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Theory of desirable gambles

We consider:

space of possibilities Ω (finite or infinite)

gamble g : Ω → R (bounded)

some notation L, L+, L−

Ω = {HH,HT ,TH,TT}
Ω = R2 g(x1, x2)

Let K ⊂ L the subset of the gambles that Alice finds desirable.
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Theory of desirable gambles

How can we characterise the rationality of the assessments in K?

Definition

We say that K is a coherent set of (almost) desirable gambles (ADG) when it
satisfies the following rationality criteria:

A.1 If inf g > 0 then g ∈ K (Accepting Sure Gains);

A.2 If g ∈ K then sup g ≥ 0 (Avoiding Sure Loss);

A.3 If g ∈ K then λg ∈ K for every λ > 0 (Positive Scaling);

A.4 If g , h ∈ K then g + h ∈ K (Additivity);

A.5 If g + δ ∈ K for every δ > 0 then g ∈ K (Closure).

Note that A.1 and A.5 imply that L+ ⊆ K (including the zero gamble).

Duality: P =

{
µ ∈M : µ ∈M+,

∫
dµ = 1,

∫
gdµ ≥ 0, ∀g ∈ K

}
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Content of the talk

Ω = R2 g(x1, x2) = 4x4
1 + 4x3

1 x2 − 3x2
1 x2

2 + 5x4
2 ?

YOU ARE IRRATIONAL!

Ω = R2 g(x1, x2) = (2x2
1 − 2x2

2 + x1x2)2 + (x2
2 + 2x1x2)2

Evaluating the nonnegativity of a gamble in infinite spaces
is a difficult task.

Instead of requiring the subject to accept all nonnegative
gambles, we only require her to accept gambles for which
she can efficiently determine the nonnegativity.

We call this new criterion bounded rationality.
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Towards a practical notion of desirability

Assume that the set of gambles that Alice finds to be desirable is finitely
generated:

G = {g1, . . . , g|G |}
and so

K = posi(G ∪ L+)

where the posi of a set A ⊂ L is defined as

posi(A) :=


|G |∑
j=1

λjgj : gj ∈ A, λj ≥ 0



By using this definition, it is clear that whenever K is finitely generated, it

includes all nonnegative gambles and satisfies A.3, A.4 and A.5.
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Towards a practical notion of desirability

Once Alice has defined G and so K via posi, ADG assumes that:

she is able to check that K avoids sure loss (A.2 is also satisfied);

she is able to determine the implication of desirability.

It is easy to show that all above operations in ADG imply the assessment of the
nonnegativity of a gamble.

Proposition (Natural Extension)

Given a finite set G ⊂ L of desirable gambles, the set posi(G ∪ L+) includes
the gamble f if and only if there exist λj ≥ 0 for j = 1, . . . , |G | such that

f −
|G |∑
j=1

λjgj ≥ 0.

Lower Expectation (Prevision) of h ⇒ f = h − λ0

Upper Expectation (Prevision) of h ⇒ f = λ0 − h
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Complexity

In case Ω = Rn, f : Rn → R

F := f −
|G |∑
j=1

λjgj

?

≥ 0

In order to study the problem from a computational viewpoint, and avoid
undecidability results, it is clear that we must impose further restrictions
on the class of functions F

At the same time we would like to keep the problem general enough, in
order not to lose expressiveness of the model.

A good compromise can be achieved by considering the case of multivariate
polynomials.

The decidability of F ≥ 0 for multivariate polynomials can be proven by means

of the Tarski–Seidenberg quantifier elimination theorem.
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Multivariate Polynomial gambles

Let d ∈ N. By R2d [x1, . . . , xn] we denote the set of all polynomials up to degree
2d in the indeterminate variables x1, . . . , xn ∈ R with real-valued coefficients.

