Exchangeable choice functions

Arthur Van Camp and Gert de Cooman

IDLab, Ghent University, Belgium

FACULTY OF ENGINEERING AND ARCHITECTURE

Options We choose between abstract options, collected in a vector space \mathscr{V} , ordered by a reflexive vector ordering \leq , whose irreflexive part \prec is defined by $u \prec v \Leftrightarrow (u \leq v \text{ and } u \neq v)$ for all u and v in \mathscr{V} . $\mathscr{Q}(\mathscr{V})$ is the collection of non-empty but finite subsets of \mathscr{V} .

Choice functions A choice function C on $\mathscr V$ is a map

$$C: \mathscr{Q}(\mathscr{V}) \to \mathscr{Q}(\mathscr{V}) \cup \{\emptyset\}: A \mapsto C(A) \text{ such that } C(A) \subseteq A.$$

Rationality axioms We call a choice function C on $\mathcal{Q}(\mathcal{Y})$ coherent if for all A, A_1 and A_2 in $\mathcal{Q}(\mathcal{V})$, all u and v in \mathcal{V} , and all λ in $\mathbb{R}_{>0}$: C_1 . $C(A) \neq \emptyset$; [avoiding complete rejection] C_2 . if $u \prec v$ then $\{v\} = C(\{u, v\})$; dominance C₃. a. if $C(A_2) \subseteq A_2 \setminus A_1$ and $A_1 \subseteq A_2 \subseteq A$ then $C(A) \subseteq A \setminus A_1$; [Sen's α] b. if $C(A_2) \subseteq A_1$ and $A \subseteq A_2 \setminus A_1$ then $C(A_2 \setminus A) \subseteq A_1$; [Aizerman] C_4 . a. if $A_1 \subseteq C(A_2)$ then $\lambda A_1 \subseteq C(\lambda A_2)$; [scaling invariance] b. if $A_1 \subseteq C(A_2)$ then $A_1 + \{u\} \subseteq C(A_2 + \{u\})$. [independence]

> To define coherent choice functions, we only need an ordered linear space.

See [Gert de Cooman & Erik Quaeghebeur, Exchangeability and sets of desirable gambles] for more information. **Count vectors** Since the subject is indifferent between $x=(x_1,\ldots,x_n)$ and $(x_{\pi(1)},\ldots,x_{\pi(n)})$, a useful statistic of x is its count vector T(x), whose z-component $T(x)_z =$ $|\{k \in \{1,\ldots,n\}: x_k = z\}|$ for all z in \mathscr{X} , and whose range is $\mathcal{N}^n \coloneqq \{m \in \mathbb{Z}_{\geq 0}^{\mathscr{X}} : \sum_{z \in \mathscr{X}} m_z = n\}$. For any m in \mathcal{N}^n ,

its invariant atom is $[m] := \{x \in \mathcal{X}^n : T(x) = m\}$.

A useful map Use the special coherent set of indifferent options $I_{\mathscr{P}_n}$ to find alternative expressions for the equivalent classes $[u] = \{u\} + I_{\mathscr{P}_n}$ and the vector ordering \preceq on $\mathscr{L}(\mathscr{X}^n)/I_{\mathscr{P}_n}$. Consider the special map

$$H_n: \mathscr{L}(\mathscr{X}^n) \to \mathscr{L}(\mathscr{N}^n): f \mapsto H_n(f) := H_n(f|\cdot)$$

where $H_n(f|m) \coloneqq \frac{1}{\binom{n}{m}} \sum_{y \in [m]} f(y)$ for all f in $\mathscr{L}(\mathscr{X}^n)$ and m in \mathcal{N}^n . H_n is the expectation operator associated with the uniform distribution on [m].

Proposition. Consider any [f] and [g] in $\mathcal{L}(\mathcal{X}^n)/I_{\mathscr{P}_n}$. Then $[f] \leq [g] \Leftrightarrow H_n(f) \leq H_n(g)$.

Essentially, H_n is a linear order isomorphism between $\mathscr{L}(\mathscr{X}^n)/I_{\mathscr{P}_n}$ and $\mathscr{L}(\mathscr{N}^n)$.

Theorem 2 (Finite representation). A choice function C on $\mathscr{L}(\mathscr{X}^n)$ is exchangeable if and only if there is a unique representing choice function \tilde{C} on $\mathscr{L}(\mathscr{N}^n)$ such that

$$C(A) = \{ f \in A : H_n(f) \in \tilde{C}(H_n(A)) \}$$

for all A in $\mathcal{Q}(\mathcal{L}(\mathcal{X}^n))$. Furthermore, in that case, \tilde{C} is given by $\tilde{C}(H_n(A)) = H_n(C(A))$ for all A in $\mathcal{Q}(\mathcal{L}(\mathcal{X}^n))$. Finally, C is coherent if and only if \tilde{C} is.

