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Lalintha G. Polpitiya, Kamal Premaratne, Manohar N. Murthi & Dilip Sarkar

UNIVERSITY
OF MIAMI

L3

Challenges and Contributions

B In spite of the greater expressiveness and flexibility they offer, Dempster-
Shafer (DS) theoretic implementations in current use are restricted to smaller
frames of discernment (FoDs) because of the prohibitive computational bur-
den that larger FoDs impose on existing methods.

B While this difficulty has been addressed via several approximation
methods[1], such approaches usually require one to compromise the qual-
ity of the generated results for computational efficiency.

B Exact (or sufficiently precise) computation of conditionals is of paramount im-
portance because the quality of results generated from DS theoretic (DST)
strategies depend directly on the precision of the conditional.

B The main contribution of this paper is a completely new generalized model
(DS-Conditional-One) for computing DST conditionals.

B This model can be employed to compute both the FH and Dempster’s con-
ditional beliefs of an arbitrary proposition. This is exactly the challenge that
Shafer refers to in [5, p.348], viz., “It remains to be seen how useful the
fast Mobius transform will be in practice. It is clear, however, that it is
not enough to make arbitrary belief function computations feasible.”

B Our experiment results demonstrate that the average computational time
taken to compute the conditional belief of an arbitrary proposition by the pro-
posed approach is less than 2 (us) for a FoD of size 10 and 0.7 (ms) for a
FoD of size 20 (~1 million focal elements).

B This new model can also be utilized as a visualization tool for conditional
computations and in analyzing characteristics of conditioning operations.

B An outcome of this research is a conditional computation library which is
available at ProFuSELab (Scan the QR code above).

\ (https://profuselab.github.io/Conditional-Computation-Library/) Y
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B The following notation is useful for our work:
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S(A; B) = m(C U D). (1)

S(A; B) denotes the sum of all masses of propositions that ‘straddle’
both AC © and B C ©.

B The following result is of critical importance for our work:

Proposition 1 Consider the body of evidence (BoE) £ = {©,F, m(-)}
and A C ©. For B C ©, consider the mappings T4 : 2° — [0, 1] and
M4 :2° — [0, 1], where

ra(B)= > m((AnB)UX); Na(B) =
DX CA

> Tay).

YC(ANB)

Then the following are true:

(i) TA(ANB) = T4(B) andMz(AN B) =
that B C A.
(ii) T A(0) =

[4(B). So, w.l.o.g., we assume

BI(A).

B Fagin-Halpern (FH) conditional can be considered the most natural general-
ization of the probabilistic conditional notion because of its close connection
with the inner and outer conditional probability measures in probability theory.

Definition 2 (Fagin- Halpern (FH) Conditional) [2] Consider the BoE & =

{©,5,m(-)} and A € 3. The conditional belief BI( (B|A) of B given the con-
ditioning event A is

BI(An B)

BIANB) + PIANB)’ -

BI(B|A) =

B For our work, we need the following alternate expression for the FH condi-
tional:

Proposition 3 Consider the BoE £ = {©,F, m(-)} and A € S Then,
we may express BI(B|A) as

BI(An B)
1_ BI(A)— S(A;AN B)’

BI(B|A) = BcCo. n

FH conditioning annuls those propositions that ‘straddle’ the conditioning
proposition A and its complement A.

B Dempster’s conditional is perhaps the most widely employed DST conditional
notion.

Definition 4 (Dempster’s Conditional) [4/] Consider the BoE & =
{©,85,m(-)} and A C © s.t. BI(A) # 1, or equivalently, PI(A) # 0. The
conditional belief BI(B||A) of B given the conditioning event A is

BI(AU B) — BI(A)

_ N
1 — BI(A)

BI(B|A) =

Dempster’'s conditioning also annuls masses of all those propositions that
‘straddle’ the conditioning proposition A and its complement A.

