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Outline

• My view on applying IP, molded by interactions with Herman Rubin

and Jack Good

• Three applications of IP:

– to correct the p-value problem in science;

– to provide a sound analysis for any normal hierarchical model;

– to tackle uncertainty quantification (UQ), the intersection of

mathematical modeling of processes and data.
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My early influences: Herman Rubin and Jack Good

Herman Rubin: In A weak system of axioms for ‘rational’ behavior and

the non-separability of utility from prior, he showed that incredibly weak

imprecise choice axioms require compatibility with some Bayesian analysis.

An implementation: Model the (say) imprecise probabilities by the class P

of compatible probability distributions (credal sets), and make interesting

statements for the class (if possible); this should be the gold standard for IP.

Example 1 (Lenny’s problem): Suppose climate science leads to a

predictive probability distribution p(y) for temperature y. But we assess

that there is a 20% chance of the ‘big surprise’ i.e., we are completely

wrong. This can be represented by the class of probability distributions

P = {0.2q(y) + 0.8p(y); q(y) being any distribution} .

If, say, p(y) is N(30, 22), one could then make the valid statement

Pr(Y < 34) = 0.2Pr(Y < 34 | q) + 0.8P (Y < 34 | p) ≥ (0.8)(97.5) = 0.78 .
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Jack Good (who, while theoretical, tended to focus on practical ideas):

When handling imprecise probabilities, “use probabilities of a higher type.”

Example 2 (Genome-Wise Association Studies - GWAS):

• A typical GWAS study looks at, say, 20 (related) diseases and 1,000,000

genes (or SNPs), and attempts to determine which genes are associated

with which diseases. (Note: 20,000,000 tests are being done here.)

• GWAS studies from 1997-2007 (about 50,000 published papers) had an

extremely high rate of replication failure, because most were not

adjusting enough for multiple testing, thinking that using ‘strict’

p-values such 10−3 or 10−4 would be enough.

• A very influential paper in Nature (2007), by the Wellcome Trust Case

Control Consortium, argued for a cutoff of p < 5× 10−7 for claiming

discovery of an association (later shifted to 5× 10−8 and ??? today).

• Key step: They did a subjective Bayesian assessment that the prior odds

of a true association to false association are 1/100,000, stating this could

be off by a factor of 10 either way (which they subsequently ignored).
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Jack Good’s solution would have been

• p, the probability of a disease/gene association should be considered a

‘logical’ unknown probability, to be handled at a ‘higher level.’

• At the higher level, assign a prior distribution; for instance a

Gamma(1,100,000) prior is compatible with the prior information of the

medical geneticists.

• This would be irrelevant if there were no data (and p entered the

subsequent analysis linearly) but there is lots of data.

• This fits into the class of priors framework by defining

P = {point mass distributions at p, 0 ≤ p ≤ 1} .

While dealing with P by placing a single prior distribution on the class

logically still corresponds to just a single overall distribution, Good argued

that answers are much less sensitive to such higher level distributions.
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These examples outline the way I have always approached IP in practice.

• Model the imprecision through a class P of probability distributions,

and proceed by either

– Making interesting probability statements that are valid for any

distribution in P (called robust Bayesian analysis in the old days);

– Placing a probability distribution over P and proceeding

(hierarchical Bayesian analysis).

• Robust Bayesian analysis is sometimes very effective; hierarchical

Bayesian analysis is usually very effective.

An Aside: There are other versions of robust Bayesian analysis:

• Choose a ‘robust’ prior distribution in P to use.

• Choose the most ‘objective’ prior distribution in P , the extreme of

which, when P = all distributions, is objective Bayesian analysis.

• Choose the empirical Bayes prior distribution in P (almost always worse

than hierarchical Bayes).
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I. The p-value issue

• Significance testing using p-values, declaring a ‘discovery’ if p ≤ 0.05, is

by far the dominant method of testing in science.

