Computable randomness is inherently imprecise

Gert de Cooman and Jasper De Bock

IDLab, Ghent University, Belgium

N FACULTY OF ENGINEERING AND ARCHITECTURE **GHENT UNIVERSITY**

on any (combination) of the following commitments:

(i) for any $p \in [0,1]$ such that $p \leq \underline{p}$, and any $\alpha \geq 0$, Forecaster must accept the gamble $\alpha[X-p]$; (ii) for any $q \in [0,1]$ such that $q \geq \overline{p}$, and any $\beta \geq 0$, Forecaster must accept the gamble $\beta[q-X]$.

Finally, the third player, Reality, determines the value x of X in $\{0,1\}$.

Forecasting systems We collect all possible outcome s $\{0,1\}^{\mathbb{N}}$. We collect the finite outcome $\bigcup_{n \in \mathbb{N}_0} \{0,1\}^n$. Finite sequences *s* is nodes—called situations—and patrices

We collect all possible outcome sequences $(x_1, x_2, ..., x_n, ...)$ in the set $\Omega := \{0, 1\}^{\mathbb{N}}$. We collect the finite outcome sequences $(x_1, ..., x_n)$ in the set $\Omega^{\Diamond} := \bigcup_{n \in \mathbb{N}_0} \{0, 1\}^n$. Finite sequences *s* in Ω^{\Diamond} and infinite sequences ω in Ω are the

nodes—called situations—and paths in an event tree with unbounded horizon. A forecasting system is a map $\gamma: \Omega^{\Diamond} \to \mathscr{C}$, that associates with any situation *s* in

the event tree an interval forecast $\gamma(s) = [\underline{\gamma}(s), \overline{\gamma}(s)] \in \mathscr{C}$. A forecasting system γ is called precise if $\gamma = \overline{\gamma}$. Γ denotes the set $\mathscr{C}^{\Omega^{\Diamond}}$ of all forecasting systems.

Each interval forecast $I_s = \gamma(s)$ corresponds to a local upper expectation \overline{E}_{I_s} , with

 $\overline{E}_{\gamma(s)}(f) = \max_{p \in \gamma(s)} E_p(f) = \max_{p \in \gamma(s)} [pf(1) + (1-p)f(0)]$

so the forecasting system γ turns the event tree into an imprecise probability tree.

Computable randomness

A map $M: \Omega^{\Diamond} \to \mathbb{R}$ is a supermartingale for γ if $\overline{E}_{\gamma(s)}(\Delta M(s)) \leq 0$ for all $s \in \Omega^{\Diamond}$. In other words, it is a possible capital process for Sceptic. We call an event $A \subseteq \Omega$ strictly null if there is some non-negative supermartingale T for γ that converges to $+\infty$ on A, meaning that $\lim_{n\to+\infty} T(\omega^n) = +\infty$ for all $\omega \in A$. The complement A^c of a strictly More conservative (or imprecise) forecasting systems have more computably random sequences.

Proposition 2. Let ω be computably random for a forecasting system γ . Then ω is also computably random for any forecasting system γ^* such that $\gamma \subseteq \gamma^*$, meaning that $\gamma(s) \subseteq \gamma^*(s)$ for all $s \in \Omega^{\Diamond}$.

100

011

010

001

000

110

101

 $10 \qquad \qquad \gamma(10) = I_{10}$

null event A is never empty. A property that holds on A^c is said to hold strictly almost surely, or for strictly almost all outcome sequences.

An outcome sequence ω is computably random for γ if all computable non-negative supermartingales *T* for γ remain bounded above on ω , meaning that $\sup_{n \in \mathbb{N}} T(\omega^n) < +\infty$.

 $\Gamma_{\rm C}(\omega) := \{\gamma \in \Gamma : \omega \text{ is computably random for } \gamma\}$ is the set of all forecasting systems for which ω is computably random.

Proposition 1. All paths are computably random for the vacuous forecasting system: $\gamma_v \in \Gamma_C(\omega)$ for all $\omega \in \Omega$, so $\Gamma_C(\omega)$ is never empty.

0

Church randomness

 $\sum_{k=0}^{n} S(x_1,\ldots,x_k) \to +\infty$:

result:

Theorem 3. Consider any forecasting system γ . Then strictly almost all outcome sequences are computably random for γ in the imprecise probability tree that corresponds to γ .

Corollary 4. For any sequence of interval forecasts $(I_1, ..., I_n, ...)$ there is a forecasting system given by $\gamma(x_1, ..., x_n) := I_{n+1}$ for all $(x_1, ..., x_n) \in \{0, 1\}^n$ and all $n \in \mathbb{N}_0$, and associated imprecise probability tree such that strictly almost all—and therefore definitely at least one—outcome sequences are computably random for γ in the associated imprecise probability tree.