B For our work, we need the following alternate expression for the Dempster’s
conditional:

Proposition 5 Consider the BoE £ = {©,%,m(-)} and A C © s.t.
BI(A) # 1. Then, BI(B||A) can be expressed as

BI(AN B) + S(A; AN B)

S/(5]4) = 1 — BI(A)

, BC 0©. []

B REGAP (REcursive Generation of and Access to Propositions) property[3]:
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Fig. 1: REGAP: REcursive Generation of and Access to Propositions.
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DS-Conditional-One Computational Model
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Fig. 2: DS-Conditional-One model. Quantities related to B/(B|A) computation
when A = {ap, a1, ..., ga-1} and A = {aw, a4, ..., a|zl_1}, and B = {ap, a2} C A.

B DS-Conditional-One is a computational model that enables one to compute
the FH and Dempster’s conditional beliefs of an arbitrary proposition.

We denote the conditioning proposition A, its complement A, and the con-
ditioned proposition B as {ao, ai, ..., 84—1}, {ao,a1,...,am|_1}, and { by, b1,

., bg|—1}, respectively. Here, © = {0, 01,...,0,_1} denotes the FoD and
a;, Q, bk c 0.

We represent singletons of the conditioning event A = {4, a1, ..., 841} as
column singletons and singletons of the complement of conditioning event
= {ag, a1, ..., a|z|_1} as row singletons in a DS-Matrix. See Fig. 2.

B The proposed DS-Conditional-One computational model allows direct identi-
fication of REGAP(A), REGAP(A), REGAP(AnN B), (REGAP(A)x REGAP(AN

B)), (REGAP(A)x REGAP(A)), and I 4(C), ¥C C B.

Compute B/(AnN B), BI(A), and S(A: AN B)

B We use a lookup table named power to enhance the computational efficiency.
It contains 2 to the power of singleton indexes in increasing order.

B jndex|] is a dynamic array which keeps the indexes of subset propositions of
AN B.

(a) REGAP(AnN B): Use this to compute BI(AN B).

Algorithm 1 Compute BI(A N B) (with time complexity O(2/4"8))

1: procedure BLB(Singletons A, Singletons B, DS-Matrix BBA)
2 belief < 0

3 count < 0

4 for each a;in An Bdo

5: index[count] < power]i]
6

7

8

femp < count
count <+ count + 1
: forj«+ 0, temp —1do
9: index[count] < index[j] + power]i]
10: count < count + 1
11: end for
12: end for
13: for i < 0, power[|AN B|]] — 2 do

14: belief < belief + BBA[O][index][/]]
15; end for
16: Return belief

17: end procedure

s

(b) REGAP(A): Use this to compute B/(A).

Algorithm 2 Compute BI(A) (with time complexity O(2141))

1: procedure BLCoMmP(Singletons A, DS-Matrix BBA)
2 belief < 0

3:  fori<« 1, power[|A|]] — 1 do

4 belief «— belief + BBA[][0]
5
6
7

end for
Return belief
. end procedure

J

(c) (REGAP(A)x REGAP(A N B)), the Cartesian product of REGAP(A) and
REGAP(A N B): Use this to compute S(A; AN B).

Algorithm 3 Compute S(A; AN B) (with time complexity O(2/41+1AN5))

1: procedure STRAD(Singletons A, Singletons A, Singletons B, DS-
Matrix BBA)
belief < 0
count < 0
for each g, in An Bdo
index[count] <+ power]i]
temp < count
count < count + 1
forj < 0, temp — 1 do
9: index[count] < index[j] + power]i]
10: count < count + 1
11: end for
12: end for
13:  for i<+ 1, power[|A|]] — 1 do

14: for j < O, power[|AN B|] — 2 do
15: belief < belief + BBA[i][index[/]]
16: end for

17: end for
18: Return belief
19: end procedure

Space Complexity of Algorithms 1, 2, and 3. The matrix in Fig. 2 is of size
214 x 2lAl. Hence, the space complexity associated with each algorithm above

\is 0(2/9). J
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Computation of Conditionals

B FH Conditional Belief of an Arbitrary Proposition: Use the expression in
Proposition 3, where BI(AN B), BI(A) and S(A; AN B) are obtained via Algo-
rithms 1, 2, and 3, respectively.

