
Furthermore, in that case, D̃ is given by D̃ =Hn(D). Finally, D is coherent if and only if D̃ is.
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The number of occurrences of any outcome in a sequence (x1, . . . ,xn) is fixed by its count
vector m in N n . If we impose an exchangeability assessment on it, then we see, using Theorem 7,
that the joint model on X n is characterised by a model on L(N n). So an exchangeable choice
function C essentially represents preferences between urns with n balls of types X with different
compositions m: the choice C(O) between the gambles in O is based upon the composition m.

3.4 Finite Representation in Terms of Polynomials

In Sec. 4, we will prove a similar representation theorem for infinite sequences. Since it no longer
makes sense to count in such sequences, we first need to find a equivalent representation theorem
in terms of something that does not depend on counts. More specifically, we need, for every n in
N another order-isomorphic linear space to L(X n)/IPn , that allows for embedding: the linear space
for n1 < n2 must be a subspace of the one for n2.

All the maps in this section have been introduced by De Cooman et al. (2009) and De Cooman
and Quaeghebeur (2012). We use their ideas and work with polynomials on the X -simplex ΣX ∶={θ ∈ RX ∶ θ ≥ 0,∑x∈X θx = 1}. We consider the special subset V(ΣX ) of L(ΣX ): V(ΣX ) are the
polynomial gambles h on ΣX , which are those gambles that are the restriction to ΣX of a multivariate
polynomial p on RX , in the sense that h(θ) = p(θ) for all θ in ΣX . We call p then a representation
of h. It will be useful to introduce a notation for polynomial gambles with fixed degree n in N:Vn(ΣX ) is the collection of all polynomial gambles that have at least one representation whose
degree is not higher than n. Both V(ΣX ) and Vn(ΣX ) are linear subspaces of L(ΣX ), and, as
wanted, for n1 ≤ n2, Vn1(ΣX ) is a subspace of Vn2(ΣX ).

Some special polynomial gambles are the Bernstein gambles:

Definition 8 (Bernstein gambles) Consider any n in N and any m in N n . Define the Bernstein
basis polynomial Bm on RX as Bm(θ) ∶= (n

m)∏x∈X θ mx
x for all θ in RX . The restriction to ΣX is

called a Bernstein gamble, which we also denote as Bm.

As shown by De Cooman and Quaeghebeur (2012) and also by De Bock et al. (2016), the set of all
Bernstein gambles constitutes a basis for the linear space Vn(ΣX ):

Proposition 9 Consider any n in N. The set of Bernstein gambles {Bm ∶m ∈N n} constitutes a basis
for the linear space Vn(ΣX ).

As we have seen, to preserve coherence between two ordered linear spaces, we need a linear
order isomorphism. So we wonder whether there is one between L(X n)/IPn and Vn(ΣX ). In
Sec. 3.2 we have seen that there is one between L(X n)/IPn and L(N n), namely H̃n . Therefore, it
suffices to find one between L(N n) and Vn(ΣX ). Consider the map

CoMn ∶L(N n)→ Vn(ΣX )∶r↦ ∑
m∈N n

r(m)Bm.

Before we can establish that CoMn is a linear order isomorphism, we need to provide the linear
space Vn(ΣX ) with an order ⪯n

B . We use the proper cone {0}∪posi({Bm ∶ m ∈N n}) to define the
order ⪯n

B :

h1 ⪯n
B h2⇔ h2−h1 ∈ {0}∪posi({Bm ∶m ∈N n}) for all h1 and h2 in Vn(ΣX ).

The following proposition is proved by De Cooman and Quaeghebeur (2012).
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Proposition 10 Consider any n in N. Then the map CoMn is a linear order isomorphism between
the ordered linear spaces L(N n) and Vn(ΣX ).

The linear order isomorphism CoMn helps us to define a linear order isomorphism between
the linear spaces L(X n) and Vn(ΣX ), a final tool needed for a representation theorem in terms of
polynomial gambles. Indeed, consider for the map Mn ∶=CoMn ○Hn :

Mn ∶L(X n)→ Vn(ΣX )∶ f ↦Mn( f ∣θ),
where Mn( f ∣θ) ∶=∑m∈N n ∑y∈[m] f (y)∏x∈X θ mx

x is the expectation of f associated with the multino-
mial distribution whose parameters are n and θ . We introduce its version

M̃n ∶=CoMn ○ H̃n , (4)

mapping L(X n)/IPn to Vn(ΣX ). There is an immediate connection between Mn and M̃n : they are
both compositions of two linear order isomorphisms, and are therefore linear order isomorphisms
themselves. Due to Prop. 4, considering any f̃ in L(X n)/IPn , Mn is constant on f̃ , and the value it
takes on any element of f̃ is exactly M̃n( f̃ ).

L(X n)
L(N n) Vn(ΣX )

L(X n)/IPn

Hn Mn

[⋅]

CoMn

M̃nH̃n

The commuting diagram shows the surjections [⋅], Hn and Mn , and the bijections H̃n , M̃n and
CoMn . It shows that both L(N n) and Vn(ΣX ) are order-isomorphic to L(X n)/IPn , so they are
both suitable to define a representing choice function on. In Theorem 7, we used the space L(N n).
Here, we will use the other equivalent space Vn(ΣX ).

Theorem 11 (Finite Representation) Consider any choice function C on L(X n). Then C is ex-
changeable if and only if there is a unique representing choice function C̃ on Vn(ΣX ) such that

C(O) = { f ∈O ∶Mn( f ) ∈ C̃(Mn(O))} for all O in Q(L(X n)).

Furthermore, in that case, C̃ is given by C̃(Mn(O)) = Mn(C(O)) for all O in Q(L(X n)). Finally,
C is coherent if and only if C̃ is.

Similarly, consider any set of desirable gambles D ⊆ L(X n). Then D is exchangeable if and
only if there is a unique representing set of desirable gambles D̃ ⊆Vn(ΣX ) such that D =⋃M̃−1

n (D̃).
Furthermore, in that case, D̃ is given by D̃ =Mn(D). Finally, D is coherent if and only if D̃ is.

4. Countable Exchangeability

In the previous section, we assumed a finite sequence X1,. . . , Xn to be exchangeable, and inferred
representation theorems. In this section, we will consider the countable sequence X1, . . . , Xn , . . . to
be exchangeable, and derive representation theorems for such assessments. We will call XN ∶=⨉ j∈NX , the set of all possible countable sequences where each variable takes values in X .
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First, we will need a way to relate gambles on different domains. Let f be some gamble on X n,
and let f ∗ be its cylindrical extension, defined as

f ∗(x1, . . . ,xn, . . .) ∶= f (x1, . . . ,xn) for all (x1, . . . ,xn, . . .) in XN.

Formally, f ∗ belongs to L(XN) while f belongs to L(X n). However, they contain the same in-
formation, and therefore, are indistinguishable from a behavioural point of view. In this paper, we
will identify f with its cylindrical extension f ∗. Using this convention, we can for instance identifyL(X n) with a subset of L(XN), and, as an other example, for any A ⊆L(XN), regard A∩L(X n)
as those gambles in A that depend upon the first n variables only.

4.1 Marginalisation

Using the notational convention we have just discussed, we can very easily define what marginal-
isation means for choice functions. Given any choice function C on L(XN) and any n in N, itsX n-marginal Cn is determined by Cn(O) ∶=C(O) for all O in Q(L(X n)).

Similarly, given any set of desirable gambles D ⊆L(XN) and any n in N, its X n-marginal Dn is
defined by Dn ∶=D∩L(X n).

Coherence is preserved under marginalisation [it is an immediate consequence of the definition;
see, amongst others, (De Cooman and Miranda, 2012, Proposition 6) for sets of desirable gambles].

Proposition 12 Consider any coherent choice function C on L(XN) and any coherent set of desir-
able gambles D ⊆L(XN). Then for every n in N, their X n-marginals Cn and Dn are coherent.

4.2 Gambles of Finite Structure

Before we can explain what it means to assess a countable sequence to be exchangeable, we need
to realise that now there are infinitely many variables. From an operational point of view, it will be
impossible to describe choosing between gambles that depend upon an infinite number of variables.
Indeed, since we can never observe the actual outcome in a finite time, gambles will never be
actually paid off, and hence every assessment is essentially without any risk. But, it does make
operational and behavioural sense to consider choices between gambles of finite structure: gambles
that each depend on a finite number of variables only. See (De Bock et al., 2016, Sec. 3.2) for a
discussion.

Definition 13 (Gambles of finite structure) We will call any gamble that depends only on a finite
number of variables a gamble of finite structure. We collect all such gambles in L̄(XN):

L̄(XN) ∶= { f ∈L(XN) ∶ (∃n ∈N) f ∈L(X n)} = ⋃
n∈NL(X n).

L̄(XN) is a linear space, with the usual ordering ≤: for any f and g in L̄(XN), f ≤ g⇔ f (x) ≤ g(x)
for all x in XN.

Due to our finitary context, we can even establish a converse result to Prop. 12, whose proof for
the part about sets of desirable gambles can be found in (De Bock et al., 2016, Proposition 4), and
for the part about choice functions is a straightforward verification of all the axioms.

Proposition 14 Consider any choice function C on L̄(XN), and any set of desirable gambles D ⊆L̄(XN). If for every n in N, itsX n-marginal Cn on L(X n) is coherent, then C is coherent. Similarly,
if for every n in N, its X n-marginal Dn ⊆L(X n) is coherent, then D is coherent.
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4.3 Set of indifferent gambles

If a subject assesses the sequence of variables X1, . . . , Xn , . . . to be exchangeable, this means that he
is indifferent between any gamble f in L̄(XN) and its permuted variant πt f , for any π in Pn , where
n now is the (finite) number of variables that f depends upon: his set of indifferent gambles is

IP ∶= { f ∈ L̄(XN) ∶ (∃n ∈N) f ∈ IPn} = ⋃
n∈NIPn .

If we want to use IP to define countable exchangeability, it must be a coherent set of indifferent
gambles.

Proposition 15 The set IP is a coherent set of indifferent gambles.

Countable exchangeability is now easily defined, similar to the definition for the finite case.

Definition 16 A choice function C on L̄(XN) is called (countably) exchangeable if C is compatible
with IP . Similarly, a set of desirable gambles D ⊆ L̄(XN) is called (countably) exchangeable if it is
compatible with IP .

This definition is closely related to its finite counterpart.

Proposition 17 Consider any coherent choice function C on L̄(XN). Then C is exchangeable if
and only if for every choice of n in N, the X n-marginal Cn of C is exchangeable. Similarly, consider
any coherent set of desirable gambles D ⊆ L̄(XN). Then D is exchangeable if and only if for every
choice of n in N, the X n-marginal Dn of D is exchangeable.

