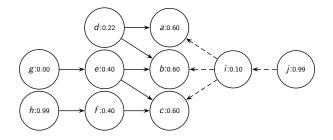
Evaluation of arguments in weighted bipolar graphs

Leila Amgoud

Jonathan Ben-Naim

CNRS, IRIT

July 12, 2017


Given a **problem** to solve (making decision, reasoning with defeasible information, classifying an object, ...)

- Constructing arguments
- Identifying their basic strengths + their interactions
- Evaluating their **overall strengths** ⇒ Semantics
- Concluding

Weighted bipolar argumentation graphs

• A weighted bipolar argumentation graph is a tuple $\mathbf{A} = \langle \mathcal{A}, w, \mathcal{R}, \mathcal{S} \rangle$

- A: a finite set of arguments
- w: $\mathcal{A} \rightarrow [0,1]$ basic strengths of arguments
- $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$: an attack relation
- $S \subseteq A \times A$: a support relation

Weighted bipolar argumentation graphs

• A weighted bipolar argumentation graph is a tuple $\mathbf{A} = \langle \mathcal{A}, w, \mathcal{R}, \mathcal{S} \rangle$

- A: a finite set of arguments
- $w: \mathcal{A} \rightarrow [0, 1]$ basic strengths of arguments
- $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$: an attack relation
- $S \subseteq A \times A$: a support relation

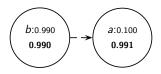
• A semantics is a function **S** assigning to each argument in a graph $\mathbf{A} = \langle \mathcal{A}, w, \mathcal{R}, \mathcal{S} \rangle$ a value in [0, 1]

• Notations: Let $\mathbf{A} = \langle \mathcal{A}, w, \mathcal{R}, \mathcal{S} \rangle$ be a graph and $a \in \mathcal{A}$.

- Deg(a) the overall strength of a in A according to semantics S
- Att(a) $\{b \in \mathcal{A} \mid b\mathcal{R}a\}$ (attackers of a)
- $Sup(a) \quad \{b \in \mathcal{A} \mid bSa\}$ (supporters of a)

Collective vs. individual evaluation

Extension semantics	Gradual semantics	
Cayrol and Lagasquie-Schiex, 2005	QuAD (Baroni et al. 2015)	
Oren and Norman, 2008	DF-QuAD (Rago et al. 2016)	
Boella et al., 2010		
Nouioua and Risch, 2010-2011		
Brewka and Woltran, 2010		
Polberg and Oren, 2014		


Existing semantics (Cont.)

Extension semantics

- × Arguments have the same intrinsic strength
- $\times~$ When $\mathcal{R}=\emptyset,$ supporters are ignored
- ✓ Graphs may have **any** structure

Gradual semantics

- $\checkmark\,$ Arguments may have different intrinsic strengths
- $\checkmark\,$ When $\mathcal{R}=\emptyset,$ supporters are taken into account
- × Graphs are assumed to be acyclic
- × Big jump problem

Extension semantics

- × Arguments have the **same** intrinsic strength
- imes When $\mathcal{R} = \emptyset$, supporters are ignored
- ✓ Graphs may have **any** structure

Gradual semantics

- ✓ Arguments may have different intrinsic strengths
- $\checkmark\,$ When $\mathcal{R}=\emptyset,$ supporters are taken into account
- × Graphs are assumed to be acyclic
- × Big jump problem

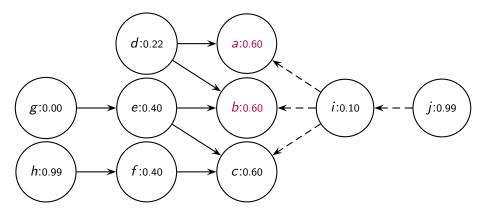
Common drawbacks

- × The principles behind the semantics are not investigated
- $\times\,$ The semantics (of the two families) are not compared

- Axiomatics foundations of semantics for weighted bipolar graphs
- Formal analysis of existing semantics
- New semantics satisfying the axioms + avoiding the big jump problem

Let
$$\mathbf{A} = \langle \mathcal{A}, w, \mathcal{R}, \mathcal{S} \rangle$$
, $a \in \mathcal{A}$.

- Anonymity: Deg(a) is independent from a's identity
- Independence: Deg(a) is independent from any argument b not connected to a
- Bi-variate directionality: Deg(a) doesn't depend on a's outgoing arrows
- Bi-variate equivalence: Deg(a) depends only on its basic strength and the overall strengths of its attackers and supporters


Axiomatic foundations of semantics (Cont.)