Any polynomial in R2d [x1, . . . , xn] can be written as

p(x1, . . . , xn) = b> v2d(x1, . . . , xn)

with

v2d(x1, . . . , xn) = [1, x1, . . . , xn, x
2
1 , x1x2, . . . , xn−1xn, x

2
n , . . . , x

2d
1 , . . . , x2d

n ]>

b ∈ Rsn(2d) with sn(j) =
(
n+j
j

)
for j = 0, 1, 2, . . . .

Example

g(x1, x2) = 1 + x1 + x2
1 − 2x2

2 =
[
1 1 0 1 0 −2

] 
1
x1

x2

x2
1

x1x2

x2
2


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Gambles space

We fix d and we only consider gambles in

L2d = R2d [x1, . . . , xn], L+
2d = R+

2d [x1, . . . , xn],

The problem of testing global nonnegativity of a polynomial function is in
general NP-hard.

If Alice wants to avoid the complexity associated with this problem, an
alternative option is to consider a subset of polynomials for which a
nonnegativity test is not NP-hard.

SOS
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SOS polynomials

The subset of polynomials

Σ2d [x1, . . . , xn] =
{

p(x1, . . . , xn) ∈ R2d [x1, . . . , xn]
∣∣∣ p(x1, . . . , xn) =

v>d (x1, . . . , xn)Qvd(x1, . . . , xn) with Q ∈ Rsn(d)×sn(d)
s , Q ≥ 0

}
where Rsn(d)×sn(d)

s is the space of sn(d)× sn(d) real-symmetric matrices.

Example

g(x1, x2) = 1 + x2
1 + x2

2 =
[
1 x1 x2

] 1 0 0
0 1 0
0 0 1

 1
x1

x2


SOS: Sum-Of-Squares Polynomials.

SOS polynomials are a subset of nonnegative polynomials:

Σ2d [x1, . . . , xn] ⊂ R+
2d [x1, . . . , xn]

For instance g(x1, x2) = x2
1 x2

2 (x2
1 + x2

2 − 1) + 1 is a nonnegative polynomial that
is not SOS.

21 / 46



SOS polynomials

The subset of polynomials

Σ2d [x1, . . . , xn] =
{

p(x1, . . . , xn) ∈ R2d [x1, . . . , xn]
∣∣∣ p(x1, . . . , xn) =

v>d (x1, . . . , xn)Qvd(x1, . . . , xn) with Q ∈ Rsn(d)×sn(d)
s , Q ≥ 0

}
where Rsn(d)×sn(d)

s is the space of sn(d)× sn(d) real-symmetric matrices.

Example

g(x1, x2) = 1 + x2
1 + x2

2 =
[
1 x1 x2

] 1 0 0
0 1 0
0 0 1

 1
x1

x2



SOS: Sum-Of-Squares Polynomials.

SOS polynomials are a subset of nonnegative polynomials:

Σ2d [x1, . . . , xn] ⊂ R+
2d [x1, . . . , xn]

For instance g(x1, x2) = x2
1 x2

2 (x2
1 + x2

2 − 1) + 1 is a nonnegative polynomial that
is not SOS.

22 / 46



SOS polynomials

The subset of polynomials

Σ2d [x1, . . . , xn] =
{

p(x1, . . . , xn) ∈ R2d [x1, . . . , xn]
∣∣∣ p(x1, . . . , xn) =

v>d (x1, . . . , xn)Qvd(x1, . . . , xn) with Q ∈ Rsn(d)×sn(d)
s , Q ≥ 0

}
where Rsn(d)×sn(d)

s is the space of sn(d)× sn(d) real-symmetric matrices.

Example

g(x1, x2) = 1 + x2
1 + x2

2 =
[
1 x1 x2

] 1 0 0
0 1 0
0 0 1

 1
x1

x2


SOS: Sum-Of-Squares Polynomials.

SOS polynomials are a subset of nonnegative polynomials:

Σ2d [x1, . . . , xn] ⊂ R+
2d [x1, . . . , xn]

For instance g(x1, x2) = x2
1 x2

2 (x2
1 + x2

2 − 1) + 1 is a nonnegative polynomial that
is not SOS.