4.4 A Representation Theorem for Countable Sequences

We will look for a similar representation result. However, since we no longer deal with finite
sequences of length n, now the representing choice function won’t be defined on Vn(ΣX ), but
instead on V(ΣX ).

L(X n)
L(N n) Vn(ΣX )

L(X n)/IPn V(ΣX )

Hn Mn

[⋅]

CoMn

M̃nH̃n

In the commuting diagram, a dashed line represents an embedding: indeed, for every n in N,Vn(ΣX ) is a subspace of V(ΣX ). That shows the importance of the polynomial representation.
As we have seen, in order to define coherent choice functions on some linear space, we need

to provide it with a vector ordering. Similar to what we did before, we use the proper cone {0}∪
posi({Bm ∶m ∈N n ,n ∈N}) to define the order ⪯B on V(ΣX ):

h1 ⪯B h2⇔ h2−h1 ∈ {0}∪posi({Bm ∶m ∈N n ,n ∈N})
for all h1 and h2 in V(ΣX ).

Keeping Props. 12 and 14 in mind, the following result is not surprising.
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Proposition 18 Consider any choice function C′ on V(ΣX ). Then C′ is coherent if and only if for
every n in N the choice function C′

n, given by C′
n(O) ∶=C′(O) for all O in Q(Vn(ΣX )) is coherent.

Theorem 19 (Countable Representation) Consider any choice function C on L̄(XN). Then C is
exchangeable if and only if there is a unique representing choice function C̃ on V(ΣX ) such that,
for every n in N, the X n-marginal Cn of C is determined by

Cn(O) = { f ∈O ∶Mn( f ) ∈ C̃(Mn(O))} for all O in Q(L(X n)).

Furthermore, in that case, C̃ is given by C̃(O) ∶=⋃n∈NC̃n(O∩Vn(ΣX )) for all O inQ(V(ΣX )), with
C̃n(Mn(O)) ∶= Mn(Cn(O)) for every O in Q(L(X n)), and where we let C̃n(∅) ∶=∅ for notational
convenience. Finally, C is coherent if and only if C̃ is.

Similarly, consider any set of desirable gambles D ⊆ L̄(XN). Then D is exchangeable if and
only if there is a unique representing D̃ ⊆ V(ΣX ) such that, for every n in N, the X n-marginal Dn

is given by Dn =⋃M̃−1
n (D̃∩Vn(ΣX )). Furthermore, in that case, D̃ is given by D̃ =⋃n∈NMn(Dn).

Finally, D is coherent if and only if D̃ is.

5. Conclusion

We have studied exchangeability and we have found counterparts to de Finetti’s finite and countable
representation results, in the general setting of choice functions. We have shown that an exchange-
ability assessment is a particular indifference assessment, where we identified the set of indifferent
options. The main idea that made (finite) representation possible is the linear order isomorphism
H̃−1

n between the quotient space and the set of gambles on count vectors, indicating that (finitely)
exchangeable choice functions can be represented by a choice function that essentially represents
preferences between urns with n balls of types X with different compositions m. Alternatively, for
the countable case, we have shown that there is a polynomial representation.

Choice functions form a belief structure (Van Camp et al., 2017). Therefore, any infimum of co-
herent choice functions is a coherent choice function itself. Since any infimum of choice functions
compatible with some fixed set of indifferent options I, is compatible with I as well (Van Camp et al.,
2017), our results indicate that, using choice functions, it is conceptually easy to reason about ex-
changeable sequences: infima of exchangeable and coherent choice functions will be exchangeable
and coherent as well.

A possible future goal is to investigate how exchangeability behaves under updating. In (De
Cooman and Quaeghebeur, 2012) it is shown that, for exchangeable sets of desirable gambles, up-
dating can be done directly for the representing set of desirable gambles in the count space. We
expect this to be the case for choice functions as well. Other possible extensions are to develop a
framework for partial exchangeability, and to model other structural judgements, such as an irrele-
vance assessment.
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Abstract
Decision makers must often base their decisions on incomplete (coarse) data. Recent research has
shown that in a wide variety of coarse data problems, minimax optimal strategies can be recognized
using a simple probabilistic condition. This paper develops a computational method to find such
strategies in special cases, and shows what difficulties may arise in more general cases.
Keywords: Coarse data; incomplete observations; minimax decision making.

1. Introduction

Suppose that we are faced with a decision where the loss we will incur depends on the outcome x
of a random experiment. While the distribution of x is known, our observation of x is incomplete:
we only have access to a coarse observation y, a set that we know includes x but may also include
other elements. An infamous example of this problem is the Monty Hall puzzle (Selvin, 1975).

Example 1 In a game show, a car is hidden uniformly at random behind one of three doors. The
contestant picks a door; we will assume the middle one. But now the quizmaster steps in and opens
one of the two remaining doors, revealing a goat behind it. Should the contestant switch to the
remaining door, or stick with his initial guess?

We will make the standard assumptions that the quizmaster always opens a door, always with a
goat behind it. Then this is an instance of the incomplete data problem, where we will either
observe y = {left,middle} (if the quizmaster opens the rightmost door) or y = {middle, right} (if
he opens the leftmost door). It is well known—but quite surprising—that it is wrong to conclude
the remaining doors now each have probability 1/2 of hiding the car. But then what probability
distribution (or set of distributions) should we use to base our decision on?

A key issue here is that we do not know the coarsening mechanism, the random process that
maps the true outcome x to the set y we observe. A common assumption about this mechanism
is coarsening at random (CAR), which says that for each set y, the probability that the coarsening
mechanism reports y is the same no matter which outcome x ∈ y is the true outcome (Heitjan and
Rubin, 1991). But this is a strong assumption that often fails to hold in practice; in fact, in the
Monty Hall puzzle, it can never hold (Grünwald and Halpern, 2003; Gill and Grünwald, 2008).

An approach that avoids any assumptions on the coarsening mechanism is to model the problem
using the credal set P of all joint distributions P on (x, y) that are (a) consistent with the known
distribution of x, and (b) satisfy P (x, y) = 0 for x 6∈ y. This (convex) set P represents both
our aleatory uncertainty about x and our epistemic uncertainty about its relation with y. To then
incorporate an observation y, the generalized Bayes rule can be used; De Cooman and Zaffalon
(2004) apply this approach to coarse data problems. The resulting posterior on the outcomes exhibits
dilation (Seidenfeld and Wasserman, 1993): the prior was a precise distribution, but the posterior
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may be a large set of distributions. If we want to be sure that the true distribution of x given y
is included in this set, then this phenomenon is unavoidable. However, it may lead to suboptimal
decisions, as described by Augustin (2003), Grünwald and Halpern (2011), and others.

By formulating a strategy before making an observation, the effect of dilation on decisions can
be avoided (Seidenfeld, 2004). This approach has been investigated for coarse data problems by
Van Ommen et al. (2016), who found that for many situations, minimax strategies are characterized
by the RCAR condition (which looks like the CAR condition, but with x and y reversed).

To apply these results in practice, we would like efficient computational methods to find RCAR
strategies. How difficult this is depends largely on the family of possible observations. In this
paper, we describe a computational method for a restricted class of such families. This reveals a
relation between minimax optimal strategies and statistical independence. We also point out the
various computational difficulties that may occur in larger classes of families: there finding an exact
solution may involve a combinatorial search, or solving polynomial (rather than linear) equations.

This paper is structured as follows. In Section 2, we summarize the relevant results of Van
Ommen et al. (2016). Section 3 introduces the main tool: homogeneous induced colourings. These
may not exist for all families of possible observations, which leads to a categorization of such
families. A computational procedure, and its limitations, are described in Section 4. Section 5
interprets this procedure for the families where it is guaranteed to work. Section 6 concludes.

The contents of Sections 3 to 5 are adapted from Chapter 7 of PhD thesis (Van Ommen, 2015).

2. Optimality of RCAR Strategies

This section summarizes the main results from Van Ommen et al. (2016). We consider coarse
data decision problems with finite outcome space X . The decision maker must pick an action
based on a coarse observation y ⊆ X , which we call a message. The choice of action will de-
pend not only on the received message, but on the entire set of messages that the coarsening
mechanism might produce: the message structure Y ⊂ 2X (in the Monty Hall example, this is
Y = {{left,middle}, {middle, right}}). It will also depend on the (known) distribution p of the out-
comes, which we assume to be nowhere zero, and on the loss function L : X × A → [0,∞].1 We
assume throughout that L satisfies the technical conditions in (Van Ommen et al., 2016, Theorem 3);
these are in particular satisfied for all finite L, and also for logarithmic loss L(x,Q) = − logQ(x).

The decision problem is modelled as a zero-sum game between a quizmaster and a contestant.
The (imaginary) quizmaster picks as strategy a joint distribution P onX×Y from the credal setP =
{P | ∑y P (x, y) = px for all x, P (x, y) = 0 for all y ∈ Y, x /∈ y}. Simultaneously, the contestant
picks as strategy a function A : Y → A. The two players seek to maximize resp. minimize the
expected loss ∑

x,y

P (x, y)L(x,A(y)) =
∑

x

px
∑

y∈Y,y3x
P (y | x)L(x,A(y)),

where the second expression reflects that the quizmaster’s influence is limited to P (y | x), with x
always sampled from the fixed marginal p. Strategies achieving this maximum/minimum are called
worst-case optimal. If the action space is rich enough, this game has a Nash equilibrium; then

1. In (Van Ommen et al., 2016), the decision maker’s action space A is always taken to be the set of distributions on
X , and the actions are interpreted as probability updates. But due to the generality of the loss functions allowed, the
same theory can be applied for arbitrary action spaces.
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Figure 1: Overview of classes of message structures. As shown by Van Ommen et al. (2016),
the RCAR condition characterizes worst-case optimal P for many games, including all graph and
matroid games. The other classes shown in this figure are defined and explored in Sections 3 and 5.

given a worst-case (maximin) optimal P for the quizmaster, we can easily determine a worst-case
(minimax) optimal A for the contestant.2 Thus we focus on finding a worst-case optimal P .

For several classes of games, a strategy P is worst-case optimal if, for some vector q ∈ [0, 1]X ,
it satisfies the RCAR condition:

qx = P (x | y) for all y ∈ Y with P (y) > 0 and all x ∈ y, and
∑

x∈y
qx ≤ 1 for all y ∈ Y. (1)

Such a strategy is called an RCAR strategy, and the vector q is called an RCAR vector. The three
classes of games where this holds are illustrated in Figure 1: if L is logarithmic loss or an affine
transformation of it (this represents Kelly gambling games with arbitrary payoffs); if Y is a graph
(each message consists of two outcomes); and if Y is a matroid (defined in (3) below). In the latter
two cases, there is also a symmetry condition on the loss function L. What is surprising here is that,
as long as we are in one of these cases, we can find a worst-case optimal P without knowing what
the loss function is, because the RCAR condition is purely probabilistic and does not depend on L.
The rest of this paper deals with the problem of computing an RCAR strategy for a given game.

