
EfficientComputationofBeliefTheoreticConditionals
Lalintha G. Polpitiya, Kamal Premaratne, Manohar N. Murthi & Dilip Sarkar

University of Miami
Coral Gables, Florida, USA

lalintha@umiami.edu,{kamal,mmurthi,sarkar}@miami.edu

Challenges and Contributions
� In spite of the greater expressiveness and flexibility they offer, Dempster-

Shafer (DS) theoretic implementations in current use are restricted to smaller
frames of discernment (FoDs) because of the prohibitive computational bur-
den that larger FoDs impose on existing methods.

� While this difficulty has been addressed via several approximation
methods[1], such approaches usually require one to compromise the qual-
ity of the generated results for computational efficiency.

� Exact (or sufficiently precise) computation of conditionals is of paramount im-
portance because the quality of results generated from DS theoretic (DST)
strategies depend directly on the precision of the conditional.

� The main contribution of this paper is a completely new generalized model
(DS-Conditional-One) for computing DST conditionals.

� This model can be employed to compute both the FH and Dempster’s con-
ditional beliefs of an arbitrary proposition. This is exactly the challenge that
Shafer refers to in [5, p.348], viz., “It remains to be seen how useful the
fast Möbius transform will be in practice. It is clear, however, that it is
not enough to make arbitrary belief function computations feasible.”

� Our experiment results demonstrate that the average computational time
taken to compute the conditional belief of an arbitrary proposition by the pro-
posed approach is less than 2 (µs) for a FoD of size 10 and 0.7 (ms) for a
FoD of size 20 (∼1 million focal elements).

� This new model can also be utilized as a visualization tool for conditional
computations and in analyzing characteristics of conditioning operations.

� An outcome of this research is a conditional computation library which is
available at ProFuSELab (Scan the QR code above).

(https://profuselab.github.io/Conditional-Computation-Library/)

Mathematical Foundation
� The following notation is useful for our work:

S(A; B) =
∑
∅6=C⊆A;
∅6=D⊆B

m(C ∪ D). (1)

S(A; B) denotes the sum of all masses of propositions that ‘straddle’
both A ⊆ Θ and B ⊆ Θ.

� The following result is of critical importance for our work:

Proposition 1 Consider the body of evidence (BoE) E = {Θ,F, m(·)}
and A ⊆ Θ. For B ⊆ Θ, consider the mappings ΓA : 2Θ 7→ [0, 1] and
ΠA : 2Θ 7→ [0, 1], where

ΓA(B) =
∑
∅6=X⊆A

m((A ∩ B) ∪ X ); ΠA(B) =
∑

Y⊆(A∩B)

ΓA(Y ).

Then the following are true:
(i) ΓA(A ∩ B) = ΓA(B) and ΠA(A ∩ B) = ΠA(B). So, w.l.o.g., we assume
that B ⊆ A.
(ii) ΓA(∅) = Bl(A).

� Fagin-Halpern (FH) conditional can be considered the most natural general-
ization of the probabilistic conditional notion because of its close connection
with the inner and outer conditional probability measures in probability theory.

Definition 2 (Fagin-Halpern (FH) Conditional) [2] Consider the BoE E =
{Θ,F, m(·)} and A ∈ F̂. The conditional belief Bl(B|A) of B given the con-
ditioning event A is

Bl(B|A) =
Bl(A ∩ B)

Bl(A ∩ B) + Pl(A ∩ B)
.

� For our work, we need the following alternate expression for the FH condi-
tional:

Proposition 3 Consider the BoE E = {Θ,F, m(·)} and A ∈ F̂. Then,
we may express Bl(B|A) as

Bl(B|A) =
Bl(A ∩ B)

1− Bl(A)− S(A; A ∩ B)
, B ⊆ Θ.

FH conditioning annuls those propositions that ‘straddle’ the conditioning
proposition A and its complement A.

� Dempster’s conditional is perhaps the most widely employed DST conditional
notion.

Definition 4 (Dempster’s Conditional) [4] Consider the BoE E =
{Θ,F, m(·)} and A ⊆ Θ s.t. Bl(A) 6= 1, or equivalently, Pl(A) 6= 0. The
conditional belief Bl(B‖A) of B given the conditioning event A is

Bl(B‖A) =
Bl(A ∪ B)− Bl(A)

1− Bl(A)
.

