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Forecaster specifies an interval bound
I = [p, p] for the expectation of an un-
known outcome X in {0,1}. C is the
set of all closed intervals I in [0,1].

This interval forecast I = [p, p] is a
commitment for Forecaster to adopt
p as supremum buying price and p as
infimum selling price for the gamble X.

The second player, Sceptic, can now
in a second step take Forecaster up
on any (combination) of the following
commitments:

(i) for any p ∈ [0,1] such that p≤ p,
and any α ≥ 0, Forecaster must
accept the gamble α [X− p];

(ii) for any q ∈ [0,1] such that q ≥ p,
and any β ≥ 0, Forecaster must
accept the gamble β [q−X].

Finally, the third player, Reality, deter-
mines the value x of X in {0,1}.

Single forecast game
This leads to an uncer-
tain reward (or capital in-
crease) for Sceptic:

∆K =−α [X− p]−β [q−X]

characterised by

EI(∆K ) ≤ 0

where the upper expecta-
tion EI is defined by
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p∈I
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Sceptic’s uncertain rewards

We collect all possible outcome sequences (x1,x2, . . . ,xn, . . . ) in the set Ω :=
{0,1}N. We collect the finite outcome sequences (x1, . . . ,xn) in the set Ω♦ :=⋃

n∈N0
{0,1}n. Finite sequences s in Ω♦ and infinite sequences ω in Ω are the

nodes—called situations—and paths in an event tree with unbounded horizon.

A forecasting system is a map γ : Ω♦→ C , that associates with any situation s in
the event tree an interval forecast γ(s) = [γ(s),γ(s)] ∈ C . A forecasting system γ

is called precise if γ = γ. Γ denotes the set C Ω♦
of all forecasting systems.

Each interval forecast Is = γ(s) corresponds to a local upper expectation EIs, with

Eγ(s)( f ) = max
p∈γ(s)

Ep( f ) = max
p∈γ(s)

[p f (1)+ (1− p) f (0)]

so the forecasting system γ turns the event tree into an imprecise probability tree.

Forecasting systems

A map M : Ω♦→R is a supermartingale for γ if Eγ(s)(∆M(s)) ≤ 0 for
all s ∈Ω♦. In other words, it is a possible capital process for Sceptic.

We call an event A ⊆ Ω strictly null if there is some non-negative
supermartingale T for γ that converges to +∞ on A, meaning that
limn→+∞ T (ωn) = +∞ for all ω ∈ A. The complement Ac of a strictly
null event A is never empty. A property that holds on Ac is said to hold
strictly almost surely, or for strictly almost all outcome sequences.

An outcome sequence ω is computably random for γ if all computable
non-negative supermartingales T for γ remain bounded above on ω,
meaning that supn∈N T (ωn) <+∞.

ΓC(ω) := {γ ∈ Γ : ω is computably random for γ}
is the set of all forecasting systems for which ω is computably random.
Proposition 1. All paths are computably random for the vacuous
forecasting system: γv ∈ ΓC(ω) for all ω ∈Ω, so ΓC(ω) is never empty.

More conservative (or imprecise) forecasting systems have more
computably random sequences.

Proposition 2. Let ω be computably random for a forecasting system
γ. Then ω is also computably random for any forecasting system γ∗

such that γ ⊆ γ∗, meaning that γ(s) ⊆ γ∗(s) for all s ∈Ω♦.

Theorem 3. Consider any forecasting system γ. Then strictly almost
all outcome sequences are computably random for γ in the imprecise
probability tree that corresponds to γ.

Corollary 4. For any sequence of interval forecasts (I1, . . . , In, . . . )
there is a forecasting system given by γ(x1, . . . ,xn) := In+1 for all
(x1, . . . ,xn) ∈ {0,1}n and all n ∈N0, and associated imprecise prob-
ability tree such that strictly almost all—and therefore definitely at
least one—outcome sequences are computably random for γ in the
associated imprecise probability tree.

Computable randomness

The stationary forecasting system γ I

assigns the same interval forecast I to
all nodes:

γ I(s) := I for all s ∈Ω♦

Consider all interval forecasts for
which the corresponding stationary
forecasting system makes ω com-
putably random:

CC(ω) := {I ∈ C : γ I ∈ ΓC(ω)}
Proposition 5 (Non-emptiness). For
all ω ∈ Ω, [0,1] ∈ CC(ω), so any se-
quence of outcomes ω has at least
one stationary forecast that makes it
computably random: CC(ω) 6= /0.

Proposition 6 (Increasingness). Con-
sider any ω ∈Ω and any I,J ∈C . If I ∈
CC(ω) and I ⊆ J, then also J ∈ CC(ω).

Proposition 7 (Closure). For any ω ∈
Ω and any two interval forecasts I and
J: if I ∈ CC(ω) and J ∈ CC(ω) then
I∩ J 6= /0, and I∩ J ∈ CC(ω).

Hence, CC(ω) is a set filter, and⋂
CC(ω) =: [pC(ω), pC(ω)]

is a non-empty closed interval. Also

[0,1]∩ [pC(ω)−ε1, pC(ω)+ε2]∈CC(ω)

for all ε1 > 0 and ε2 > 0.

Constant forecasts

Computable randomness implies an intuitive limiting frequencies
result:

Theorem 8 (Church randomness). Consider any outcome se-
quence ω = (x1, . . . ,xn, . . . ) in Ω and any stationary interval fore-
cast I = [p, p] ∈ CC(ω) that makes ω computably random. Then
for any computable selection process S : Ω♦→ {0,1} such that
∑

n
k=0 S(x1, . . . ,xk)→+∞:

p≤ liminf
n→+∞

∑
n−1
k=0 S(x1, . . . ,xk)xk+1

∑
n−1
k=0 S(x1, . . . ,xk)

≤ limsup
n→+∞

∑
n−1
k=0 S(x1, . . . ,xk)xk+1

∑
n−1
k=0 S(x1, . . . ,xk)

≤ p

Church randomness

As a first example, fix any p ≤ q in
[0,1], and the forecasting system γp,q

with

γp,q(x1, . . . ,xn) :=

{
p if n is odd

q if n is even

Proposition 9. Consider any ω that
is computably random for the precise
forecasting system γp,q. Then for all
I ∈C , I ∈CC(ω) if and only if [p,q]⊆ I.

Hence, pC(ω) = p and pC(ω) = q.

As a second example, consider the
sequence {pn}n∈N in [0,1] converging

to 1/2:

pn :=
1
2
+(−1)n

δn, with

δn := e−
1

n+1

√
e

1
n+1−1 for all n ∈N

and the forecasting system γ∼1/2 with

γ∼1/2(x1, . . . ,xn−1) := pn for all n ∈N

Proposition 10. Consider any ω that
is computably random for the pre-
cise forecasting system γ∼1/2. Then
for all I ∈ C , I ∈ CC(ω) if and only if
min I < 1/2 and max I > 1/2.

Hence pC(ω) = pC(ω) = 1/2.

Examples