3. Induced Colourings

Fix a set Y ′ ⊆ Y with
⋃

y∈Y ′ y = X , and assume that an RCAR strategy P exists with support
YP := {y ∈ Y | P (y) > 0} equal to Y ′. (For example, we may in many cases take Y ′ = Y .)
We will now consider different properties of YP that may help us find P . The classes of message

2. In many cases, A(y) is simply the optimal response to P (· | y) for each y ∈ Y . This is not always well-defined; a
general solution is given by Theorem 7 of (Van Ommen et al., 2016), using Theorem 3 to determine λ∗.
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structures defined by these properties, and the inclusion relations between them that we establish
here, are shown graphically in Figure 1, and examples are given in Figure 2.

Consider the system of linear equations
∑

x∈y
qx = 1 for all y ∈ Y ′. (2)

If an RCAR strategy P ∈ P exists with support Y ′ and RCAR vector q, then q is positive and
satisfies (2). The converse is not true: if Y ′ 6= Y , then (1) additionally imposes inequalities on
messages y ∈ Y \ Y ′. We will start our search for RCAR strategies by examining the solutions
of (2). (A similar system is studied in the CAR literature, where it plays a role in characterizing
message structures that admit a CAR coarsening mechanism; see Grünwald and Halpern (2003);
Jaeger (2005); Gill and Grünwald (2008). Since we study RCAR rather than CAR, the roles of
outcomes and messages are reversed here.)

Define a colouring as a partition of X . We say a colouring is induced by a set of messages Y ′ if
the system of linear equations (2) has at least one solution q with qx > 0 for all x, and x, x′ are in the
same class of the colouring (‘have the same colour’) if and only if qx = qx′ for all such solutions to
that system (in other words, the colour classes are the equivalence classes of this relation on X ). If
the system has at least one positive solution, then the colouring induced by Y ′ is unique; otherwise,
there is no induced colouring.

We say a colouring is homogeneous on Y ′ if the number of outcomes of each colour is the
same for every message in Y ′ (for example, if each message consists of one ‘red’ and two ‘blue’
outcomes). This is only possible if Y ′ is uniform: all messages in Y ′ have the same size. We
are interested in Y ′ whose induced colouring is homogeneous. One class of such Y ′ is defined
in terms of pairs of messages y1, y2 that differ by the exchange of one outcome, meaning that
|y1\y2| = |y2\y1| = 1. We callY ′ exchange-connected if, for each pair of messages y(a), y(b) ∈ Y ′,
there exists a sequence of messages y1, y2, . . . , y` ∈ Y ′ (an exchange-path) with y1 = y(a) and
y` = y(b) whose adjacent messages differ by the exchange of one outcome. Finally, Y ′ is a matroid
if it satisfies the basis exchange property: for all y1, y2 ∈ Y ′ and x1 ∈ y1 \ y2,

(y1 \ {x1}) ∪ {x2} ∈ Y ′ for some x2 ∈ y2 \ y1. (3)

Figure 2 illustrates these definitions with a few examples. Each table represents a message
structure Y as an incidence matrix: each row represents a message, and (coloured) stars mark the
outcomes it contains.

The message structure shown in Figure 2a has no induced colouring: any solution of (2) must
have qx3 = 1−qx4 = qx5 = 1−qx1 and thus qx2 = 0, so there is no positive solution, and it follows
that no RCAR strategy P exists with P (y) > 0 for all y ∈ Y ′. On the other hand, any uniform
game has an induced colouring, because there is at least one solution to (2):

qx = 1/k for all x ∈ X , (4)

where k is the size of the game’s messages.
Figures 2b and 2c are examples of message structures that do have an induced colouring, but

one that is not homogeneous. In both these examples, all outcomes have different colours in the
induced colouring, because no pair of outcomes necessarily has the same value of q in a solution of
(2). The message structure shown in Figure 2c will be revisited in Example 2 in the next section.
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x1 x2 x3 x4 x5
y1 ∗ ∗ ∗ − −
y2 − − ∗ ∗ −
y3 − − − ∗ ∗
y4 ∗ − − − ∗

(a) No induced colouring.

x1 x2 x3 x4
y1 ∗ ∗ − −
y2 − ∗ ∗ ∗

(b) Induced colouring but not uniform.

x1 x2 x3 x4 x5 x6
y1 ∗ ∗ ∗ − − −
y2 − − ∗ ∗ ∗ −
y3 ∗ − − − ∗ ∗

(c) Uniform but induced colouring not homoge-
neous.

x1 x2 x3 x4 x5 x6
y1 ∗ ∗ ∗ − − −
y2 − − ∗ ∗ ∗ −
y3 ∗ − − − ∗ ∗
y4 − ∗ − ∗ − ∗

(d) Homogeneous induced colouring but not
exchange-connected.

x1 x2 x3 x4 x5
y1 ∗ ∗ ∗ − −
y2 − ∗ ∗ ∗ −
y3 − − ∗ ∗ ∗

(e) Exchange-connected but not a matroid.

x1 x2 x3 x4 x5
y1 ∗ ∗ ∗ − −
y2 ∗ ∗ − ∗ −
y3 ∗ − ∗ ∗ −
y4 ∗ − ∗ − ∗
y5 ∗ − − ∗ ∗

(f) Matroid.

Figure 2: Examples of messages structures and their induced colourings.

The three remaining message structures do have homogeneous induced colourings. Figure 2d
shows that it is possible for a message structure to have a homogeneous induced colouring without
being exchange-connected. In this message structure, which adds the message y4 to the structure
in Figure 2c, each pair of messages differs by two exchanges. Yet the added message changes the
induced colouring: for example, qx1 = qx4 follows because by the equalities from (2) on y1 and
y3, 1 − qx1 = qx2 + qx3 = qx5 + qx6 , and by y2 and y4, 1 − qx4 = qx3 + qx5 = qx2 + qx6 ; thus
2− 2qx1 = 2− 2qx4 = qx2 + qx3 + qx5 + qx6 .

The message structure shown in Figure 2e is exchange-connected. For such structures, it easy
to determine the induced (homogeneous) colouring: if messages y1, y2 differ by the exchange of
one outcome (x1 for x2), then any solution of (2) must satisfy qx1 = qx2 , so such x1, x2 must be
the same colour. Any vector q that satisfies all these equalities and satisfies

∑
x∈y qx = 1 for any

one message y ∈ Y ′ satisfies (2) for all messages in Y ′, so this determines the induced colouring.
This colouring is clearly homogeneous on any pair of message that differ by the exchange of one
outcome; because exchange-paths exist between all pairs of messages, it follows that the induced
colouring of an exchange-connected game is homogeneous.

Finally, the class of matroid games is a subclass of exchange-connected games: (3) requires the
existence of not just one, but possibly many different exchange-paths between any pair of messages.
Figure 2f gives an example. The structure in Figure 2e is not a matroid: there is no outcome in y3\y1
that can be added to y1 \ {x2} = {x1, x3} to make a message.
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The following lemma gives two alternate characterizations of the induced colouring of a ma-
troid. The first of these is in terms of a concept from matroid theory: the colour classes of the
induced colouring coincide with the 2-connected components of the matroid. (We refer to Oxley
(2011) for the definition.) We observed above (when discussing Figure 2e) that if messages exist
that differ in the exchange of one outcome, then the outcomes being exchanged must be the same
colour. The second characterization shows that for matroids, the converse also holds.

Lemma 1 (Matroid colouring) Given a matroid (X ,Y) and two elements x1, x2 ∈ X , the follow-
ing statements are equivalent:

1. x1 and x2 are in the same colour class of the induced colouring of Y;

2. x1 and x2 are in the same 2-connected component of (X ,Y);

3. There exist y1, y2 ∈ Y such that y1 \ y2 = {x1} and y2 \ y1 = {x2}.

4. A Computational Procedure for Finding RCAR Strategies

Consider the case that Y ′ induces a homogeneous colouring, and assume as before that an RCAR
strategy P exists with YP = Y ′. Then the corresponding RCAR vector q must be a solution of the
linear system (2). Additionally, P must agree with the marginal p. These constraints allow us to
compute the vector q directly.

Let S be the set of all outcomes with a particular colour. Then there is some value qS such that
P (x | y) = qx = qS for all y ∈ Y , x ∈ S ∩ y. Let kS = |S ∩ y| (this is independent of y by
homogeneity). We must have

kSqS = kSqS
∑

y

P (y) =
∑

y

kSP (y)qS =
∑

y

∑

x∈S∩y
P (y)qS =

∑

x∈S

∑

y3x
P (y)P (x | y) =

∑

x∈S
px,

so that qS can be computed by

qS =
1

kS

∑

x∈S
px. (5)

A simple case is when the induced colouring assigns the same colour to all outcomes: then we see
that as in (4), we get qx = 1/k for all x ∈ X , where k is the size of the messages. When a colour
consists of just one outcome x (which must then be an element of every message for the colouring
to be homogeneous), we find qx = px.

If an RCAR strategy P exists with YP = Y ′ where Y ′ induces a homogeneous colouring, then
P must have the vector q determined by (5) as its RCAR vector. However, it may be the case that
no such strategy exists. To find P if it exists, we still need to determine the P (y)’s. We can find
a nonnegative solution or determine that no nonnegative solution exists by solving the following
linear programming problem (which we can do in polynomial time):

maximize
∑

y∈Y
ry

subject to
∑

y3x
ry ≤

px
qx

for all x ∈ X ,
(6)
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with r ∈ RY≥0. If a vector achieving
∑

y∈Y ry = 1 is found, we have a strategy P with r as the
marginal on messages (P (x, y) = qxry for all x ∈ y). If no vector r achieves the value 1, there is
no RCAR strategy P satisfying the assumption YP = Y ′.

Now we may want to apply this procedure in practice to find an RCAR strategy for a given
game. (By Lemma 11 from Van Ommen et al. (2016), such a strategy always exists.)

When doing so we encounter two problems: we need to provide the procedure with an Y ′ such
that

⋃Y ′ = X , and even if we have an idea about what Y ′ to take, it may not have a homogeneous
induced colouring. Still, let us investigate what happens if we just guess an Y ′. We will then
encounter one of the cases 1, 2a-2c which we now describe. Briefly, in case 1, the procedure cannot
be used because it cannot determine q, and in case 2a and 2b it gives an inconclusive result; in case
2c we have success. We now consider each case in detail.

1. Y ′ has no homogeneous induced colouring.

In this case, the procedure is not applicable. Indeed, finding an RCAR vector may be a more difficult
type of problem, as illustrated by the following example which uses the message structure from
Figure 2c. (This example is a uniform game; the class of uniform games is the smallest class among
those identified in the previous section that strictly contains the class of games with a homogeneous
induced colouring.)

