# Weak Dutch Books versus Strict Consistency

Chiara Corsato, Renato Pelessoni and Paolo Vicig - DEAMS - University of Trieste (Italy)



#### Setting of the problem Positive probability events Intermezzo Some results follow from more general facts not **Proposition 3.** If $\underline{P} : \mathcal{D} \to \mathbb{R}$ is a conditional W- $\mathcal{D} \neq \emptyset$ set of conditional gambles (conditional coherent lower prevision, $\underline{G}|B$ is a WDB gain and events), $\underline{P}$ : $\mathcal{D} \rightarrow \mathbb{R}$ lower prevision (lower involving WDBs explicitly. $E|B \in \mathcal{D} \text{ with } \underline{P}(E|B) > 0, \text{ then}$ probability). **Remark 1.** Let $\mathbb{P}$ be a partition of $\Omega$ , X|B, Z|B: Define, $\forall n \in \mathbb{N}^+$ , $\forall X_i | B_i \in \mathcal{D}$ , $\forall s_i \in \mathbb{R}$ (i = $\mathbb{P}|B \to \mathbb{R}$ be two conditional random numbers, with $\sup(\underline{G}|B \wedge E) = 0.$ $0, 1, \ldots, n)$ , $\sup(X|B) = 0$ , $\sup(Z|B) < +\infty$ . Suppose that If <u>*P*</u> is unconditional, $E = \omega \in \mathbb{P}$ , domain of <u>*G*</u>, $\exists \varepsilon > 0, \delta > 0 \text{ s.t., } \forall \omega | B \in \mathbb{P} | B,$ then $\underline{G} = \sum s_i B_i (X_i - \underline{P}(X_i | B_i))$ $X|B(\omega|B) \leq -\varepsilon$ iff $Z|B(\omega|B) \geq -\delta$ . $\sup \underline{G} = \max \underline{G} = \underline{G}(\omega) = 0.$ $-s_0 B_0 (X_0 - \underline{P}(X_0 | B_0)),$ Define Then $\exists \bar{s} > 0 \ s.t, \forall s \in [0, \bar{s}],$ $\mathcal{P} = \{ \omega \in \mathbb{P} : \underline{P}(\omega) > 0 \},\$ $B = \bigvee B_i,$ $\sup(X + sZ|B) < 0.$ $\mathcal{N} = \{ \omega \in \mathbb{P} : \underline{G}(\omega) = 0 \}.$ Strict consistency and require Then $\sup(\underline{G}|B) \ge 0.$ (1)(2)

- $\underline{P}$  is *dF*-coherent if (1) holds, with no constraints on  $s_i \in \mathbb{R}$  (i = 0, 1, ..., n).
- <u>*P*</u> is *W*-coherent if (1) holds, provided  $s_i \ge$  $0 \ (i = 0, 1, \dots, n).$
- <u>*P*</u> is convex if (1) holds, provided  $s_i \ge 0$ (i = 1, ..., n) and  $\sum_{i=1}^{n} s_i = s_0 > 0$ .

A convex <u>P</u> is centered convex if,  $\forall X | B \in$  $\mathcal{D}$ , it holds that  $\emptyset | B \in \mathcal{D}$  and  $\underline{P}(\emptyset | B) = 0$ .

In each case,  $\underline{G}|B$  is an *admissible gain* for  $\underline{P}$ .

**Definition 1** (Weak Dutch Book gain). Let  $\underline{P}$ :  $\mathcal{D} \to \mathbb{R}$  be a convex or W-coherent lower prevision, and let  $\underline{G}|B$  be an admissible gain for  $\underline{P}$ .  $\underline{G}|B$  is a Weak Dutch Book gain for <u>P</u> if

 $\sup(\underline{G}|B) = 0.$ 

<u>*G*</u> WDB gain  $\longrightarrow \mathcal{P} \subseteq \mathcal{N}$ .

• The relationship between  $\mathcal{P}$  and  $\mathcal{N}$  may also depend on the *stakes*  $s_i$ , as the following example shows.

**Example 1.**  $E_0, E_1$  possible distinct events, with  $E_1 \Rightarrow E_0,$ 

 $\mathbb{P} = \{ E_1, E_0 \land \neg E_1, \neg E_0 \}.$ 

Let  $\underline{P}$  :  $\mathbb{P} \cup \{E_0\} \to \mathbb{R}$ , with  $\underline{P}(E_1) = \underline{P}(E_0 \land$  $\neg E_1$  =  $\underline{P}(E_0)$  = 0 and  $\underline{P}(\neg E_0) \in [0,1]$ . Then <u>P</u> is W-coherent and  $\mathcal{P} = \{\neg E_0\}$ . Let  $s_i > 0$  (i =(0, 1) and

 $\underline{G} = s_1 \left( E_1 - \underline{P}(E_1) \right) - s_0 \left( E_0 - \underline{P}(E_0) \right)$  $= s_1 E_1 - s_0 E_0.$ 

Then  $\max \underline{G} = 0$  iff  $s_1 \leq s_0$ . In particular,

*if*  $s_1 < s_0$ , *then*  $\mathcal{N} = \{\neg E_0\} = \mathcal{P}$ ,

A possible, and actually the oldest, solution to the problem of incurring a WDB strengthens the consistency conditions, to rule out WDBs.

**Definition 2** (Strict consistency). Let  $\underline{P} : \mathcal{D} \to \mathbb{R}$ be a convex (W-coherent) lower prevision.  $\underline{P}$  is *strictly convex (strictly W-coherent) if, for any ad*missible gain  $\underline{G}|B$ ,

either  $\underline{G}|B = 0$  or  $\sup(\underline{G}|B) > 0$ .