The computational complexity is O(21A+AN8l).
BI(B|A) for B = {ap, a>} is computed as (See Fig. 2)

BI(AN B)

PR = T 00— Tal@0)) — Tal{@)) — Tal(a0, )

(2)

B Dempster’'s Conditional Belief of an Arbitrary Proposition: Use the ex-
pression in Proposition 5, where BI(AN B), BI(A) and S(A; AN B) are obtained
via Algorithms 1, 2, and 3, respectively.

The computational complexity is O(21A+AN8l),
Consider the same example as before, viz., B = {ap, a>}. Then, we
may compute B/(B| A) as

B/(Aﬂ B + FA {a()} + FA {32} + FA {ao, 32}

BI(B||A) = T

(3)

B Dempster’s Conditional Mass Using Specialization Matrix[6]:

It employs a 2/°! x2/®l-sized stochastic matrix & 4 (with each entry ‘0’ or
‘1°) referred to as the conditioning specialization matrix and a 2/°1 x 1-
sized vector m(-) containing the focal elements. The computational and
space complexity of the specialization matrix multiplication is O(2/®! x
2191), a prohibitive burden even for modest FoD sizes.

Experiments and Concluding Remarks

B For a given FoD size, we selected a random set of focal elements, with ran-
domly selected mass values, and conducted 10,000 conditional computations
for randomly chosen propositions A and B C A.

B With the DS-Conditional-One model (which applies to both FH and Demp-
ster's conditionals), we use a ‘brute force’ approach to compute all the con-
ditional beliefs. We then use the fast MoObius transform (FMT) [7] to get the
conditional masses for all the propositions.

B All conditional computations for an arbitrary proposition were done on an
iIMac running Mac OS X 10.12.3 (with 2.9GHz Intel Core i5 processor and 8GB
of 1600MHz DDR3 RAM). Conditional computations for all propositions were
done on the same iMac for smaller FoDs and on a supercomputer (https:
//ccs.miami.edu/pegasus) for larger FoDs (underlined in Table 1).

Method — DS-Conditional-One Model Specializa.
Conditional — FH or Dempster’s Dempster’s
BI(B|A) BI(B|A) m(B|A)

FoD or BI(B||A) or BI(B||A) or m(B||A) m(B| A)

O] Max. |§| (Arbitrary) (All) (All) (All)

2 3 0.0005 0.0011 0.0016 0.0011

4 15 0.0005 0.0038 0.0050 0.0063

6 63 0.0006 0.0128 0.0170 0.0696

8 255 0.0009 0.0517 0.0679 1.0154

10 1,023 0.0017 0.2428 0.3090 93.1590

12 4,095 0.0040 1.3528 1.6186 1,485.6300

14 16,383 0.0120 18.4885 22.4995 25,051.8200

16 65,535 0.0405 146.1480 151.9600 e

18 262,143 0.1516 1,087.2800 1,113.5300 e

20 1,048,575 0.6011 8,485.4500 8,862.9800 e
Table 1: DS-Conditional-One model versus specialization matrix based method.
Average computational times (ms). (*** denotes computations not completed

within a feasible time).

B The significant speed advantage offered by the proposed computational
model over the specialization matrix based approach is evident from Table 1.

B For larger FoDs, the computational burden associated with the specialization
matrix based approach becomes prohibitive because of its space complexity
of 02!l x 219, For example, an FoD of size 20 would need 128 (= 220 x
220 /8) GB of memory to represent the specialization matrix, if each matrix
entry occupies only 1 bit.

B Another advantage of the proposed approach is that it can be utilized for either
the FH conditional or Dempster’s conditional belief computations.

B |t also appears possible to further enhance the algorithms that we have de-
veloped via parallel computing optimizations because of the underlying matrix
\_structure. Y
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