Example 2 (Irrational RCAR vector) Consider the problem with X = x1, . . . , x6, Y = {y1 =
{x1, x2, x3}, y2 = {x3, x4, x5}, y3 = {x1, x5, x6}}, and marginal p and strategy P given by the
following table:

P x1 x2 x3 x4 x5 x6

y1 1/10 1/10 3
10 − 1

10

√
5 − − −

y2 − − 1
10

√
5− 1

10 1/5 1
10

√
5− 1

10 −
y3 1/10 − − − 3

10 − 1
10

√
5 1/10

qx
1
4 + 1

20

√
5 1

4 + 1
20

√
5 1

2 − 1
10

√
5 1

5

√
5 1

2 − 1
10

√
5 1

4 + 1
20

√
5

px 1/5 1/10 1/5 1/5 1/5 1/10

The strategy P is RCAR, with the vector q that is also shown in the table. We see that the RCAR
strategy P and RCAR vector q (both of which are unique) contain irrational numbers, while the
marginal p was rational. The solution techniques used in this section (the formula (5) for q and
linear optimization for (6)) do not yield irrational results when given rational inputs, so this example
shows that these techniques will not suffice in general for games that do not have a homogeneous
induced colouring. (General-purpose convex optimization techniques could be used here instead.)

Conclusion: in this case, an RCAR strategy P with YP = Y ′ may exist, but it may be not be easy
to find. So in general, for such Y ′, we do not know how to efficiently determine if such a P exists.

2. Y ′ does have a homogeneous induced colouring.

In this case, we can use (5) to compute a candidate q for the RCAR vector. We distinguish three
subcases:

364



COMPUTING MINIMAX DECISIONS WITH INCOMPLETE OBSERVATIONS

2a. If Y ′ 6= Y , there may be a message y ∈ Y \ Y ′ for which
∑

x∈y qx > 1.

This may happen because the described procedure ignores the existence of messages not in Y ′.
However, the RCAR condition (1) puts an inequality constraint on

∑
x∈y qx even for messages y

with P (y) = 0. If the vector q computed by (5) does not satisfy this constraint, then q is not an
RCAR vector: we chose the wrong Y ′.

2b. No solution r of (6) achieves
∑

y∈Y ry = 1.

This also means that our choice of Y ′ was incorrect.

2c. Otherwise, q is an RCAR vector, and together with r determines an RCAR strategy P .

In this case, we can report success.
In cases 2a and 2b, Y ′ has a homogeneous induced colouring but we find that no RCAR strategy

P exists with YP = Y ′. Then we may face two problems. First, it is not clear how we might choose
a different Y ′ on which to try the procedure next. For small message structures, it may be feasible
to try all candidates. For larger structures, the number of possible choices grows exponentially, and
a more efficient way of searching would be needed.

The second problem is that in general, Y ′ might not induce a homogeneous colouring even
though Y does. For example, if Y is the message structure shown in Figure 2e, but there is no RCAR
strategy P with YP = Y for our marginal p, we have to conclude that the RCAR strategy must have
YP = {y1, y3} (because this is the only other choice of Y ′ that satisfies

⋃Y ′ = X ). However,
this message structure is no longer exchange-connected, and in fact does not have a homogeneous
induced colouring, so that we end up in case 1.

In Section 5, we will see a subclass of matroid games for which the procedure is guaranteed
to succeed for the choice Y ′ = Y . So for that class of inputs, the procedure discussed here is an
efficient algorithm for finding an RCAR strategy (which is worst-case optimal for any loss function
by the results of Van Ommen et al. (2016)).

Two efficient algorithms, for graph games and for matroid games, are given in Van Ommen
(2015, Chapter 8). These algorithms can also be viewed as instances of the computational procedure
in this section: both essentially compute q and r as we did here; then, if

∑
y∈Y r < 1, they pick a

new set Y ′, guided by properties of the linear optimization problem (6). The choice of Y ′ is such
that each new Y ′ is a subset of the previous Y ′ (i.e. no backtracking is needed), and such that case
2a will never occur.

Case 1 will never occur either for these algorithms: the chosen Y ′ will always have a homoge-
neous induced colouring. This happens for different reasons for the two cases of graph and matroid
games. These reasons shed light on what makes graphs and matroids special among more general
message structures, so we conclude this section by giving brief explanations.

For graphs: Any connected component of a graph is also exchange-connected, and thus in-
duces a homogeneous colouring. While some choices of Y ′ may produce a disconnected graph
(X ,Y ′), each component of this graph will have a homogeneous induced colouring, and the al-
gorithm can be applied to each of these components recursively.

For matroids: On a matroid game, for any RCAR strategy P , YP determines a homogeneous
colouring. (This colouring is not induced in the usual sense, but is uniquely determined by the
equalities on YP combined with inequalities for Y \ YP ; see (Van Ommen et al., 2016, proof of
Theorem 19) for details.) The conditional probabilities P (x | y) respect this colouring.
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5. Partition Matroids

We now describe a class of games for which a worst-case optimal strategy can be completely com-
puted using the procedure from the previous section, because regardless of the marginal p, we can
take Y ′ = Y and the procedure will succeed in finding an RCAR strategy.

A message structure Y is called a partition matroid if X can be partitioned into nonempty sets
S1, . . . , Sk such that Y consists of all subsets of X that take one element from each of the sets Si
(Oxley, 2011). This class forms a subclass of matroids, so if Y is a partition matroid, it induces a
homogeneous colouring. Using Lemma 1, it is easy to see that this colouring is given by the sets
Si. An example of a partition matroid is given in Figure 3a; the matroid we saw in Figure 2f is not
a partition matroid.

x1 x2 x3 x4 x5
y1 ∗ − ∗ − −
y2 ∗ − − ∗ −
y3 ∗ − − − ∗
y4 − ∗ ∗ − −
y5 − ∗ − ∗ −
y6 − ∗ − − ∗

(a) Partition matroid but not a sunflower.

x1 x2 x3 x4 x5
y1 ∗ ∗ ∗ − −
y2 ∗ ∗ − ∗ −
y3 ∗ ∗ − − ∗

(b) Sunflower with singleton petals.

Figure 3: More examples of messages structures and their induced colourings.

As an illustration, suppose a shopkeeper sells items of brands x1 and x2, in colours x3, x4 and
x5, and customers buy items based on a preference for either a brand or a colour. The shopkeeper
observes a customer buying an item, but would like to know the underlying preference for recom-
mendation purposes. This coarse data problem corresponds to the partition matroid in Figure 3a.

Because a partition matroid induces a homogeneous colouring, we can carry out the procedure
described in the previous section to find for each x that qx =

∑
x′∈Si

px′ , where Si is the set
containing x. Now a solution for the P (y)’s that satisfies

∑
y3x P (y)qx = px always exists:

P (y) =
∏

x∈y

px
qx
.

In words, this means that given the true outcome x, it is worst-case optimal for the quizmaster to
choose a message by randomly sampling an outcome from each set Si 63 x according to the marginal
probabilities conditioned on Si, and give the message consisting of x and these outcomes. The
existence of this strategy shows that, for partition matroid games, the procedure always succeeds in
finding a worst-case optimal strategy for the choice Y ′ = Y .

Example 1 (continued) The message structure Y = {{left,middle}, {middle, right}} in the Monty
Hall puzzle is a partition matroid with sets {left, right} and {middle}. For an arbitrary prior p on
the three doors, the RCAR strategy and vector are given by

qleft = qright = pleft + pright; qmiddle = pmiddle;

P ({left,middle}) = pleft/(pleft + pright); P ({middle, right}) = pright/(pleft + pright).
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What does a message Y generated by this strategy tell the contestant about the true (random)
outcome X? Clearly, it means that if X ∈ Si for some i, then X must be the unique outcome in
Y ∩ Si. Of course, the contestant does not know which of these sets contains X . Write I for the
(random) index of the set containing X . Does Y tell the contestant anything about I? The answer
is no: For each index i, regardless of whether I = i, the outcome in Y ∩ Si will be randomly
distributed according to the marginal p conditioned on Si, independently of Y ∩ Sj for j 6= i. This
implies that Y is independent of I . Then for each outcome x ∈ Y , the probability that X = x given
message Y equals the probability that I = i, where i is the index of the set containing x. These
are exactly the probabilities that appear in the RCAR vector q. We know from (Van Ommen et al.,
2016, Theorem 19) that the same is true also if the quizmaster is using a worst-case optimal strategy
different from the one described above.

In more general message structures, there may be a message that must be excluded from Y ′, so
that the worst-case optimal P cannot be computed so easily:

Theorem 2 If a game induces a homogeneous colouring but is not a partition matroid, then there
exist a marginal p and a message y ∈ Y such that P (y) = 0 for all RCAR strategies P .

We distinguish one subclass of the class of partition matroid games. A message structure in
which the intersection of any two messages is constant is called a sunflower (Jukna, 2001). The
common intersection is called the core, and each set difference between a message and the core is
called a petal. An example of a sunflowers with singleton petals is shown in Figure 3b. The Monty
Hall game itself (Example 1) is another example.

If a message structure is a sunflower with singleton petals, it is a partition matroid: each outcome
in the core forms a (singleton) class of the partition, and another class contains all the petals. Among
partition matroids, sunflowers can be recognized by the property that all of its colour classes except
one are singleton outcomes. For this class of games, the strategy P described above is the unique
RCAR strategy: a strategy P ′ with P ′(y) 6= P (y) for some y ∈ Y would disagree with the unique
RCAR vector.

The message structure shown in Figure 3a is a partition matroid, but not a sunflower. Because
at least two of its colour classes are not singletons, such a message structure contains a cycle of four
messages in which neighbouring messages differ by the exchange of one outcome, but the pairs of
messages on opposite sides of the cycle differ by two outcomes. (In Figure 3a, there are three such
cycles; one is (y1, y2, y5, y4).) For this type of game, the strategy P found above can be modified
by increasing P (y) for two messages at opposite sides of the cycle, and decreasing it by the same
amount for the other two, leaving the conditionals unchanged. Thus P is not the unique RCAR
strategy. In fact, RCAR strategies exist with P (y) = 0 for some y ∈ Y . For such a strategy P , we
have YP ( Y , but we do still have

∑
x∈y qx = 1 even for messages y with P (y) = 0.

6. Conclusion

We have presented an efficient algorithm for finding the minimax optimal strategy in a coarse data
problem where the message structure is a partition matroid. While this problem could also be solved
using general-purpose convex optimization algorithms, this would be much less efficient. We have
also seen how RCAR strategies may be qualitatively different beyond partition matroids, suggesting
that in the general case, exact computation of these strategies may be a harder problem.
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Appendix A. Proofs

Proof [Lemma 1] (2 ⇐ 3) Two elements x1 6= x2 of X are in the same 2-connected component if
and only if there is a circuit (minimal dependent set) containing both (Oxley, 2011). Since a basis
y ∈ Y is a maximal independent set, y1 ∪ y2 is dependent. Find a circuit C ⊆ y1 ∪ y2; this circuit
contains both x1 and x2, as otherwise it would be contained in a basis and thus independent.