• Its standard uncritical use is viewed by many as being a major source of

the problems of reproducibility of science.

• Everyone is talking about it:

– articles in all the major science journals;

– changes in editorial policy (the journal Basic and Applied Social

Psychology banned p-values);

– the recent American Statistical Association position statement about

p-values and discussion;

– an article about to appear in Nature Human Behavior, with over 70

leading scientists in a variety of fields, recommending changing

‘statistical significance’ from p ≤ 0.05 to p ≤ 0.005.
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The Major Problem: p-values are misinterpreted

• Few non-statisticians understand p-values, most erroneously thinking

they are some type of error probability, Bayesian or frequentist;

they are neither!

– A survey 30 years ago:

∗ “What would you conclude if a properly conducted, randomized clinical

trial of a treatment was reported to have resulted in a beneficial

response (p < 0.05)?

1. Having obtained the observed response, the chances are less than 5%

that the therapy is not effective.

2. The chances are less than 5% of not having obtained the observed

response if the therapy is effective.

3. The chances are less than 5% of having obtained the observed

response if the therapy is not effective.

4. None of the above.

∗ We asked this question of 24 physicians ... Half ... answered incorrectly,

and all had difficulty distinguishing the subtle differences...

∗ The correct answer to our test question, then, is 3.”
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“This isn’t right. This isn’t even wrong.” –Wolfgang Pauli, on a

submitted paper

∗ Actual correct answer: The chances are less than 5% of having obtained

the observed response or any more extreme response if the therapy

is not effective.

• But, is it fair to count ‘possible data more extreme than the actual

data’ in the evidence against the null hypothesis?

Jeffreys (1961): “An hypothesis, that may be true, may be rejected

because it has not predicted observable results that have not occurred.”

• Matthews (1998): “The plain fact is that 70 years ago Ronald Fisher

gave scientists a mathematical machine for turning baloney into

breakthroughs, and flukes into funding.”

• When testing precise hypothesesa, true error probabilities (Bayesian or

conditional frequentist) are much larger than p-values.

aFor testing other types of hypotheses, such as one-sided hypotheses, the situation can
be quite different.
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Comparison of p-values with Bayesian odds of hypotheses

Suppose data x arises from the density f(x | θ), and we are interested in

testing H0 : θ = 0 versus H1 : θ 6= 0 with π(θ) being a specified prior

distribution of θ under H1. The Bayesian odds (Bayes factor) of H0 to H1 is

B01 =
f(x | 0)∫

f(x | θ)π(θ) dθ
.

The following investigations compared the p-values from published studies

with B01.

• They looked at a large collections of published studies where 0 < p < 0.05;

• computed B01 for each study;

• graphed B01 versus the corresponding p-values.

• The first two graphs are for 272 ‘significant’ epidemiological studies with two

different choices of the prior; the third for 50 ‘significant’ meta-analyses (these

three from J.P. Ioannides, Am J Epidemiology, 2008); and the last is for 314

ecological studies (reported in Elgersma and Green, 2011).
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A quick IP fix of the p-value issue

Determination of the Bayesian odds of H0 to H1 can be a challenging

problem, because of the typical need for proper priors.

But robust Bayesian theory can be used (Sellke, Bayarri and Berger, 2001) to

give a bound on the odds of H0 to H1, for each given p-value:

Theorem 1 A proper p-value satisfies H0 : p(X) ∼ Uniform(0, 1), so test

this versus H1 : p ∼ g(p), where Y = − log(p) has a non-increasing failure

rate (a natural non-parametric condition on g, defining the class P of

possible prior probability distributions under H1). Then

B01 ≥ infg∈P 1/g(p) = −e p log(p) for p < e−1.