Polynomial gambles Consider the \mathscr{X} -simplex $\Sigma_{\mathscr{X}} :=$ $\{\theta \in \mathbb{R}_{>0}^{\mathscr{X}}: \sum_{z \in \mathscr{X}} \theta_z = 1\}$, and the linear space $\mathscr{V}^n(\Sigma_{\mathscr{X}})$ of polynomial gambles h on $\Sigma_{\mathscr{X}}$ — the restrictions to $\Sigma_{\mathscr{X}}$ of multivariate polynomials p on $\mathbb{R}^{\mathscr{X}}$, in the sense that $h(\theta) = p(\theta)$ for all θ in $\Sigma_{\mathscr{X}}$.

Bernstein gambles For any n in \mathbb{N} and any m in \mathcal{N}^n , let the Bernstein basis polynomial B_m on $\mathbb{R}^\mathscr{X}$ be given by $B_m(\theta) := \binom{n}{m} \prod_{x \in \mathscr{X}} \theta_x^{m_x}$ for all θ in $\mathbb{R}^{\mathscr{X}}$. The restriction to $\Sigma_{\mathscr{X}}$ is called a Bernstein gamble, which we also denote by B_m . $\{B_m : m \in \mathcal{N}^n\}$ is a basis for $\mathcal{V}^n(\Sigma_{\mathscr{X}})$. **Useful maps** Consider the linear order isomorphisms

$$\operatorname{CoM}_n \colon \mathscr{L}(\mathscr{N}^n) o \mathscr{V}^n(\Sigma_\mathscr{X}) \colon r \mapsto \sum_{m \in \mathscr{M}^n} r(m) B_m$$

and $M_n := CoM_n \circ H_n$:

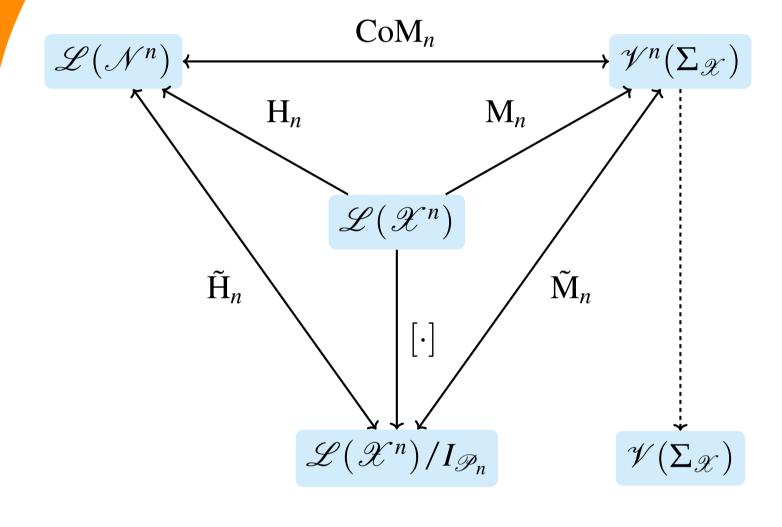
$$M_n \colon \mathscr{L}(\mathscr{X}^n) \to \mathscr{V}^n(\Sigma_{\mathscr{X}}) \colon f \mapsto M_n(f|\theta),$$

where $\mathrm{M}_n(f|\theta) \coloneqq \sum_{m \in \mathscr{N}^n} \sum_{y \in [m]} f(y) \prod_{x \in \mathscr{X}} \theta_x^{m_x}$ is the expectation of f associated with the multinomial distribution whose parameters are n and θ .

Theorem 3 (Finite representation with polynomials). A choice function C on $\mathscr{L}(\mathscr{X}^n)$ is exchangeable if and only if there is a unique representing choice function $ilde{C}$ on $\mathscr{V}^n(\Sigma_\mathscr{X})$ such that

$$C(A) = \{ f \in A : \mathbf{M}_n(f) \in \tilde{C}(\mathbf{M}_n(A)) \}$$

for all A in $\mathcal{Q}(\mathcal{L}(\mathcal{X}^n))$. Furthermore, in that case, \tilde{C} is given by $\tilde{C}(M_n(A)) = M_n(C(A))$ for all A in $\mathcal{Q}(\mathcal{L}(\mathcal{X}^n))$. Finally, C is coherent if and only if \tilde{C} is.