(2⇒ 3) Let C be a circuit with {x1, x2} ⊆ C; our goal is to find the bases y1, y2, which we will
do iteratively. Let y1 be a basis containing the independent set C \ {x2}, and y2 a basis containing
C \ {x1}. While y1 \ {x1} 6= y2 \ {x2}, pick any x′1 ∈ y1 \ (y2 ∪ {x1}) and use basis exchange to
find a basis y′ = (y1 \ {x′1})∪ {x′2} for some x′2 ∈ y2 \ y1. Note that x′2 6= x2, as that would result
in C ⊆ y′. Replace y1 by y′ and repeat until y1 \ {x1} = y2 \ {x2}. This process terminates, as the
set difference becomes smaller with each step.

(1 ⇔ 3) For exchange-connected message structures, the colour classes are the equivalence
classes of the transitive reflexive closure of the relation on X stated in point 3. For matroids, the
equivalence of points 2 and 3 shows that this relation is already transitive. Thus for all x1 6= x2,
points 1 and 3 are equivalent.

Proof [Theorem 2] We will construct a marginal p with the required property by first finding a
vector q that is the RCAR vector for some game with the given message structure. We distinguish
two cases. If there exists y′ ⊂ X that is consistent with the homogeneous induced colouring but
y′ 6∈ Y , then pick 0 < ε < 1/(k(k − 1)) and set initial values for q as

qx =

{
1
k + ε for x ∈ y′;
1
k − (k − 1)ε otherwise.

Each message contains at least one outcome with the smaller qx, so
∑

x∈y qx ≤ 1 for all y ∈ Y .
Otherwise, if Y is not a partition matroid there must exist a colour class C ⊆ X for which the

number of outcomes of this colour occurring in a message is at least two. Then pick any x+ ∈ C
and 0 < ε < 1/k, and initialize q according to

qx =





1
k + ε for x = x+;
1
k − ε for x ∈ C but x 6= x+;
1
k otherwise.

Again we see
∑

x∈y qx ≤ 1 for all y ∈ Y .
Starting from the values of q determined above, we apply a greedy algorithm that repeatedly

increases qx for some x until none can be increased further, maintaining
∑

x∈y qx ≤ 1 for all
y ∈ Y . For the resulting vector q, let P be the joint distribution on x, y with P (y) uniform on
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{y ∈ Y | ∑x∈y qx = 1}, P (x | y) = qx for all x ∈ y, and P (x, y) = 0 elsewhere. This P is an
RCAR strategy for the game with marginal px =

∑
y3x P (x, y), and q is the unique RCAR vector.

In the first case, there must exist some x− ∈ X with qx− ≤ 1/k. Let C be the colour class
containing x−, and let x+ be the unique outcome in C ∩ y′. In the second case, there must exist
some x− ∈ C with qx− ≤ 1/k. Thus in either case, we have two outcomes x− and x+ of the
same colour C but with qx− ≤ 1/k < 1/k + ε ≤ qx+ . Because this contradicts the definition of
an induced colouring, there must be a message for which q violates the equality (2). This message
must have P (y) = 0 in any RCAR strategy for the game with message structureY and marginal p.
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Abstract
We consider Geanakoplos and Polemarchakis’s generalization of Aumman’s famous result on “agree-
ing to disagree”, in the context of imprecise probability. The main purpose is to reveal a connection
between the possibility of agreeing to disagree and the interesting and anomalous phenomenon
known as dilation. We show that for two agents who share the same set of priors and update by
conditioning on every prior, it is impossible to agree to disagree on the lower or upper probability
of a hypothesis unless a certain dilation occurs. With some common topological assumptions, the
result entails that it is impossible to agree not to have the same set of posterior probabilities unless
dilation is present. This result may be used to generate sufficient conditions for guaranteed full
agreement in the generalized Aumman-setting for some important models of imprecise priors, and
we illustrate the potential with an agreement result involving the density ratio classes. We also
provide a formulation of our results in terms of “dilation-averse” agents who ignore information
about the value of a dilating partition but otherwise update by full Bayesian conditioning.

Keywords: Agreeing to disagree; Common knowledge; Dilation; Imprecise probability.

1. Introduction

In a simple but insightful paper, Aumann (1976) famously showed that two (Bayesian) agents who
start with the same (precise) prior cannot agree to disagree on their posteriors of a hypothesis,
in the sense that if the posteriors of the hypothesis (as well as the structures of their respective
information partitions) are common knowledge, then the posteriors must be equal. This result has
been generalized in at least two ways. First, Aumman’s result applies only to those events whose
posteriors happen to be common knowledge. Geanakoplos and Polemarchakis (1982) generalized
the framework to a communication setting where the agents are invited to repeatedly make their
credences public via announcements and update by conditioning on the announced credences, until
no new information is conveyed. They showed that for any hypothesis/event, this communication
procedure is guaranteed to lead to an agreement on the probability of the hypothesis, if the agents
start with the same (precise) prior (and each agent’s information partition is finite).

Second, Kajii and Ui (2005, 2009) and Carvajal and Correia-da-Silva (2010) generalized Aum-
man’s result in the setting of multiple priors. In this line of work, “agreement” is taken to mean
“partial agreement”, in the sense that two sets of probabilities agree if they have a non-empty in-
tersection. These authors established several sufficient conditions under which two agents who
(partially) agree on their priors are guaranteed to (partially) agree on their posteriors of a hypothesis
if these posteriors are common knowledge.
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In this paper, we combine the two more general settings and establish a connection between
the possibility of agreeing to disagree and the interesting and anomalous phenomenon known as
dilation (Good, 1974; Seidenfeld, 1981; Walley, 1991; Seidenfeld and Wasserman, 1993; Herron et
al., 1997). Dilation occurs when conditioning on each element of a partition, the lower and upper
probabilities of a hypothesis become more divergent than the unconditional ones. In such a case,
for agents who use full Bayesian conditioning as the updating rule, their credences on a hypothesis
become less precise or determinate after learning the value of the dilating partition, no matter which
value they learn! This counterintuitive phenomenon is often interpreted as a distinctive challenge to
the orthodox Bayesian doctrine on the value of information and to the Bayesian merging of opinions,
but as far as we know, it has never been discussed in connection to Aumman’s result. We shall show
that it is the key obstacle to reaching agreements via communicating posteriors by Bayesian agents
with imprecise priors.

We will establish the following. After introducing the setting and reviewing the special case of
precise probability in Section 2, we show in Section 3 that dilation is the only obstacle for agents
with the same (imprecise) prior to reaching agreements on lower and upper probabilities of a hy-
pothesis by communicating their posteriors on the hypothesis. Without dilation, the two agents in
our setting are guaranteed to end up agreeing on lower and upper probabilities of the hypothesis of
interest. An immediate consequence of this result, as we note in Section 4, is that under common
topological assumptions, dilation is the only obstacle to reaching a full agreement, full in the sense
that the sets of probability values representing the agents’ credences on the hypothesis of interest are
identical. This result opens the door to generating sufficient conditions for reaching full consensus
in the generalized Aumman-setting by plugging in sufficient conditions for the absence of dilation
in common and important models of imprecise probabilities. As an example, we include a corollary
about density ratio classes, which are shown to be dilation-immune by Seidenfeld and Wasserman
(1993). In Section 5, we provide another perspective on our results and reformulate the theorems
in terms of “dilation-averse” agents, who update by full Bayesian conditioning unless the informa-
tion is about the value of a dilating partition (in which case they ignore the information). For such
agents, they are guaranteed to end up agreeing on lower and upper probabilities, and, under some
common assumptions, end up fully agreeing.

2. A Procedure of Communicating Posteriors

In Geanakoplos and Polemarchakis (1982)’s setup, two agents share a common measurable space
(Ω,A) and have possibly different information partitions of Ω, P1 and P2, which are assumed to be
finite. Henceforth we use i ∈ {1, 2} to index the two agents, and when i is used in a statement we
always intend that the statement is true for both i = 1 and i = 2. For any w ∈ Ω, let P i(w) denote
the member of P i that contains w; intuitively, P i(w) represents agent i’s initial information at state
w. Both the space and the partitions are assumed to be common knowledge, in the standard sense of
the term used in game theory: some proposition is common knowledge just in case agent i knows
it, agent j (where j = 3 − i) knows that agent i knows it, agent i knows that agent j knows that
agent i knows it, ... and so on. Let P = P1 ∧ P2 be the meet of the two partitions (i.e., the finest
common coarsening of P1 and P2). As Aumann (1976, p. 1237) explained, at state w, P(w) — the
member of P that containsw — is the finest event inA that is common knowledge: any event that is
common knowledge is a superset of P(w). In Geanakoplos and Polemarchakis’s setting, common
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knowledge may grow as the agents communicate their posteriors of a hypothesis. So we call P(w)
the initial common knowledge and denote it by C0.

Instead of a common precise prior, we assume that the two agents have a common, (possibly)
imprecise prior, i.e., a common, non-empty set of priors, denoted by Q. Let P1 ∨ P2 denote
the join (i.e., the coarsest common refinement) of P1 and P2. We assume that every member of
P1∨P2 receives a positive probability under every measure in Q, so that all the relevant conditional
probabilities are well defined as ratios of unconditional probabilities. Let H ∈ A be a hypothesis of
interest. Henceforth by credences or posteriors we mean the agents’ credences or posteriors of H .
Let Q(H) denote the set of prior probabilities of H: Q(H) = {p(H) | p ∈ Q}. For any E ∈ A
such that p(E) > 0 for every p ∈ Q, let Q(H|E) = {p(H|E) = p(H∩E)/p(E) | p ∈ Q}. Unless
otherwise noted (in Section 5), we assume that the agents update their credences by full Bayesian
conditioning, where each and every prior in Q is updated by conditioning.