Special case:  $\mathcal{A}$  algebra of unconditional events. Consider the following properties:

strict Monotonicity, (sM):  $\forall E, F \in \mathcal{A}, \text{ if } F \neq E \Rightarrow F, \text{ then } \underline{P}(E) < \underline{P}(F);$ strict Positivity, (sP):  $\forall E \in \mathcal{A}, \text{ if } E \neq \emptyset, \text{ then } \underline{P}(E) > 0;$ strict Normalisation, (sN):  $\forall E \in \mathcal{A}, \text{ if } E \neq \Omega, \text{ then } \underline{P}(E) < 1.$ 

### Local precision properties

**Proposition 1** (The convex case). (a) If  $\underline{P}$  :  $\mathcal{D} \to \mathbb{R}$  is a conditional convex lower prevision and  $\underline{G}|B$  is a WDB gain, then  $\exists P, dF$ *coherent prevision, and*  $\alpha_P \in \mathbb{R}$  *s.t., for* i = 0and  $\forall i = 1, \ldots, n$  with  $s_i > 0$ , either

 $P(B_i|B) = 0,$ 

Oľ

 $\underline{P}(X_i|B_i) = P(X_i|B_i) + \frac{\alpha_P}{P(B_i|B)}.$ 

(b) If  $\underline{P}$  is unconditional, then,  $\forall i = 0, 1, ..., n$ with  $s_i > 0$ ,

 $\underline{P}(X_i) = P(X_i) + \alpha_P.$ 

Note that

• In the unconditional case,  $P(B_i|B) =$  $P(\Omega|\Omega) = 1$ . The result shows that P is if  $s_1 = s_0$ , then  $\mathcal{N} = \{\neg E_0, E_1\} \supseteq \mathcal{P}$ .

• The converse implication of (2) does not necessarily hold (*Example 4.5* in *Corsato*, Pelessoni, Vicig, 2017).

## Vulnerability to real Dutch Books

The question is: which are the agent's beliefs about suffering from real losses under *coherence* or *convexity* assumptions?

Previous results:

- If  $P : \mathcal{D} \to \mathbb{R}$  is an unconditional dFcoherent probability and G is a WDB gain, then P(G < 0) = 0 (*Crisma*, 2006).
- If  $\underline{P} : \mathcal{D} \to \mathbb{R}$  is an unconditional Wcoherent lower prevision and  $\underline{G}$  is a WDB gain, then  $\forall \varepsilon > 0$ ,  $\underline{P}(\underline{G} \le -\varepsilon) = 0$  (Vicig, 2010).

• If P = P is dF-coherent, then

 $(sM) \longleftrightarrow (sP) \longleftrightarrow (sN);$ 

• if *P* is *W*-coherent, then

 $(sM) \longleftrightarrow (sP) \longrightarrow (sN);$ 

• if *P* is centered convex, then

 $(sM) \longrightarrow (sP) \longrightarrow (sN).$ 

**Proposition 5** (*Kemeny*, 1955; *Shimony*, 1955). If  $\mathcal{A}$  is an algebra of unconditional events and P:  $\mathcal{A} \to \mathbb{R}$  is dF-coherent, then P is strictly dFcoherent iff it satisfies (sP).

#### More general result:

**Proposition 6.** If  $\mathcal{D}$  is a set of conditional gambles s.t.,  $\forall$  WDB gain  $\underline{G}|B \neq 0, \exists \varepsilon > 0 : (\underline{G}|B \leq$  $-\varepsilon) \in \mathcal{D}$ , non-impossible, and  $\underline{P} : \mathcal{D} \to \mathbb{R}$  is Wcoherent, then  $\underline{P}$  is strictly W-coherent iff

a 'local' translation of a precise prevision.

**Proposition 2** (The W-coherent case). If  $\underline{P}$  :  $\mathcal{D} \to \mathbb{R}$  is a conditional W-coherent lower prevision,  $\underline{G}|B$  is a WDB gain and

 $\mathcal{D}_G^+ = \{X_0 | B_0\}$  $\cup \{X_i | B_i : s_i \underline{P}(B_i | B) > 0, \text{ for } i = 1, ..., n\},\$ 

then <u>P</u> is a dF-coherent prevision on  $\mathcal{D}_G^+$ .

Remark that

• The *W*-coherent case specialises the convex one with  $\alpha_P = 0$ .

The general answer is the following:

**Proposition 4.** If  $\underline{P} : \mathcal{D} \to \mathbb{R}$  is a conditional Wcoherent lower prevision and  $\underline{G}|B$  is a WDB gain, then

 $\forall \varepsilon > 0, \quad \underline{P}(\underline{G}|B \le -\varepsilon) = 0.$ 

Yet, note that, for some  $\varepsilon > 0$ ,

- Under *W*-coherence,  $\overline{P}(\underline{G}|B \leq -\varepsilon)$  may be > 0 (even = 1) (*Example 5.1* in *Corsato*, Pelessoni, Vicig, 2017);
- Under convexity,  $\underline{P}(\underline{G}|B \leq -\varepsilon)$  may be > 0 (Example 5.2 in Corsato, Pelessoni, Vicig, 2017).

 $\forall E | B \in \mathcal{D} \setminus \{ \emptyset | B \}, \quad \underline{P}(E | B) > 0.$ 

Notice that

- Strict coherence is essentially confined to a countable environment, even with Wcoherence.
- There are *alternative approaches* hedging WDBs, via desirability (Williams, 1975; Quaeghebeur, de Cooman, Hermans, 2015), buying/selling schemes (Walley, 1991; Wagner, 2007), a qualitative model (*Peder*sen, 2014).