Which uncertainty models do we use? How do choice functions work?

> Is there a de Finetti-like Representation theorem?

Permutations \mathscr{P}_n is the group of permutations I_3 . if $u \in I$ then $\lambda u \in I$; of $\{1,\ldots,n\}$. With any π in \mathscr{P}_n and any sequence I_4 . if $u,v\in I$ then $u+v\in I$. $X = (X_1, \dots, X_n)$, where each X_i assumes values We collect all options that are indifferent to a given in the finite set \mathcal{X} , we associate its permuted option u in the equivalence class variant

$$\pi(X) = \pi(X_1, \dots, X_n) \coloneqq (X_{\pi(1)}, \dots, X_{\pi(n)}).$$
 With any π in \mathscr{P}_n and any gamble f in $\mathscr{L}(\mathscr{X}^n)$,

we associate

$$(\pi^t f)(x) := f(\pi(x))$$
 for all x in \mathscr{X}^n .

Exchangeability When the subject assesses a sequence $X = (X_1, \dots, X_n)$ to be exchangeable, he is indifferent between any gamble f on \mathscr{X}^n and its permuted variant $\pi^t f$, for any π in \mathscr{P} : his set of indifferent gambles is

$$I_{\mathscr{P}_n} := \operatorname{span}\{f - \pi^t f : f \in \mathscr{L}(\mathscr{X}^n), \pi \in \mathscr{P}_n\}.$$

Exchangeability is a special indifference assessment!

Quotient spaces How do we work with this? A set of indifferent options I is **coherent** if for all uand v in \mathscr{V} and λ in \mathbb{R} :

 I_1 . $0 \in I$; [indifference to status quo] I_2 . if $u \in \mathscr{V}_{\succ 0} \cup \mathscr{V}_{\prec 0}$ then $u \notin I$; [non-triviality]

[scaling] [combination]

$$[u] := \{v \in \mathscr{V} : v - u \in I\} = \{u\} + I.$$

The set of all these equivalence classes is the quotient space $\mathscr{V}/I := \{[u] : u \in \mathscr{V}\}$, which is a vector space with vector ordering

$$[u] \preceq [v] \Leftrightarrow (\exists w \in \mathscr{V})u \preceq v + w.$$
 for all $[u]$ and $[v]$ in \mathscr{V}/I .

Indifference: compatibility with *I* We call a choice function C on $\mathcal{Q}(\mathcal{V})$ compatible with a coherent set of indifferent options I if there is a representing choice function C' on $\mathcal{Q}(\mathcal{V}/I)$ such that

$$C(A) = \{ u \in A : [u] \in C'(A/I) \}$$

for all A in $\mathcal{Q}(\mathcal{V})$.

Theorem 1. For any choice function C on $\mathcal{Q}(\mathscr{V})$ that is compatible with some coherent set of indifferent options *I*, the unique representing choice function C/I on $\mathcal{Q}(\mathcal{V}/I)$ is given by

$$C/I(A/I) := C(A)/I$$
 for all A in $\mathcal{Q}(\mathcal{V})$.

Moreover, C is coherent if and only C/I is.

What about the countable case?

Is there a represen-

tation that does not

depend on counts?

Can we add assessments?

exchangeability, the subject also has reason not to distinguish be- set of indifferent gambles compatible with this, is tween the different elements of $\mathscr{X} := \{1, ..., k\}$: consider any permutation $\boldsymbol{\varpi}$ of $\mathscr X$ and any outcome $X=(X_1,\ldots,X_n)$ in $\mathscr X^n$, then he has reason not to distinguish between X and $\varpi(X) :=$ $(\boldsymbol{\varpi}(X_1),\ldots,\boldsymbol{\varpi}(X_n))$. With any gamble f on \mathscr{X}^n there corresponds a permuted gamble $\boldsymbol{\varpi}^t f$, given by $(\boldsymbol{\varpi}^t f)(x) = f(\boldsymbol{\varpi}(x))$ for all xin \mathcal{X}^n .