Suppose the true state is w. At step 0, agent i’s information is P i(w)∩C0 = P i(w). Thus agent
i updates her credence of H to Qi

0(H) = Q(H|P i(w)). Let P i
0 = {E ∈ P i | E ∩ C0 6= Ø}, which

is the set of those members of P i that are not ruled out by the initial common knowledge.
At step 1, the agents announce Q1

0(H) and Q2
0(H), respectively.1 Consider N i

1 = {E ∈ P i
0 |

Q(H|E) = Qi
0(H)}. Intuitively, N i

1 is the set of those members of P i
0 that are compatible with

Qi
0(H), and the effect of agent i’s announcement of Qi

0(H) is that it becomes common knowledge
thatP i(w) ∈ N i

1, or thatw ∈ ⋃N i
1 (where

⋃N i
1 denotes the union of all the sets inN i

1). Therefore,
after the announcements at this step, C1 =

⋃N 1
1 ∩

⋃N 2
1 becomes common knowledge. Let

P i
1 = {E ∈ N i

1 | E ∩ C1 6= Ø}, which is the set of those members of N i
1 that are not ruled out

by the common knowledge at this step. Clearly P i
1 ⊆ N i

1 ⊆ P i
0 and C1 =

⋃P1
1 ∩

⋃P2
1 . Now, if

P i
1 = P i

0, or equivalently, if C1 = C0, neither agent learns new information and their credences will
stay the same no matter how many more exchanges take place; so the procedure stops. Otherwise,
agent i updates credence of H to Qi

1(H) = Q(H|P i(w) ∩ C1), and enters the next step.
In general, at step n+ 1, the agents announce Q1

n(H) and Q2
n(H), respectively. Let

N i
n+1 = {E ∈ P i

n | Q(H|E ∩ Cn) = Qi
n(H)}

Cn+1 =
⋃
N 1

n+1 ∩
⋃
N 2

n+1

P i
n+1 = {E ∈ N i

n+1 | E ∩ Cn+1 6= Ø}.

Again, N i
n+1 is the set of those members of P i

n that are compatible with Qi
n(H).2 Hence,

after the announcements at this step, Cn+1 becomes common knowledge, and P i
n+1 is the set of

those members of N i
n+1 that are not ruled out by Cn+1. Clearly, P i

n+1 ⊆ N i
n+1 ⊆ P i

n and
Cn+1 =

⋃P1
n+1 ∩

⋃P2
n+1. If P i

n+1 = P i
n, or equivalently, if Cn+1 = Cn, neither agent learns

new information and the procedure stops; otherwise, agent i updates credence of H to Qi
n+1(H) =

Q(H|P i(w) ∩ Cn+1), and enters the next step.
We will refer to this procedure as the (Bayesian) procedure of communicating posteriors (of

H). Obviously, since P1 and P2 are assumed to be finite, the procedure is guaranteed to stop at step
m + 1 for some m ≥ 0. Aumann’s original setting — where Q1

0(H) and Q2
0(H) are assumed to

be common knowledge at step 0 (i.e., it is assumed that N i
1 = P i

0) — is a special case in which the

1. In Geanakoplos and Polemarchakis’s design, at each step, agent 2 announces her prior after agent 1’s announcement,
already taking into account whatever information is conveyed in agent 1’s announcement. This feature is immaterial,
at least for the purpose of this paper.

2. Note that the definition ofN i
n+1 also applies to n = 0, as for every E ∈ Pi

0, E ∩ C0 = E.
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procedure stops at step 1. In general, the procedure stops at step m+ 1 if and only if both Q1
m(H)

and Q2
m(H) are already common knowledge at step m (i.e., before they are announced).

We adapt an example from Geanakoplos and Polemarchakis (1982) to illustrate this procedure.

Example 1 Let Ω = {w1, w2, w3, w4, w5, w6, w7, w8, w9} and A be the power set of Ω. Let P1 =
{{w1, w2, w3}, {w4, w5, w6}, {w7, w8, w9}} andP2 = {{w1, w2, w3, w4}, {w5, w6, w7, w8}, {w9}}.
Let H = {w3, w4}, and suppose the true state of the world is w1. For the common set of priors,
suppose Q is a density ratio class (Seidenfeld and Wasserman, 1993; see also Section 4):

Q = {(q1, q2, q3, q4, q5, q6, q7, q8, q9) |
∑

1≤j≤9
qj = 1, and

1

2
≤ qk
ql
≤ 2, 1 ≤ k, l ≤ 9.}.

It is easy to calculate that the lower probability of H is: Q(H) = infp∈Q p(H) = 1/8 (obtained
at (1/8, 1/8, 1/16, 1/16, 1/8, 1/8, 1/8, 1/8, 1/8)), and the upper probability of H is: Q(H) =
supp∈Q p(H) = 4/11 (obtained at (1/11, 1/11, 2/11, 2/11, 1/11, 1/11, 1/11, 1/11, 1/11)). Since
Q is closed and connected, Q(H) = [1/8, 4/11].

Suppose the two agents in this example carry out the procedure of communicating posteriors.
Here is a summary of the execution:

Step 0 C0 = (P1 ∧ P2)(w1) = Ω. P1(w1) = {w1, w2, w3} and Q1
0(H) = Q(H|P1(w1)) =

[1/5, 1/2]; P2(w1) = {w1, w2, w3, w4} and Q2
0(H) = Q(H|P2(w1)) = [1/3, 2/3].

Step 1 Agent i announces Qi
0(H). N 1

1 = {{w1, w2, w3}, {w4, w5, w6}} (for Q(H|{w7, w8, w9}) =
{0} 6= Q1

0(H).) N 2
1 = {{w1, w2, w3, w4}} (for Q(H|{w5, w6, w7, w8}) = Q(H|{w9}) =

{0} 6= Q2
0(H).) Thus C1 =

⋃N 1
1 ∩

⋃N 2
1 = {w1, w2, w3, w4}, and P i

1 = N i
1. Q1

1(H) =
Q(H|P1(w1) ∩ C1) = [1/5, 1/2]; Q2

1(H) = Q(H|P2(w1) ∩ C1) = [1/3, 2/3].3

Step 2 Agent i announces Qi
1(H). N 1

2 = {{w1, w2, w3}} (for Q(H|{w4, w5, w6} ∩ C1) = {1} 6=
Q1

1(H).) N 2
2 =P2

1 . Thus C2 = {w1, w2, w3}, and P i
2 = N i

2. Q1
2(H) = Q(H|P1(w1)∩C2) =

[1/5, 1/2]; Q2
2(H) = Q(H|P2(w1) ∩ C2) = [1/5, 1/2].

Step 3 Agent i announces Qi
2(H). N i

3=P i
2, and so C3 = C2. The procedure stops.

In this example, the communication ends up making each agent’s private information public.
This is not always the case, as later examples will illustrate. When (at least one agent’s) private
information remains private, it is in general possible to agree to disagree. However, in the case of a
precise prior, that is, if Q = {p̃} is a singleton, Geanakoplos and Polemarchakis (1982, Proposition
1) showed that when the procedure stops at step m + 1, it is necessarily the case that Q1

m(H) =
Q2

m(H). We present a version of the argument here that will facilitate our subsequent discussion.
Suppose the procedure stops at step m + 1. It means that P i

m+1 = P i
m (for both i = 1, 2, as we

always intend). This entails, by the definition of P i
m+1, that

∀E ∈ P i
m,Q(H|E ∩ Cm) = Qi

m(H) = Q(H|P i(w) ∩ Cm). (1)

Since Q = {p̃}, Q(H|E ∩ Cm) = {p̃(H|E ∩ Cm)} and Qi
m(H) = Q(H|P i(w) ∩ Cm) =

{p̃(H|P i(w) ∩ Cm)}. It follows that

∀E ∈ P i
m, p̃(H|E ∩ Cm) = p̃(H|P i(w) ∩ Cm). (2)

3. Although Qi
1(H) = Qi

0(H), the procedure goes on, because some agent still acquires new information in this step.
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Since all members of P i
m are mutually disjoint, (2) entails that

p̃(H|
⋃
P i
m ∩ Cm) = p̃(H|P i(w) ∩ Cm). (3)

Recall that Cm =
⋃P1

m ∩
⋃P2

m. Hence
⋃P i

m ∩ Cm = Cm. It then follows from (3) that

p̃(H|P i(w) ∩ Cm) = p̃(H|Cm). (4)

Therefore, p̃(H|P1(w) ∩ Cm) = p̃(H|P2(w) ∩ Cm); that is, the two agents end up agreeing.
Two comments are in order. First, equation (4) shows that the two agents are driven to the same

posterior because when the communication stops, the resulting common knowledge (Cm) renders
each agent’s private information (P i(w)) irrelevant to H (even if P i(w) remains private). However,
it does not follow that P1(w) and P2(w) are jointly irrelevant to H given Cm. As Geanakoplos and
Polemarchakis (1982, Proposition 3) observed, the consensus reached via the procedure of commu-
nicating posteriors can be different from the consensus that would result from directly exchanging
private information. Clearly, they are different if and only if P1(w) and P2(w) are jointly relevant
to H given Cm, even though each is marginally irrelevant given Cm (see Example 3 in Section 6).

Second, and more importantly for the purpose of this paper, a crucial step in the above argument
is the move from (2) to (3), where what is needed is the following fact: if all members of a (finite)
set of events E are mutually disjoint, and for every E ∈ E , p̃(H|E) = q, then p̃(H|⋃ E) = q. An
analogous condition for imprecise probabilities would be the following: if all members of a (finite)
set of events E are mutually disjoint, and for every E ∈ E , Q(H|E) = Q (where Q is a set of real
numbers), then Q(H|⋃ E) = Q. This condition does not hold in general for sets of probabilities.4

3. Dilation and Agreeing to Disagree on Lower and Upper Probabilities

We borrow a simple example from Carvajal and Correia-da-Silva (2010) to illustrate the failure of
the said condition for sets of probabilities.

Example 2 Let Ω = {w1, w2, w3, w4} and A the power set of Ω. Let P1 = {{w1, w2}, {w3, w4}}
and P2 = {Ω}. Suppose Q = {(1/2, 0, 1/2, 0), (0, 1/2, 0, 1/2)}; that is, the common set of
priors consists of just two probability measures, represented by the two probability vectors.5 Let
H = {w2, w3}, and suppose the true state of the world is w1.

This is an Aumann case in that the agents’ posteriors on H are already common knowledge at the
beginning; the procedure of communicating posteriors stops at step 1, for C1 = C0 = Ω. How-
ever, Q1

0(H) = {0, 1} and Q2
0(H) = {1/2}. Not only are the sets non-identical, they are in full

4. Even in the case of precise probability, it is well known that this condition, as a special case of conglomerability, can
fail for finitely but not countably additive probability measures (de Finetti, 1972; Schervish et al., 1984; Hill and Lane,
1985). This does not matter in the setup we are considering, for the partitions are assumed to be finite. However,
the original setup in Aumann (1976) seems to allow denumerable infinite partitions, in which case Aumann’s result
does not necessarily hold for merely finitely additive probabilities. More generally, Schervish et al. (2016) showed
that conglomerability can fail in a partition of cardinality κ for a probability measure that is not κ-additive. Thus, if
uncountable partitions are allowed, Aumann’s result may fail even for countably additive measures.

5. In case readers are concerned that the two probabilities are not positive and are mutually singular, these special
features are not essential. We can also use Q = {(1/2− ε, ε, 1/2− ε, ε), (ε, 1/2− ε, ε, 1/2− ε)}, 0 < ε < 1/4, to
make the same point.
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disagreement in the sense that they do not even intersect and have different lower and upper prob-
abilities. The agents agree to fully disagree. The condition we highlighted at the end of Section 2
fails dramatically in this case for agent 1’s partition P1

1 (which is identical to P1 in this case):
Q(H|{w1, w2}) = Q(H|{w3, w4}) = {0, 1}, while Q(H|{w1, w2, w3, w4}) = {1/2}.