23 / 46



SOS polynomials

The subset of polynomials

Σ2d [x1, . . . , xn] =
{

p(x1, . . . , xn) ∈ R2d [x1, . . . , xn]
∣∣∣ p(x1, . . . , xn) =

v>d (x1, . . . , xn)Qvd(x1, . . . , xn) with Q ∈ Rsn(d)×sn(d)
s , Q ≥ 0

}
where Rsn(d)×sn(d)

s is the space of sn(d)× sn(d) real-symmetric matrices.

Example

g(x1, x2) = 1 + x2
1 + x2

2 =
[
1 x1 x2

] 1 0 0
0 1 0
0 0 1

 1
x1

x2


SOS: Sum-Of-Squares Polynomials.

SOS polynomials are a subset of nonnegative polynomials:

Σ2d [x1, . . . , xn] ⊂ R+
2d [x1, . . . , xn]

For instance g(x1, x2) = x2
1 x2

2 (x2
1 + x2

2 − 1) + 1 is a nonnegative polynomial that
is not SOS.

24 / 46



Bounded rationality

Determining if a polynomial is SOS can be done in polynomial time (SDP).

Definition

We say that C ⊂ L2d is a bounded-rationality coherent set of almost desirable
gambles (BADG) when it satisfies:

bA.1 If g ∈ Σ2d then g ∈ C (bounded accepting sure gain);

A.2 If g ∈ C then sup g ≥ 0 (Avoiding Sure Loss);

A.3 If g ∈ C then λg ∈ C for every λ > 0 (Positive Scaling);

A.4 If g , h ∈ C then g + h ∈ C (Additivity);

A.5 If g + δ ∈ C for every δ > 0 then g ∈ C (Closure).

where Σ2d ⊂ L+
2d is the set of SOS of degree less than or equal to 2d .

Here, we restrict A.1 imposing bounded-rationality that implies that the set
must only include SOS polynomials up to degree 2d .

In BADG theory, we ask Alice only to accept SOS polynomials, i.e., gambles for

which she can efficiently determine the nonnegativity.
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Bounded rationality

Theorem (Bounded rationality Natural Extension)

Given a finite set G ⊂ L2d of desirable gambles, the set posi(G ∪ Σ2d) includes
the gamble f if and only if there exist λj ≥ 0 for j = 1, . . . , |G | such that

f −
|G |∑
j=1

λjgj ∈ Σ2d

Σ2d ⊆ L+
2d ⊂ L

+

A BADG C that satisfies A.2 but not A.1 can (in theory) be turned to an ADG

in L2d by considering its extension posi(C ∪ L+
2d)

in L by considering its extension posi(C ∪ L+)

This is important because it will allow us to use BADG as a computable

approximation of ADG.
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Duality for BADG

Polynomials on Rn are not bounded functions.

The rationality criteria A.1–A.5 do not explicitly need boundedness, but
boundedness is essential to show the duality between ADG and closed convex
set of probability charges.

Since we are dealing with a vector space, we can consider its dual space L•2d ,
defined as the set of all linear maps L : L2d → R (linear functionals).

The dual of C ⊂ L2d is defined as

C• = {L ∈ L•2d : L(g) ≥ 0, ∀g ∈ C} .
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Duality for BADG

Since L2d has a basis, i.e., the monomials, if we introduce the scalars

yα1α2...αn := L(xα1
1 xα2

2 , . . . , xαn
n ) ∈ R,

with αi ∈ N.

Preserving the scale: y0 = L(1) = 1 (the linear functionals preserve constants).

L(g) for any polynomial g as a function of the real variables yα1α2...αn .

This means that L•2d is isomorphic to Rsn(2d).