- Stability: If $Att(a) = Supp(a) = \emptyset$, then Deg(a) = w(a)
- Neutrality: worthless attackers/supporters have no effect
- Bi-variate monotony: the more an argument is attacked, the weaker it is. The more an argument is supported, the stronger it is.
- Bi-variate reinforcement: an argument becomes stronger if the quality of its attackers is reduced and the quality of its supporters is increased

10 / 19

Example

Stability ⇒ Deg(g) = 0
Neutrality + Stability ⇒ Deg(e) = 0.4
Strict Monotony ⇒ Deg(a) > Deg(b)

Assumption: Attack \approx Support

Franklin

A semantics **S** satisfies franklin iff, for any graph $\mathbf{A} = \langle \mathcal{A}, w, \mathcal{R}, \mathcal{S} \rangle$, for all $a, b, x, y \in \mathcal{A}$, if $\mathbf{w}(b) = w(a)$, $\mathbf{Deg}(x) = \mathbf{Deg}(y)$ $\mathbf{Att}(a) = \mathbf{Att}(b) \cup \{x\}$, $\mathbf{Sup}(a) = \mathbf{Sup}(b) \cup \{y\}$, then $\mathbf{Deg}(a) = \mathbf{Deg}(b)$.

Weakening

A semantics S satisfies weakening iff, for any graph $A = \langle A, w, \mathcal{R}, S \rangle$, for all $a \in A$, if

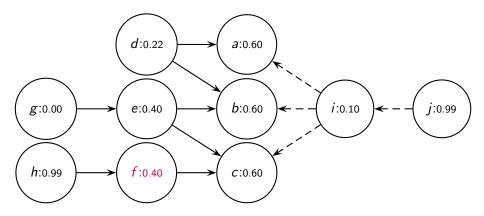
- w(a) > 0 and
- there exists an injective function f from Sup(a) to Att(a) s.t.
 - $\forall x \in \operatorname{Sup}(a)$, $\operatorname{Deg}(x) \leq \operatorname{Deg}(f(x))$; and
 - $sAtt(a) \setminus \{f(x) \mid x \in Sup(a)\} \neq \emptyset$ or $\exists x \in Sup(a) \ s.t$ Deg(x) < Deg(f(x)),

then Deg(a) < w(a).

Strengthening

A semantics **S** satisfies strengthening iff, for any graph $\mathbf{A} = \langle \mathcal{A}, w, \mathcal{R}, \mathcal{S} \rangle$, for all $a \in \mathcal{A}$, if:

- w(a) < 1 and
- there exists an injective function f from Att(a) to Sup(a) s.t.
 - $\forall x \in \texttt{Att}(a), \, \texttt{Deg}(x) \leq \texttt{Deg}(f(x)); \, and$
 - $sSup_{A}(a) \setminus \{f(x) \mid x \in Att(a)\} \neq \emptyset \text{ or } \exists x \in Att(a) \text{ s.t.}$ Deg(x) < Deg(f(x)),


then Deg(a) > w(a).

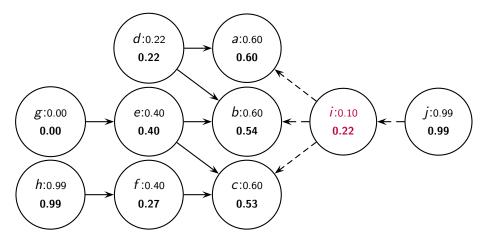
Axiomatic foundations of semantics (Cont.)

Resilience

A semantics **S** satisfies resilience iff, for any graph $\mathbf{A} = \langle \mathcal{A}, w, \mathcal{R}, \mathcal{S} \rangle$, for all $a \in \mathcal{A}$, if 0 < w(a) < 1, then 0 < Deg(a) < 1.

Euler-based semantics

For any acyclic non-maximal graph $\mathbf{A} = \langle \mathcal{A}, w, \mathcal{R}, \mathcal{S} \rangle$ and $a \in \mathcal{A}$,


$$extsf{Deg}_{f A}^{ extsf{Ebs}}(a) = 1 - rac{1 - w(a)^2}{1 + w(a) \mathrm{e}^{f E}}$$

where

$$E = \sum_{x \mathcal{S}a} \text{Deg}_{\mathbf{A}}^{\text{Ebs}}(x) - \sum_{x \mathcal{R}a} \text{Deg}_{\mathbf{A}}^{\text{Ebs}}(x).$$

Example (Cont.)

Analysis and comparison of semantics

Axioms - Semantics	Euler-based	QuAD	DF-QuAD	Stable
Anonymity	•	٠	•	•
Bi-variate Independence	•	٠	•	0
Bi-variate Directionality	•	٠	•	0
Bi-variate Equivalence	•	٠	•	0
Stability	•	٠	•	0
Neutrality	•	٠	•	•
Monotony	•	٠	•	0
Strict Monotony	•	0	0	0
Reinforcement	•	٠	•	0
Strict Reinforcement	•	0	0	0
Resilience	•	0	0	0
Franklin	•	0	•	0
Weakening	•	0	0	0
Strengthening	•	0	0	0

The symbol \bullet (resp. \circ) means the axiom is satisfied (resp. violated).

- Characterize the family of semantics satisfying the axioms
- Apply the semantics to multiple criteria decision making problems
- Consider new axioms where attacks take precedence over supports
- Define new semantics