This dramatic failure of the condition is known as dilation (Good, 1974; Seidenfeld, 1981;
Walley, 1991; Seidenfeld and Wasserman, 1993; Herron et al., 1997). No matter which member of
P1
1 is the case, the resulting conditional probability is less precise than the probability conditional

on
⋃P1

1 . Given a non-empty set of probabilities R, let R(A|E) = infp∈R p(A|E) denote the lower
probability of A conditional on E, and R(A|E) = supp∈R p(A|E) denote the upper probability of
A conditional on E. Here is a definition of dilation that suits the present purpose.

Definition 1 (Dilation) Let R be a non-empty set of probability measures on (Ω,A). Let E be a
finite, non-empty set of mutually disjoint events. E is said to dilate an event A with respect to R
(or R(•|⋃ E)) if for every E ∈ E , the interval [R(A|E),R(A|E)] strictly contains the interval
[R(A|⋃ E),R(A|⋃ E)].

This is a slight generalization of the standard definition of dilation (Seidenfeld and Wasserman,
1993, p. 1141)6, for it considers dilation in a subspace

⋃ E (the definition reduces to the standard
one when

⋃ E = Ω), but the idea and the anomalous feature are exactly the same. Again, in
example 2, P1

1 , which happens to be the same as {E ∩ C1 | E ∈ P1
1}, dilates the hypothesis of

interest with respect to the given prior. This is not a coincidence, as Theorem 3 below shows. It is a
simple consequence of the following lemma, which is a straightforward generalization of Lemma 1
in Carvajal and Correia-da-Silva (2010; also see Kajii and Ui, 2005, Proposition 3).

Lemma 2 Suppose the procedure of communicating posteriors stops at step m+ 1. Then

Q(H|Cm) ⊆ [Q(H|P i(w) ∩ Cm),Q(H|P i(w) ∩ Cm)]

for both i = 1, 2.
Proof As already mentioned, when the procedure stops at stepm+1, we have equation (1), namely,

∀E ∈ P i
m,Q(H|E ∩ Cm) = Q(H|P i(w) ∩ Cm).

Consider i = 1 first. Let P1
m = {E1, ..., Ek}. Notice that {E1 ∩ Cm, ..., Ek ∩ Cm} forms a partition

of
⋃P1

m ∩ Cm. Hence, for every p ∈ Q, by the law of total probability

p(H|Cm) = p(H|
⋃
P1
m ∩ Cm) =

∑

1≤j≤k
p(H|Ej ∩ Cm)p(Ej ∩ Cm|

⋃
P1
m ∩ Cm). (5)

Given equation (1), we have that for every 1 ≤ j ≤ k, p(H|Ej ∩ Cm) ∈ Q(H|Ej ∩ Cm) =
Q(H|P1(w) ∩ Cm). It follows that for every 1 ≤ j ≤ k,

Q(H|P1(w) ∩ Cm) ≤ p(H|Ej ∩ Cm) ≤ Q(H|P1(w) ∩ Cm). (6)

6. Herron et al. (1997, p. 412) gave a weaker definition of dilation, requiring only that all conditional intervals contain
and some of them strictly contain the unconditional interval. This definition (similarly generalized) would work
equally well for our purpose. We thank an anonymous referee for this point.
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Equation (5) and (6) together entail that

p(H|Cm) ≥ Q(H|P1(w) ∩ Cm)
∑

1≤j≤k
p(Ej ∩ Cm|

⋃
P1
m ∩ Cm) = Q(H|P1(w) ∩ Cm), (7)

and

p(H|Cm) ≤ Q(H|P1(w) ∩ Cm)
∑

1≤j≤k
p(Ej ∩ Cm|

⋃
P1
m ∩ Cm) = Q(H|P1(w) ∩ Cm). (8)

Since (7) and (8) hold for every p ∈ Q, the desired conclusion is established for i = 1. The case of
i = 2 is of course entirely parallel.

Lemma 2 shows that although equation (1) does not entail that Q(H|Cm) = Q(H|P i(w) ∩ Cm), it
does entail that Q(H|Cm) is bounded by the infimum and supremum of Q(H|P i(w) ∩ Cm). The
following theorem is then immediate.

Theorem 3 Suppose the procedure of communicating posteriors stops at step m + 1. If for both
i = 1, 2, {E ∩ Cm | E ∈ P i

m} does not dilate H , then Q(H|P1(w) ∩ Cm) = Q(H|P2(w) ∩ Cm)

and Q(H|P1(w) ∩ Cm) = Q(H|P2(w) ∩ Cm).

Proof Lemma 2 entails that for both i = 1, 2,

Q(H|P i(w) ∩ Cm) ≤ Q(H|Cm),Q(H|Cm) ≤ Q(H|P i(w) ∩ Cm).

Since Cm =
⋃P i

m ∩ Cm, if either of the inequality is strict, then {E ∩ Cm | E ∈ P i
m} dilates H ,

because of equation (1). Therefore, if {E ∩ Cm | E ∈ P i
m} does not dilate H , then

Q(H|P i(w) ∩ Cm) = Q(H|Cm),Q(H|Cm) = Q(H|P i(w) ∩ Cm).

The desired conclusion follows.

Thus, the two agents can agree to disagree on the lower or upper probability of a hypothesis only if
a certain dilation takes place. Without dilation, the two agents are guaranteed to reach consensus on
lower and upper probabilities by communicating posteriors.

It is worth noting that for the argument for Theorem 3 to go through, it is not necessary to require
the agents to communicate their sets of posteriors. It is sufficient to ask them to communicate lower
and upper probabilities at each step. Consider the procedure of communicating lower and upper
posteriors: at step n+ 1, agent i announces Qi

n(H) and Qi
n(H). Let

N i†
n+1 = {E ∈ P i†

n | Q(H|E ∩ Cn) = Qi
n(H) and Q(H|E ∩ Cn) = Qi

n(H)}
C†n+1 =

⋃
N 1†

n+1 ∩
⋃
N 2†

n+1

P i†
n+1 = {E ∈ N i†

n+1 | E ∩ C†n+1 6= Ø}

If P i†
n+1 = P i†

n , or equivalently, if C†n+1 = C†n, the procedure stops; otherwise, agent i updates
credence to Qi

n+1(H) = Q(H|P i(w) ∩ C†n+1), and enters the next step.
As before, this modified procedure is guaranteed to stop at step m+ 1 for some m ≥ 0, because

P1 and P2 are assumed to be finite. The version of Lemma 2 on this procedure remains valid, for
equation (1) is not necessary for the argument. All that is needed is the weaker condition that

∀E ∈ P i
m,Q(H|E ∩ Cm) = Q(H|P i(w) ∩ Cm) and Q(H|E ∩ Cm) = Q(H|P i(w) ∩ Cm)
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This weaker condition obviously remains true when P i
m is replaced by P i†

m and Cm by C†m. Hence
we also have the following variant of Theorem 3.

Theorem 4 Suppose the procedure of communicating lower and upper posteriors stops at step
m + 1. If for both i = 1, 2, {E ∩ C†m | E ∈ P i†

m} does not dilate H , then Q(H|P1(w) ∩ C†m) =

Q(H|P2(w) ∩ C†m) and Q(H|P1(w) ∩ C†m) = Q(H|P2(w) ∩ C†m).

Proof Extremely similar to that of Theorem 3.

Although both procedures result in consensus on lower and upper probabilities in the absence of
dilation, in general the agreements they lead to may well be different, for in general communicating
lower and upper posteriors conveys less information than communicating the full sets of posteriors.

4. More Agreement Results

Under some common assumptions, however, lower and upper probabilities are sufficient to identify
the full set, in which case the two procedures are equivalent and, more importantly, the consensus
reached in the absence of dilation will be full consensus. For example, if we follow Carvajal and
Correia-da-Silva (2010) to assume that the set of priors is closed and connected (or follow Kajii and
Ui (2005) to assume that the set of posteriors is a closed interval), we obtain the following result.

Theorem 5 Suppose Q is closed and connected (with respect to the total variation topology), and
suppose the procedure of communicating posteriors stops at step m + 1. If for both i = 1, 2,
{E ∩ Cm | E ∈ P i

m} does not dilate H , then Q(H|P1(w) ∩ Cm) = Q(H|P2(w) ∩ Cm).

Proof Given the assumption that all the relevant conditional probabilities are well defined as ratios
of unconditional probabilities, the mapping from Q to Q(H|P i(w) ∩ Cm) is continuous.7 Hence,
since Q is assumed to be closed and connected, Q(H|P i(w) ∩ Cm) is a closed interval. Thus
Q(H|P i(w) ∩ Cm) is identified by Q(H|P i(w) ∩ Cm) and Q(H|P i(w) ∩ Cm). Then Theorem 3
entails that Q(H|P1(w) ∩ Cm) = Q(H|P2(w) ∩ Cm).

To our knowledge, Theorem 5 is the first attempt to formulate a generalization of Aumman’s agree-
ment theorem in the context of imprecise probability that takes agreement to mean full agreement
(identical set of posteriors). In addition to revealing a connection to the important phenomenon of
dilation, Theorem 5 may also be used to generate sufficient conditions for guaranteed full agreement
via communicating posteriors, for important models of imprecise probability, if sufficient conditions
for the absence of dilation in those models are known. As a simple example, consider the density
ratio classes for finite spaces (Wasserman, 1992; Seidenfeld and Wasserman, 1993).

Definition 6 (Density Ratio Prior) Let Ω = {w1, ..., wn} and A the power set of Ω. A density
ratio prior is defined by

Dp,k = {(q1, ..., qn) |
∑

1≤j≤n
qj = 1 and

qh
qj
≤ kph

pj
, ∀1 ≤ h, j ≤ n}

where k ≥ 1 and (p1, ..., pn) is a probability vector such that pj > 0 for all 1 ≤ j ≤ n.

7. The mapping is given by: p 7→ p(H ∩Pi(w)∩ Cm)/p(Pi(w)∩ Cm), which is obviously continuous, as long as the
ratio is always defined.
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For instance, Example 1 in Section 2 employs a density ratio prior, where p is the uniform distribu-
tion over the 9-atom algebra and k = 2.

Corollary 7 If two agents start with a common density ratio prior and carry out the procedure of
communicating posteriors, they are guaranteed to reach the same set of posteriors.

Proof Seidenfeld and Wasserman (1993, Theorem 4.1) showed that the density ratio priors are
dilation-immune in the sense that no finite partition of the sample space dilates any event. Note also
that if D is a density ratio prior on (Ω,A), then for every E ∈ A, D(•|E) remains a density ratio
prior on the space restricted to E, which follows easily from Definition 6. Moreover, a density ratio
prior is obviously closed and connected. Then Theorem 5 entails the desired conclusion.

