
Modeling Markov Decision Processes with
Imprecise Probabilities Using

Probabilistic Logic Programming

Thiago P. Bueno Denis D. Mauá Leliane N. de Barros

Fabio G. Cozman

Universidade de São Paulo, Brazil

ISIPTA 2017



Goals

I To introduce a modeling language that can capture Markov
Decision Processes with Imprecise Probabilities (MDPIPs),

I by employing Probabilistic Logic Programming (PLP).

2 / 17



Markov Decision Processes

A Markov Decision Process (MDP) consists of:

I a set of states S;

I a set of actions A(s) for each state s;

I a transition model P(s ′|s, a) specifying the probability of next
state s ′ after executing action a in state s;

I a reward model R(s, a, s ′) specifying the reward (or cost) of
executing action a in state s and transitioning to state s ′;

I a set of decision stages D = 1, ...,H.

3 / 17



Optimal policy, optimal value function

I The solution of an MDP with infinite horizon (i.e., H →∞) is a
stationary, deterministic optimal policy π∗ : S → A(s) that
maximizes

∞∑
t=0

γtR(st , a, st+1).

I The optimal policy produces the optimal value function
V ∗ : S → R satisfying the Bellman equation

V ∗(s) = max
a∈A(s)

{∑
s′∈S

P(s ′|s, a)(R(s, a, s ′) + γ V ∗(s ′))

}
,

4 / 17



Markov Decision Processes with Imprecise Probabilities

I Suppose there is a set of probabilities modeling each state
transition.

I These sets are referred to as transition credal sets K(·|s, a).

I The Γ-maximin criterion selects a policy such that

V ∗(s) = max
a∈A(s)

{
min

P(·|s,a)∈K(·|s,a)

∑
s′∈S

P(s ′|s, a)(R(s, a, s ′)+γ V ∗(s ′))

}
.

5 / 17



MDPSTs

I A Markov Decision Process with Set-valued Transition
(MDPST) is a special MDPIP.

I After applying action a to state s, the
probability that the next state s ′ is in
the reachable set k ∈ F (s, a) is given
by m(k |s, a).

I Policy is obtained by simplified equation:

V ∗(s) = max
a∈A(s)

{ ∑
k∈F (s,a)

m(k |s, a) min
s′∈k

(R(s, a, s ′) + γ V ∗(s ′))

}
.

6 / 17



Languages

I There are languages to specify MDPs; several combine logical
expressions with probabilities.

I The PPDDL language can even encode MDPSTs.
I But not intuitive at all.

7 / 17



Probabilistic Logic Programming

I A probabilistic logic program is a pair Lp = 〈BK,PF〉 where:

I BK is a set of logical rules, and
I PF is a set of independent probabilistic facts.

I A logical rule is of the form

h1; ...; hl :− b1, ..., bm,not bm+1, ...,not bn.

I A probabilistic fact is denoted α :: f. where f is an atom annotated
with probability α ∈ [0, 1].

8 / 17



Probabilistic Logic Programming

I A probabilistic logic program is a pair Lp = 〈BK,PF〉 where:

I BK is a set of logical rules, and
I PF is a set of independent probabilistic facts.

I A logical rule is of the form

h1; ...; hl :− b1, ..., bm,not bm+1, ...,not bn.

I A probabilistic fact is denoted α :: f. where f is an atom annotated
with probability α ∈ [0, 1].

8 / 17



Example: Viral Marketing

0.2 :: buy from marketing(Person).

0.3 :: buy from trust(Person).

buys(Person) :− buy from marketing(Person).

buys(Person) :− buy from trust(Person),

trusts(Person,Person2), buys(Person2).

trusts(alice, eve). trusts(eve, bob).

I What is the probability of Alice buying the product?

P(buys(alice)) = ?

9 / 17



Example: Viral Marketing (continued)

...

0.15 :: invited party(Person).

buys(Husband) :− invited party(Husband),

married(Husband ,Wife), not buys(Wife).

buys(Wife) :− invited party(Wife),

married(Husband ,Wife), not buys(Husband).

married(alice, bob).