Constant forecasts

 $\gamma(\Box) = I_{\Box}$

The stationary forecasting system γ_I assigns the same interval forecast *I* to all nodes:

 $\gamma_I(s) \coloneqq I \text{ for all } s \in \Omega^{\Diamond}$

Consider all interval forecasts for which the corresponding stationary forecasting system makes ω computably random:

 $\mathscr{C}_{C}(\omega) := \{I \in \mathscr{C} : \gamma_{I} \in \Gamma_{C}(\omega)\}$ **Proposition 5** (Non-emptiness). For *all* $\omega \in \Omega$, $[0,1] \in \mathscr{C}_{C}(\omega)$, so any se*quence of outcomes* ω *has at least*

Examples

As a first example, fix any $p \le q$ in [0,1], and the forecasting system $\gamma_{p,q}$ with

$$\gamma_{p,q}(x_1,\ldots,x_n) \coloneqq \begin{cases} p & \text{if } n \text{ is odd} \\ q & \text{if } n \text{ is even} \end{cases}$$

Proposition 9. Consider any ω that is computably random for the precise forecasting system $\gamma_{p,q}$. Then for all $I \in \mathscr{C}, I \in \mathscr{C}_{\mathbb{C}}(\omega)$ if and only if $[p,q] \subseteq I$. Hence, $p_{\mathbb{C}}(\omega) = p$ and $\overline{p}_{\mathbb{C}}(\omega) = q$. to 1/2: $p_n := \frac{1}{2} + (-1)^n \delta_n$, with $\delta_n := e^{-\frac{1}{n+1}} \sqrt{e^{\frac{1}{n+1}} - 1}$ for all $n \in \mathbb{N}$ and the forecasting system $\gamma_{\sim 1/2}$ with $\gamma_{\sim 1/2}(x_1, \dots, x_{n-1}) := p_n$ for all $n \in \mathbb{N}$ **Proposition 10.** *Consider any* ω *that is computably random for the pre-<i>cise forecasting system* $\gamma_{\sim 1/2}$. Then

 $\gamma(01) = I_{01}$

one stationary forecast that makes it computably random: $\mathscr{C}_{C}(\omega) \neq \emptyset$. **Proposition 6** (Increasingness). Consider any $\omega \in \Omega$ and any $I, J \in \mathscr{C}$. If $I \in$ $\mathscr{C}_{C}(\omega)$ and $I \subseteq J$, then also $J \in \mathscr{C}_{C}(\omega)$. **Proposition 7** (Closure). For any $\omega \in$ Ω and any two interval forecasts I and J: if $I \in \mathscr{C}_{C}(\omega)$ and $J \in \mathscr{C}_{C}(\omega)$ then $I \cap J \neq \emptyset$, and $I \cap J \in \mathscr{C}_{C}(\omega)$. Hence, $\mathscr{C}_{C}(\omega)$ is a set filter, and $\bigcap \mathscr{C}_{C}(\omega) =: [\underline{p}_{C}(\omega), \overline{p}_{C}(\omega)]$ is a non-empty closed interval. Also $[0,1] \cap [\underline{p}_{C}(\omega) - \varepsilon_{1}, \overline{p}_{C}(\omega) + \varepsilon_{2}] \in \mathscr{C}_{C}(\omega)$ for all $\varepsilon_{1} > 0$ and $\varepsilon_{2} > 0$.

sequence $\{p_n\}_{n\in\mathbb{N}}$ in |

 $\gamma(0) = I_0$

Computable randomness implies an intuitive limiting frequencies

Theorem 8 (Church randomness). Consider any outcome se-

quence $\omega = (x_1, \dots, x_n, \dots)$ in Ω and any stationary interval fore-

cast $I = [p, \overline{p}] \in \mathscr{C}_{C}(\omega)$ that makes ω computably random. Then

for any computable selection process $S: \Omega^{\Diamond} \rightarrow \{0,1\}$ such that

 $\underline{p} \leq \liminf_{n \to +\infty} \frac{\sum_{k=0}^{n-1} S(x_1, \dots, x_k) x_{k+1}}{\sum_{k=0}^{n-1} S(x_1, \dots, x_k)} \leq \limsup_{n \to +\infty} \frac{\sum_{k=0}^{n-1} S(x_1, \dots, x_k) x_{k+1}}{\sum_{k=0}^{n-1} S(x_1, \dots, x_k)} \leq \overline{p}$

As a second example, consider the sequence $\{p_n\}_{n \in \mathbb{N}}$ in [0, 1] converging Hence

00

01

min I < 1/2 and max I > 1/2. Hence $\underline{p}_{C}(\boldsymbol{\omega}) = \overline{p}_{C}(\boldsymbol{\omega}) = 1/2$.

for all $I \in \mathscr{C}$, $I \in \mathscr{C}_{C}(\omega)$ if and only if