(Vovk (1993) proved this for P = {Beta(ξ, 1), 0 < ξ < 1}.)

p .2 .1 .05 .01 .005 .001 .0001 .00001

−ep log(p) .879 .629 .409 .123 .072 .0189 .0025 .00031

Note: This bound is the graphed dotted line in the previous figures.
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II. Optimal hyperpriors for normal hierarchical models

(with Chengyuan Song and Dongchu Sun)

For i = 1, 2, . . . ,m,

• Xi = θi + ǫi, ǫi ∼ Nk(· | 0,Σi),

the Xi and θi being k × 1 vectors, k ≥ 2, with the Σi known.

Example: At hospital i,

– Xi = (Xi1, . . . , Xik) is the sample averages of the costs of k different

medical treatments;

– θi is the corresponding unknown vector of true mean costs of the

treatments at the hospital;

– Σi is the associated (estimated) covariance matrix.

Note: If Xi = Biθi + ǫi for given design matrix Bi, transform to

X∗
i = (Bt

iΣ
−1
i Bi)

−1Bt
iΣ

−1
i Xi, which will be distributed as above.
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• θi = ziβ + ǫ∗i , ǫ∗i ∼ Nk(· | 0,V ),

with the zi being specified k × l covariate matrices.

– β is an l × 1 unknown ‘hyper-mean’ vector, l ≥ 2;

– V is an unknown k × k ‘hyper-covariance matrix’.

Example continued: Because all hospitals are related, the θi are

assigned a hierarchical prior referring to the ‘population’ of hospitals.

The zij are known covariates, giving hospital i’s characteristics for

treatment j, such as the number of patients receiving the treatment, the

average severity of the condition of the patients, the average income of

the patients, etc.

We have specified a class

P = {π(θ1, . . . , θm | β,V ), β ∈ Rk, V k×k positive definite}.

Goal: Find good hyperpriors π(β,V ) = π(β)π(V ) (independence assumed).
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Recommended prior: After standardizing the covariates, use the

hyperprior

π(β) ∝
1

(1 + ||β||2)(p−1)/2
, β ∈ IRp,

π(V ) ∝
1

|V |1−1/(2k)
∏

1≤i<j≤k(vi − vj)
, V > 0 ,

where v1 > v2 > . . . > vk are the eigenvalues of V .

• These are related to reference priors which are highly recommended in

the objective Bayesian literature.

• The priors can be efficiently implemented with MCMC algorithms.

• Using the priors will result in admissible frequentist shrinkage

estimators of (θ1, . . . , θm), under quadratic loss, and they are the

vaguest priors which do so.

• These priors can be used for any means and covariance matrices that

occur in any normal hierarchical model, no matter how many levels.
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The choice of the hyperprior is important. For instance, in hierarchical

normal models the current standard choice of the hyperprior is π(β) = 1

and π(V ) = 1, i.e., the constant prior.

• The constant prior requires more than 2k vector observations for

posterior propriety, while the recommended prior requires only 2 vector

observations.

• The constant prior yields estimates of (θ1, . . . , θm) that are much worse:

Table 3. The mean square error of estimates of (θ1, . . . , θm) for the Constant prior

(C) and the Recommended prior (R) in the following eight scenarios:

k1 = 4,m1 = 10, k2 = 5,m2 = 15; β1 = 1k, β2 = 501k; V1 = Ik, V2 = diag{8k − 7, . . . , 9, 1}

Prior k1β1V1 k1β2V1 k1β1V2 k1β2V2 k2β1V1 k2β2V1 k2β1V2 k2β2V2

C 68.481 71.552 76.541 84.039 111.507 128.434 134.340 145.854

R 42.735 44.746 63.311 76.338 77.129 107.277 123.973 134.529
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III. Uncertainty Quantification (UQ):

Dealing with uncertainties involved in math modeling of processes

• Real process: yR(x), with input x.

– Example: yR(x) is future temperature under carbon forcing x.

• Computer model output: yM (x,u), with unknown parameters u.

– Example: yM is prediction of future temperature from a climate

model; u is the hundreds of unknown parameters in the model.

• Observations of the real process: yO(x)

– Example: Alas, we only have one (partial) observation of climate.