This explains the importance of bounding the degree d of the polynomials.
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Duality for BADG

We have then the following result1

Theorem

Let C be a BADG. Then its dual is

C• =
{

y ∈ Rsn(2d) : Mn,d(y) ≥ 0, L(g) ≥ 0, ∀g ∈ C
}

where L(g) is determined by y, Mn,d(y) := L(vd(x1, . . . , xn)vd(x1, . . . , xn)>).

Example

For instance, in the case n = 1 and d = 2, we have that

M1,2(y) = L(v2(x1)v2(x1)>) = L

 1 x1 x2
1

x1 x2
1 x3

1

x2
1 x3

1 x4
1

 =

 1 y1 y2

y1 y2 y3

y2 y3 y4



P =

{
µ ∈M : µ ∈M+,

∫
dµ = 1,

∫
gdµ ≥ 0, ∀g ∈ K

}

1Jean Bernard Lasserre. Moments, positive polynomials and their
applications. Vol. 1. World Scientific, 2009.

35 / 46



Duality for BADG

We have then the following result1

Theorem

Let C be a BADG. Then its dual is

C• =
{

y ∈ Rsn(2d) : Mn,d(y) ≥ 0, L(g) ≥ 0, ∀g ∈ C
}

where L(g) is determined by y, Mn,d(y) := L(vd(x1, . . . , xn)vd(x1, . . . , xn)>).

Example

For instance, in the case n = 1 and d = 2, we have that

M1,2(y) = L(v2(x1)v2(x1)>) = L

 1 x1 x2
1

x1 x2
1 x3

1

x2
1 x3

1 x4
1

 =

 1 y1 y2

y1 y2 y3

y2 y3 y4



P =

{
µ ∈M : µ ∈M+,

∫
dµ = 1,

∫
gdµ ≥ 0, ∀g ∈ K

}
1Jean Bernard Lasserre. Moments, positive polynomials and their

applications. Vol. 1. World Scientific, 2009.
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Duality for BADG

What is Mn,d(y) ≥ 0?

In the BADG case, if the following integral is well-defined, we can interpret

yα1α2...αn =

∫
xα1

1 xα2
2 , . . . , xαn

n dµ

as the expectation of xα1
1 xα2

2 , . . . , xαn
n w.r.t. a charge µ.

Note that, y0 = L(1) = 1 implies that
∫

1dµ = 1 under this interpretation.

Therefore, we can interpret Mn,d(y) as a truncated moment matrix

Example

M1,2(y) = L(v2(x1)v2(x1)>) = L

 1 x1 x2
1

x1 x2
1 x3

1

x2
1 x3

1 x4
1

 =

y0 y1 y2

y1 y2 y3

y2 y3 y4


The constraint Mn,d(y) ≥ 0 is not strong enough to guarantee non-negativity
of µ (it is only a necessary condition).

Negative probabilities are a manifestation of incoherence, that is they are a

manifestation of the assumption of bounded rationality.
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BADG as an approximating theory for ADG

We can use BADG as a computable approximating theory for ADG.

So let us consider the BADG set C = posi(G ∪ Σ2d) and the corresponding
ADG set K = posi(G ∪ L+) (same G).

Theorem

Assume that K avoids sure loss and let f ∈ L2d , then BADG is a conservative
approximation of ADG theory in the sense that P∗(f ) ≤ P(f ).

it can be shown that P∗(f )
d→∞−−−→ P(f ).2

when G is empty (Alice is in a state of full ignorance)

P[f ] = inf f

this explains why SOS polynomials are used in optimization, i.e., P∗[f ]
provides a lower bound for the minimum of f .

2Jean Bernard Lasserre. Moments, positive polynomials and their
applications. Vol. 1. World Scientific, 2009.
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Conclusions

We have defined a theory of bounded rationality BADG.

BADG provides an outer-approximation of ADG.

We can also define an updating rule (conditioning) for BADG

note that in Σ2d [x1, . . . , xn] there are not Indicator Functions.

Future work:

to further develop this theory (marginalisation,independence);

to also relax A.2

to find links with other areas.
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