Finally, if we consider just partial agreement, in the sense of a non-empty intersection of sets of
posteriors, we can drop the assumption of connectedness in Theorem 5.

Theorem 8 Suppose Q is closed, and suppose the procedure of communicating posteriors stops at
step m+ 1. If for both i = 1, 2, {E ∩ Cm | E ∈ P i

m} does not dilate H , then Q(H|P1(w)∩ Cm)∩
Q(H|P2(w) ∩ Cm) 6= Ø.

Proof Since Q is closed, Q(H|P i(w)∩Cm) is also closed, for the mapping from Q to Q(H|P i(w)∩
Cm) is continuous. Thus, Q(H|P i(w) ∩ Cm) contains its infimum and supremum. It then follows
from Theorem 3 that Q(H|P1(w) ∩ Cm) ∩Q(H|P2(w) ∩ Cm) 6= Ø.

5. Dilation-Averse Updating

The presence of dilation may alarm some agents, who may be inclined to think that they are per-
mitted or even rationally required to ignore information about the value of a partition that dilates
the hypothesis of interest (Grünwald and Halpern, 2004). Whether dilating information should be
ignored is a matter of debate. For example, Kyburg’s (1974) theory of “epistemological”, interval-
valued probability precludes altogether the possibility of dilation. However, the rule in his theory
that is responsible for the impossibility of dilation was forcefully criticized by Levi (1977) on the
grounds that it runs afoul of some basic Bayesian tenets even when the theory delivers precise prob-
ability values. We do not pretend to resolve the debate here, but we would like to reformulate the
main ideas of this paper in terms of dilation-averse agents, which we believe provides a useful per-
spective to think about our results. An agent participating in the communication procedure is said
to be dilation-averse if she does not condition on her information about the value of a partition
that dilates the hypothesis of interest, but is otherwise happy to update by Bayesian conditioning.
Suppose it is common knowledge that the two agents are dilation-averse. To model this situation,
the procedure of communicating posteriors should be modified as follows.

At step 0, for each agent i, if P i
0 = {E ∈ P i | E∩C0 6= Ø} dilatesH , she updates her credence

by conditioning on the common knowledge C0: Q1
0(H) = Q(H|C0); otherwise, she updates her

credence in the standard way: Q1
0(H) = Q(H|P1(w)).

At step n+ 1, the agents announce Q1
n(H) and Q2

n(H), respectively. Consider the set Ñ i
n+1 =

{E ∈ P i
n | Q(H|E ∩ Cn) = Qi

n(H)}. It is easy to see that Ñ i
n+1 = Ø if and only if there was

dilation at step n. Let

N i
n+1 =

{ P i
n if Ñ i

n+1 = Ø,

Ñ i
n+1 otherwise.
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That is, when Ñ i
n+1 = Ø, no new information is conveyed by the announcement of Qi

n(H). As
before, let Cn+1 =

⋃N 1
n+1 ∩

⋃N 2
n+1, and P i

n+1 = {E ∈ N i
n+1 | E ∩ Cn+1 6= Ø}. Clearly,

it remains true that P i
n+1 ⊆ N i

n+1 ⊆ P i
n and Cn+1 =

⋃P1
n+1 ∩

⋃P2
n+1. If P i

n+1 = P i
n, or

equivalently, if Cn+1 = Cn, the procedure stops; otherwise, agent i updates credence ofH according
to whether {E ∩ Cn+1 | E ∈ P i

n+1} dilates H . If it does not dilate H , the credence is updated to
Qi

n+1(H) = Q(H|P i(w)∩Cn+1); otherwise, the credence is updated to Qi
n+1(H) = Q(H|Cn+1).

For instance, if the agents in Example 2 are commonly known to be dilation-averse and follow
the above procedure, then at step 0, seeing that her partition {{w1, w2}, {w3, w4}} dilates H , agent
1 will ignore her private information (i.e., {w1, w2}) and go with Q1

0(H) = Q(H|C0) = {1/2}.
Then at step 1, P i

1 = N i
1 = P i

0, and the procedure stops (with a consensus).
As the original, Bayesian procedure of communicating posteriors, this dilation-averse procedure

will surely stop at step m + 1 for some m ≥ 0. It is then very easy to adapt the arguments for
Theorems 3, 5, and 8 to show the following:

Theorem 9 Suppose that the dilation-averse procedure of communicating posteriors stops at step
m+ 1. Then

1) Q1
m(H) = Q2

m(H) and Q1
m(H) = Q2

m(H);

2) If Q is closed, then Q1
m(H) ∩Q2

m(H) 6= Ø; and

3) If Q is closed and connected, then Q1
m(H) = Q2

m(H).

Proof For each i, either {E ∩ Cm | E ∈ P i
m} dilates H , in which case Qi

m(H) = Q(H|Cm) by
the design of the procedure, or {E ∩ Cm | E ∈ P i

m} does not dilate H , in which case the argument
for Theorem 3 is applicable to derive that Qi

m(H) = Q(H|Cm) and Qi
m(H) = Q(H|Cm). Either

way we have 1). The derivations of 2) and 3) from 1) are the same as those of Theorems 8 and 5.

Therefore, two agents who are commonly known to be dilation-averse cannot agree to disagree on
lower or upper probabilities, and, under common assumptions, cannot agree not to fully agree.

6. Concluding Remarks

Like Aumann’s original result, the results in this paper are mathematically simple once the frame-
work is set up, but they highlight an interesting connection between the possibility of agreeing to
disagree and the phenomenon of dilation. We offered two perspectives to view this connection. For
Bayesian agents with a common set of priors, agreeing to disagree on lower or upper posteriors en-
tails the presence of dilation for at least one of them. For dilation-averse (but otherwise Bayesian)
agents with a common set of priors, it is impossible to agree to disagree on lower or upper posteriors.

Although the absence of dilation is sufficient for Bayesian agents to reach agreements by com-
municating posteriors, it is not necessary. Here is a simple example to show this.

Example 3 Let Ω = {w1, w2, w3, w4} andA be its power set. SupposeP1 = {{w1, w2}, {w3, w4}}
and P2 = {{w1, w3}, {w2, w4}}. LetH = {w1, w4}, and suppose the true state of the world is w1.
Let p̃ be the uniform distribution over the 4-atom algebra, and Λ be the set of all distributions over
the 4-atom algebra. Define Q = {(0.8p̃+ 0.2q) | q ∈ Λ}.8

8. This ε-contamination model (ε = 0.2) can be equivalently specified as the largest set of probability measures on the
4-atom algebra satisfying the constraint that every atom receives a lower probability of 0.2.
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Like Example 2, this is an Aumann case, where the posteriors of H are common knowl-
edge without announcements, because Q(H|{w1, w2}) = Q(H|{w3, w4}) = [1/3, 2/3], and
Q(H|{w1, w3}) = Q(H|{w2, w4}) = [1/3, 2/3]. So the procedure of communicating posteri-
ors stops at step 1, and C1 = C0 = Ω. Dilation does occur, for both agents, because Q(H|C0) =
Q(H) = [0.4, 0.6], which is strictly contained in [1/3, 2/3]. Despite the presence of dilations, the
two agents will still reach an agreement even if they are not dilation-averse, though the agreement
is different from the one dilation-averse agents would reach.

It is also worth noting that this example is a generalization of an example from Geanakoplos
and Polemarchakis (1982), which was used to illustrate the fact we mentioned in Section 2, that the
consensus resulting from communicating posteriors can be different from the consensus resulting
from directly exchanging private information. If both pieces of private information in the example
become public, the two agents will converge on a precise, extreme probability.

We close by mentioning two ways our results may be expanded. First, when “agreement” is in-
terpreted as partial agreement, the common prior assumption may also be relaxed to the assumption
that priors (partially) agree, i.e., that the two sets of priors have a non-empty intersection. This is,
for example, what Carvajal and Correia-da-Silva (2010) assume in their results. Their main agree-
ment result about Bayesian agents (Proposition 1) is that if two Bayesian agents have closed and
connected sets of priors that have a non-empty intersection, and both sets of posteriors on a hypoth-
esis are common knowledge, then the sets of posteriors also have a non-empty intersection. This
result, just like Aumman’s original result, is straightforwardly generalizable to the setting of com-
municating posteriors. The more interesting question, in light of our results here, is what purchase
the condition of no dilation has in the context of priors that do not fully agree, or to put it differently,
whether stronger agreement results are available in this context for dilation-averse agents.

Second, we have only considered the full Bayesian updating rule (and the dilation-averse vari-
ant). Other updating rules may be examined in our setting, especially the Dempster-Shafer or max-
imum likelihood updating considered by Kajii and Ui (2005) and Carvajal and Correia-da-Silva
(2010). For Dempster-Shafer updating, Carvajal and Correia-da-Silva’s main agreement result re-
quires each agent’s set of likelihood maximizers as well as their sets of posteriors to be common
knowledge, which suggests that in general communication of posteriors alone is not enough to guar-
antee agreement. One natural idea is to allow also the communication of likelihood maximizers. On
the other hand, Seidenfeld (1997) showed that for ε-contamination models (Huber, 1973; Berger,
1984) Dempster-Shafer updating is equivalent to Bayesian updating. Therefore, if we can derive a
corollary about ε-contamination models (in the spirit of Corollary 7) from Theorem 5 and results on
dilation in ε-contamination models, that will also apply to Dempster-Shafer updating.

Acknowledgements

This research was supported by the Research Grants Council of Hong Kong under the General
Research Fund LU13600715, and by a Faculty Research Grant from Lingnan University.

References

Aumann, R. (1976). Agreeing to disagree. Ann. Stat., 4: 1236-1239.

Berger, J. (1984). The robust Bayesian viewpoint (with discussion). In Robustness in Bayesian
Statistics (J. Kadane, ed.), pp. 63-124. North-Holland, Amsterdam.

380



AGREEING TO DISAGREE AND DILATION

Carvajal, A. and Correia-da-Silva, J. (2010). Agreeing to disagree with multiple priors (No. 368).
Universidade do Porto, Faculdade de Economia do Porto.

De Finetti, B. (1972). Probability, Induction, and Statistics. John Wiley, New York.

Geanakoplos, J. and Polemarchakis, M. (1982). We can’t disagree forever. J. Econ. Theory, 26:
363-390.

Good, I. J. (1974). A little learning can be dangerous. Br. J. Philos. Sci., 25: 340-342.

Grünwald, P. D. and Halpern, J. Y. (2004). When ignorance is bliss. In Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence, pp. 226-234. AUAI Press.

Herron, T., Seidenfeld, T. and Wasserman, L. (1997). Divisive conditioning: Further results on
dilation. Philosophy of Science, 64: 411-444.

Hill, B. M. and Lane, D. (1985). Conglomerability and countable additivity. Sankhyā: The Indian
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