Dempster’s conditioning also annuls masses of all those propositions that
‘straddle’ the conditioning proposition A and its complement A.

� For our work, we need the following alternate expression for the Dempster’s
conditional:

Proposition 5 Consider the BoE E = {Θ,F, m(·)} and A ⊆ Θ s.t.
Bl(A) 6= 1. Then, Bl(B‖A) can be expressed as

Bl(B‖A) =
Bl(A ∩ B) + S(A; A ∩ B)

1− Bl(A)
, B ⊆ Θ.

� REGAP (REcursive Generation of and Access to Propositions) property[3]:

Fig. 1: REGAP: REcursive Generation of and Access to Propositions.

DS-Conditional-One Computational Model
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Fig. 2: DS-Conditional-One model. Quantities related to Bl(B|A) computation
when A = {a0, a1, ... , a|A|−1} and A = {α0,α1, ... ,α|A|−1}, and B = {a0, a2} ⊆ A.

� DS-Conditional-One is a computational model that enables one to compute
the FH and Dempster’s conditional beliefs of an arbitrary proposition.

� We denote the conditioning proposition A, its complement A, and the con-
ditioned proposition B as {a0, a1, ... , a|A|−1}, {α0,α1, ... ,α|A|−1}, and {b0, b1,
... , b|B|−1}, respectively. Here, Θ = {θ0, θ1, ... , θn−1} denotes the FoD and
ai ,αj , bk ∈ Θ.

� We represent singletons of the conditioning event A = {a0, a1, ... , a|A|−1} as
column singletons and singletons of the complement of conditioning event
A = {α0,α1, ... , α|A|−1} as row singletons in a DS-Matrix. See Fig. 2.

� The proposed DS-Conditional-One computational model allows direct identi-
fication of REGAP(A), REGAP(A), REGAP(A∩B), (REGAP(A)×REGAP(A∩
B)), (REGAP(A)×REGAP(A)), and ΓA(C), ∀C ⊆ B.

Compute Bl(A ∩ B), Bl(A), and S(A; A ∩ B)
� We use a lookup table named power to enhance the computational efficiency.

It contains 2 to the power of singleton indexes in increasing order.

� index [] is a dynamic array which keeps the indexes of subset propositions of
A ∩ B.

(a) REGAP(A ∩ B): Use this to compute Bl(A ∩ B).

Algorithm 1 Compute Bl(A ∩ B) (with time complexity O(2|A∩B|))

1: procedure BLB(Singletons A, Singletons B, DS-Matrix BBA)
2: belief ← 0
3: count ← 0
4: for each ai in A ∩ B do
5: index [count ]← power [i ]
6: temp ← count
7: count ← count + 1
8: for j ← 0, temp − 1 do
9: index [count ]← index [j ] + power [i ]

10: count ← count + 1
11: end for
12: end for
13: for i ← 0, power [|A ∩ B|]− 2 do
14: belief ← belief + BBA[0][index [i ]]
15: end for
16: Return belief
17: end procedure

(b) REGAP(A): Use this to compute Bl(A).

Algorithm 2 Compute Bl(A) (with time complexity O(2|A|))

1: procedure BLCOMP(Singletons A, DS-Matrix BBA)
2: belief ← 0
3: for i ← 1, power [|A|]− 1 do
4: belief ← belief + BBA[i ][0]
5: end for
6: Return belief
7: end procedure

(c) (REGAP(A)×REGAP(A ∩ B)), the Cartesian product of REGAP(A) and
REGAP(A ∩ B): Use this to compute S(A; A ∩ B).

Algorithm 3 Compute S(A; A ∩ B) (with time complexity O(2|A|+|A∩B|))

1: procedure STRAD(Singletons A, Singletons A, Singletons B, DS-
Matrix BBA)

2: belief ← 0
3: count ← 0
4: for each ai in A ∩ B do
5: index [count ]← power [i ]
6: temp ← count
7: count ← count + 1
8: for j ← 0, temp − 1 do
9: index [count ]← index [j ] + power [i ]

10: count ← count + 1
11: end for
12: end for
13: for i ← 1, power [|A|]− 1 do
14: for j ← 0, power [|A ∩ B|]− 2 do
15: belief ← belief + BBA[i ][index [j ]]
16: end for
17: end for
18: Return belief
19: end procedure

Space Complexity of Algorithms 1, 2, and 3. The matrix in Fig. 2 is of size
2|A| × 2|A|. Hence, the space complexity associated with each algorithm above
is O(2|Θ|).