I How to compute the probability of P(buys(alice)) now?
In some situations, there is more than a (stable) model...

10 / 17



Credal Semantics

I Propositional probabilistic facts αi :: f1, α2 :: f2, etc.

I Each total choice of probabilistic facts has probability∏
fi∈θ

αi

∏
fi 6∈θ

(1− αi ) .

I But some total choices may produce more than one stable
model!

I Credal semantics of a program is the set of all joint distributions
that can be produced this way.

I Important: this set is the dominating set of an infinitely
monotone Choquet capacity (!).

11 / 17



A PLP-based Language to Specify MDPIPs

I We need to extend the ProbLog language to define:

I special-purpose predicates for state variables and actions;
I syntax and semantics for specifying the transition function; and
I the dependencies of reward function and its utility attributes.

I An MDP-ProbLog program consists of three parts:

(i) a program Lspace
mdp declaring state variables and actions;

(ii) a program Ltransition
mdp encoding a transition model; and

(iii) a program Lreward
mdp encoding the reward model

12 / 17



Viral Marketing (revisited)

marketed(ann,0)

marketed(bob,0)

market(ann,0)

market(bob,0)

marketed(ann,1)

marketed(bob,1)

buys(ann),1

buys(bob),1

trusts(ann,bob)

trusts(bob,ann)

Transition model

Transition model

Reward model

state fluent(marketed(P)) :− person(P).

state fluent(buys(P)) :− person(P).

action fluent(market(P)) :− person(P).

13 / 17



Viral Marketing (revisited)

marketed(ann,0)

marketed(bob,0)

market(ann,0)

market(bob,0)

marketed(ann,1)

marketed(bob,1)

buys(ann),1

buys(bob),1

trusts(ann,bob)

trusts(bob,ann)

Transition model

Transition model

Reward model

0.5 :: forget(Person).

marketed(Person, 1) :− market(Person).

marketed(Person, 1) :− not market(Person), marketed(Person, 0), forget(Person).

13 / 17



Viral Marketing (revisited)

marketed(ann,0)

marketed(bob,0)

market(ann,0)

market(bob,0)

marketed(ann,1)

marketed(bob,1)

buys(ann),1

buys(bob),1

trusts(ann,bob)

trusts(bob,ann)

Transition model

Transition model

Reward model

0.2 :: buy from marketing(Person). 0.3 :: buy from trust(Person).

buys(Person, 1) :− marketed(Person, 1), buy from marketing(Person).

buys(Person, 1) :− trusts(Person, Person2), buys(Person2, 1), buy from trust(Person).

utility(buys(Person, 1), 5). utility(market(Person), −1).
13 / 17



A result, and an extension

Theorem
An MDP-ProbLog program specifies an MDPST.

I Now suppose there is indeterminacy on probability values.

I For instance,

[0.1, 0.3] :: buy from marketing(Person).

14 / 17



Complexity of One-Step Inference

I If we have the state at time t, then what is the computational cost
of computing the upper probability of {Xt+1 = x}?

I More precisely: what is the cost of deciding whether P(Q|E) > γ?
(Note: reject if P(E) = 0...)

I As input, a program with a bound on predicate arity, and the
elements of the query.

15 / 17



Complexity of One-Step Inference

Theorem
Deciding one-step inference is an NPPP-complete problem.

Theorem
Deciding one-step inference when all probabilities are point-valued is

PPΣP
3 -complete problem.

16 / 17



Conclusion

I Main goal: to introduce a language that can specify MDPIPs and
MDPSTs by combining probabilities with logic programming.

I Besides the language, main contribution is complexity analysis for
one-step inference.

I In the paper, a discussion of dynamic programming algorithm to
build Γ-maximin policies.

I Thanks to CNPq and FAPESP for support.

17 / 17


	Markov Decision Processes with Imprecise Probabilities
	Specifying MDPIPs with a PLP-based Language

