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Inference Directly-Observed Data Social Learning Simulations

Inference about a Binary State

Proposition pk : A statement with truth value T (pk ) ∈ {0,1}

Non-causal examples:
The earth is warming.
The economy is in a recession.

Causal examples:
Neighborhoods affect employment.
Extending unemployment benefits increases unemployment.
Increasing the minimum wage increases unemployment.

Directly-Observed Data + Model =⇒ Point-Valued Signal

σk∗
it = ϕk

i (W
∗
it ) = Pr [T (pk ) = 1|W ∗

it ] ∈ [0,1]

Form beliefs λk
it = Pr[T (pk ) = 1] from iid signals {σk∗

it }Tt=1

Weak Law of Large Numbers:

λk∗
it+1 =

1
t

t∑
n=1

σk∗
in

= (1− δt)λ
k∗
it + δtσ

k∗
it where δt = 1/t

For any ε > 0 lim
t→∞

Pr
(
|λk∗

it − E [σk∗
i ]| > ε

)
= 0
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Partial Identification
Ex: Wit is state GDP along with random changes to state spending

p1 = “Increasing state spending stimulates the state economy.”

p2 = “Increasing federal spending stimulates the national economy.”

Data characterized by quality θk
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Point-Valued Signal σk
it under least credible assumptions
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it , σ
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Decision Making under Ambiguity

Decision Rules

1) Choose one belief from the set of possible beliefs
2) Then maximize expected utility

Choosing a Single Belief

1A) Use a rule based on utility
i) Assume nature chooses state to minimize DM’s utility

Gilboa and Schmeidler (1989)
ii) Min the max regret from not knowing true state

Manski (2011)
1B) Infer missing data using info from social network

This Paper
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socially-observed

σk
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Replicating Direct Observation

The Agent’s Problem: Construct σ̂k
it = σk∗

it

σ̂k
it = θk

it︸︷︷︸
share of signal

directly-observed

σk
it + (1− θk

it )︸ ︷︷ ︸
share of signal

socially-observed

σk
Jt

⇒ Given Wit , {σk
jt }

K ,J
1,1 , {λk

jt}
K ,J
1,1 choose σk

Jt so that σ̂k
it = σk∗

it

Problem of Inference: Agent does not observe Wjt or ϕk
j
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Linear Opinion Pooling =⇒ DeGroot Updating

Linear Opinion Pooling

σ̂k
it = θk

i σ
k
it + (1− θk

i )σk
Jt

σk
Jt =

∑
j∈J k

wk
jt σ

k
jt with wk

jt ≥ 0 ∀ j ∈ J k ,
∑
j∈J k

wk
jt = 1

DeGroot Updating if:

1 Entire network directly observes data once at t = 1
2 Each agent sets λk

i1 = σk
i1

3 Signals = beliefs for j ≥ 2 (σk
it = λk

it and σk
jt = λk

jt )

Solves the agent’s problem if:

E[σk∗
it ] = E[σk

jt ] ∀j ∈ J k

What if sender j ’s signals are “biased”?
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Linear Opinion Pooling with Interpreted Signals

Linear Opinion Pooling

σ̂k
it = θk

i σ
k
it + (1− θk

i )σk
Jt

σk
Jt =

∑
j∈J k

wk
jt sk

jt with wk
jt ≥ 0 ∀ j ∈ J k ,

∑
j∈J k

wk
jt = 1

sk
jt= f k (Iit ,IJt)

Solves the agent’s problem if:

She has f k ∈ F such that E[σk∗
it ] = E[sk

jt ] ∀ j ∈ J k

The Fundamental Problem of Inference
σk∗

it is never observed

Finding f k ∈ F is an Ill-Posed Problem
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One “Reasonable” Heuristic

F (σk∗
it − σk

jt ) Is Driven by:

I (Random Sampling Error): Γ∗i = Γj

II (Biased Sampling Process): Γ∗i 6= Γj

III (Different Models): ϕk
i 6= ϕk

j

IV (Social Influence): j ’s model of social learning/network/etc.

V (Strategic Reporting)

If (I)-(III) drive F (σk∗
it − σk

jt ) ⇒ E
[
λk∗

it − λk
jt
]

= E
[
σk∗

it − σk
jt
]
⇒

sk
jt = σk

jt +
(
λk∗

it − λk
jt

)
(H1)

solves the agent’s problem
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Assessing Heuristic Credibility

Linear Opinion Pooling

σ̂k
it = θk

i σ
k
it + (1− θk

i )σk
Jt

σk
Jt =

∑
j∈J k

wk
jt sk

jt with wk
jt ≥ 0 ∀ j ∈ J k ,

∑
j∈J k

wk
jt = 1

sk
jt= f k (Iit ,IJt) = σk

jt +
(
λk

it − λk
jt
)

(Ĥ1)

Relative Entropy of λk
it − λk

jt over Propositions

Use to assign credibility weights wk
jt to signals interpreted using Ĥ1

Idea: Give more weight to senders that are better understood
Sethi and Yildiz (2016)
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Experiment

Network: J+1=300 learning about K = 30 propositions

Data: Quality θk
it = 0.1 ∀ k , i, t with signals: σk

it = 0.5 ∀ k , i, t

Inference via Ĥ1: σ̂k
it = θk

itσ
k
it + (1− θk

it )sk
Jt where sk

jt = σk
jt +

(
λk

it − λ
k
jt

)
and

sk
Jt =

Jk∑
j=1

wk
jt sk

jt where wk
jt =

∆ijt∑Jk

j=1 ∆ijt

and

Qijt ≡ fk (λk
it − λ

k
jt )

∆ijt ≡ ρ(DKL(Qijt : U)) =
[
γ1DKL(Qijt : U)

]γ2 where (γ1, γ2) = (100, 8)

Initial Beliefs:

λ
k
i1 ∼

{
N (0.8, 0.1) if i ∈ C1 ∀k = 1, . . . ,K card(C1) = 100;

N (0.2, 0.01) if i ∈ C2 ∀k = 1, . . . ,K card(C2) = 200.
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Inference Directly-Observed Data Social Learning Simulations

Conclusion

Well-motivated Rule of Thumb

Optimizing Agent
Tension between direct and social observation
Imperfect communication =⇒ Inference problem

Solution to replicate direct observation
Inductive assumptions are “scientific”

Desirable Properties

Tends to reach consensus (w/ DeGroot as a special case)
Can generate non-degen dist of beliefs in steady state

Even when all have same model, directly-observe same data
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