Set of indifferent gambles Next to $I_{\mathscr{P}_n}$, also

$$I^{\text{cat}} := \text{span}\{f - \boldsymbol{\sigma}^t f : f \in \mathcal{L}(\mathcal{X}^n), \boldsymbol{\sigma} \in \mathcal{P}_{\mathcal{X}}\}$$

Category permutation invariance Suppose that, in addition to is a part of his set of indifferent gambles. Therefore, the smallest

$$I := \operatorname{span}\{I_{\mathscr{P}_n} \cup I^{\operatorname{cat}}\} = I_{\mathscr{P}_n} + I^{\operatorname{cat}}.$$

Proposition. A coherent choice function C is compatible with I if and only if C is compatible with both $I_{\mathscr{P}_n}$ and I^{cat} .

This defines a notion of partition exchangeability for choice functions. Instead of a representation in terms of count vectors, we now obtain a representation in terms of count vectors of count vectors.

Cylindrical extension In case of infinitely many exchangeable X_k , the global possibility space is $\mathscr{X}^{\mathbb{N}}$. We identify any gamble f on \mathcal{X}^n , with its cylindrical extension

$$f^*(x_1,\ldots,x_n,\ldots) := f(x_1,\ldots,x_n)$$

for all $(x_1, \ldots, x_n, \ldots)$ in $\mathscr{X}^{\mathbb{N}}$. Using this convention, we can identify $\mathcal{L}(\mathcal{X}^n)$ with a subset of $\mathcal{L}(\mathcal{X}^{\mathbb{N}})$.

Gambles of finite structure We will call any gamble that depends only on a finite number of variables a gamble of finite structure. We collect all such gambles in

$$\overline{\mathcal{L}}(\mathscr{X}^{\mathbb{N}}) := \{ f \in \mathcal{L}(\mathscr{X}^{\mathbb{N}}) : (\exists n \in \mathbb{N}) f \in \mathcal{L}(\mathscr{X}^n) \}$$

$$= \bigcup_{n \in \mathbb{N}} \mathcal{L}(\mathscr{X}^n).$$

Set of indifferent gambles The subject assesses the sequence of variables X_1, \ldots, X_n, \ldots to be exchangeable: he is indifferent between any gamble f in $\overline{\mathscr{L}}(\mathscr{X}^{\mathbb{N}})$ and its permuted variant $\pi^t f$, for any π in \mathscr{P}_n , where n now is the (finite) number of variables that f depends upon:

$$I_{\mathscr{P}} := \{ f \in \overline{\mathscr{L}}(\mathscr{X}^{\mathbb{N}}) : (\exists n \in \mathbb{N}) f \in I_{\mathscr{P}_n} \} = \bigcup_{\mathbb{N}} I_{\mathscr{P}_n}$$

is the subject's coherent set of indifferent gambles. Countable exchangeability A choice function C on $\overline{\mathscr{L}}(\mathscr{X}^{\mathbb{N}})$ is called (countably) exchangeable if C is compatible with $I_{\mathscr{P}}$. C is exchangeable if and only if for every n in \mathbb{N} , its \mathscr{X}^n -marginal C_n is exchangeable. C_n is given by $C_n(A) := C(A)$ for all A in $\mathcal{Q}(\mathcal{L}(\mathcal{X}^n))$.

We have an embedding: for every n in \mathbb{N} : $\mathscr{V}^n(\Sigma_\mathscr{X})$ is a linear subspace of $\mathscr{V}(\Sigma_\mathscr{X})$.

Theorem 4 (Countable Representation). A choice function C on $\overline{\mathscr{L}}(\mathscr{X}^{\mathbb{N}})$ is exchangeable if and only if there is a unique representing choice function \tilde{C} on $\mathscr{V}(\Sigma_{\mathscr{X}})$ such that, for every n in \mathbb{N} , the \mathscr{X}^n -marginal C_n of C is determined by

$$C_n(A) = \{ f \in A : \mathbf{M}_n(f) \in \tilde{C}(\mathbf{M}_n(A)) \}$$

for all A in $\mathcal{Q}(\mathcal{L}(\mathcal{X}^n))$. This \tilde{C} is then given by $\tilde{C}(A) :=$ $\bigcup_{n\in\mathbb{N}} \tilde{C}_n(A\cap \mathscr{V}^n(\Sigma_{\mathscr{X}}))$ for all A in $\mathscr{Q}(\mathscr{V}(\Sigma_{\mathscr{X}}))$, with $\tilde{C}_n(\mathrm{M}_n(A)) \coloneqq \mathrm{M}_n(C_n(A))$ for every A in $\mathscr{Q}(\mathscr{L}(\mathscr{X}^n))$, and where we let $\tilde{C}_n(\emptyset) := \emptyset$ for notational convenience. Finally, C is coherent if and only if \tilde{C} is.