Computation of Conditionals
� FH Conditional Belief of an Arbitrary Proposition: Use the expression in

Proposition 3, where Bl(A ∩ B), Bl(A) and S(A; A ∩ B) are obtained via Algo-
rithms 1, 2, and 3, respectively.

The computational complexity is O(2|A|+|A∩B|).
Bl(B|A) for B = {a0, a2} is computed as (See Fig. 2)

Bl(B|A) =
Bl(A ∩ B)

1− ΓA({∅})− ΓA({a0})− ΓA({a2})− ΓA({a0, a2})
. (2)

� Dempster’s Conditional Belief of an Arbitrary Proposition: Use the ex-
pression in Proposition 5, where Bl(A∩B), Bl(A) and S(A; A∩B) are obtained
via Algorithms 1, 2, and 3, respectively.

The computational complexity is O(2|A|+|A∩B|).
Consider the same example as before, viz., B = {a0, a2}. Then, we
may compute Bl(B‖A) as

Bl(B‖A) =
Bl(A ∩ B) + ΓA({a0}) + ΓA({a2}) + ΓA({a0, a2})

1− ΓA({∅}) . (3)

� Dempster’s Conditional Mass Using Specialization Matrix[6]:

It employs a 2|Θ|×2|Θ|-sized stochastic matrix SA (with each entry ‘0’ or
‘1’) referred to as the conditioning specialization matrix and a 2|Θ| × 1-
sized vector m(·) containing the focal elements. The computational and
space complexity of the specialization matrix multiplication is O(2|Θ| ×
2|Θ|), a prohibitive burden even for modest FoD sizes.

Experiments and Concluding Remarks
� For a given FoD size, we selected a random set of focal elements, with ran-

domly selected mass values, and conducted 10,000 conditional computations
for randomly chosen propositions A and B ⊆ A.

� With the DS-Conditional-One model (which applies to both FH and Demp-
ster’s conditionals), we use a ‘brute force’ approach to compute all the con-
ditional beliefs. We then use the fast Möbius transform (FMT) [7] to get the
conditional masses for all the propositions.

� All conditional computations for an arbitrary proposition were done on an
iMac running Mac OS X 10.12.3 (with 2.9GHz Intel Core i5 processor and 8GB
of 1600MHz DDR3 RAM). Conditional computations for all propositions were
done on the same iMac for smaller FoDs and on a supercomputer (https:
//ccs.miami.edu/pegasus) for larger FoDs (underlined in Table 1).

Method→ DS-Conditional-One Model Specializa.
Conditional→ FH or Dempster’s Dempster’s

Bl(B|A) Bl(B|A) m(B|A)
FoD or Bl(B‖A) or Bl(B‖A) or m(B‖A) m(B‖A)

|Θ| Max. |F| (Arbitrary) (All) (All) (All)
2 3 0.0005 0.0011 0.0016 0.0011
4 15 0.0005 0.0038 0.0050 0.0063
6 63 0.0006 0.0128 0.0170 0.0696
8 255 0.0009 0.0517 0.0679 1.0154

10 1,023 0.0017 0.2428 0.3090 93.1590
12 4,095 0.0040 1.3528 1.6186 1,485.6300
14 16,383 0.0120 18.4885 22.4995 25,051.8200
16 65,535 0.0405 146.1480 151.9600 ***
18 262,143 0.1516 1,087.2800 1,113.5300 ***
20 1,048,575 0.6011 8,485.4500 8,862.9800 ***

Table 1: DS-Conditional-One model versus specialization matrix based method.
Average computational times (ms). (*** denotes computations not completed
within a feasible time).

� The significant speed advantage offered by the proposed computational
model over the specialization matrix based approach is evident from Table 1.

� For larger FoDs, the computational burden associated with the specialization
matrix based approach becomes prohibitive because of its space complexity
of O(2|Θ| × 2|Θ|). For example, an FoD of size 20 would need 128 (= 220 ×
220/8) GB of memory to represent the specialization matrix, if each matrix
entry occupies only 1 bit.

� Another advantage of the proposed approach is that it can be utilized for either
the FH conditional or Dempster’s conditional belief computations.

� It also appears possible to further enhance the algorithms that we have de-
veloped via parallel computing optimizations because of the underlying matrix
structure.
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