• Classical formulation: yO(x) = yM (x,u) + ǫ, with ǫ being random error.

Twenty years ago Tony O’Hagan said, “no, the math model is virtually

always imprecise, so the correct formulation is

yO(x) = yM (x,u) + b(x,u) + ǫ ,

where b(x,u) = yR(x)− yM (x,u) is model discrepancy (bias).”
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The Jeffreys-Lindley Paradox

Suppose we have n i.i.d. observations from density f(x | θ) and wish to test

H0 : θ = 0 versus H1 : θ 6= 0.

A Bayesian has fixed (nonzero) prior probabilities on the hypotheses and a

fixed bounded prior on θ under H1.

Let p(x1, . . . , xn) be the p-value for the test, corresponding (say) to the

likelihood ratio test.

The ‘Paradox’: For any fixed p (e.g., p = 10−10), Pr(H0 | x1, . . . , xn) → 1

as n→ ∞.

Model bias: Rarely is f(x | θ) exactly true. Suppose, instead, that xi − b has

density f(· | θ), where b reflects a model bias (alternatively, suppose that H0

is really H0 : |θ| < b.) This bias won’t be known, but its prior distribution

will typically lie in the class

P = {all prior distributions that do not have a postive probability mass at 0} .

Result: For any π ∈ P and fixed p, Pr(H0 | x1, . . . , xn, π) → c < 1 as n→ ∞.
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Example: UQ for a computer model of road-load dynamics

(with M.J. Bayarri, J. Cafeo, G. Garcia-Donato, F. Liu, J. Palomo, R.J.

Parthasarathy, R. Paulo, J. Sacks, and D. Walsh: AOS, 2007)

Consider a vehicle being driven over a road with two major potholes.

– x = (x1, . . . , x7) is the vector of key vehicle characteristics, unknown

because of manufacturing variability.

– yR(x; t) is the time-history curve of resulting forces.

A finite element PDE computer model of the vehicle being driven over the

road

– depends on x = (x1, . . . , x7) and unknown calibration parameters

u = (u1, u2);

– yields time-history force curve yM (x,u; t).
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Figure 1: Force curves from 7 field runs (left) and 65 computer model runs

(right) for one of the potholes.
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Analysis proceeded by

• registration (aligning) of field and model force curves;

• employing a wavelet representation of all force curves, so that

yM (x,u; t) ≈
289∑

i=1

wM
i (x,u)ψi(t), yFr (x

∗; t) ≈
289∑

i=1

wF
ir(x

∗)ψi(t) ,

where the wM
i (x,u) and wF

ir(x
∗) are the coefficients computed through

the wavelet decomposition and the ψi(t) are known basis functions;

• introducing model bias having a zero mean Gaussian process prior;

• for computational reasons and to allow inference at new inputs,

replacing each wM
i (x,u) by an emulator (a Gaussian process

approximation to that part of the computer model);

• assigning priors (a mix of subjective and objective) to all unknowns;

• employing modularized MCMC to determine the posterior distribution

of all unknowns and to make future predictions.
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Parameter Type Uncertainty Range

Damping1 Calibration [0.125, 0.875]

Damping2 Calibration [0.125, 0.875]

x1 Nominal+Variation [0.1667, 0.8333]

x2 Nominal+Variation [0.1667, 0.8333]

x3 Nominal+Variation [0.2083, 0.7917]

x4 Nominal+Variation [0.1923, 0.8077]

x5 Nominal+Variation [0.3529, 0.6471]

x6 Nominal+Variation [0.1471, 0.8529]

x7 Nominal+Variation [0.1923, 0.8077]

Table 1: Uncertainty ranges for calibration parameters and parameters sub-

ject to manufacturing variation.
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Figure 2: Posterior bias curve estimate and 90% tolerance bands.
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Figure 3: Extrapolation of bias to predict the force curve for Vehicle B.
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