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Goals

I To introduce a modeling language that can capture Markov
Decision Processes with Imprecise Probabilities (MDPIPs),

I by employing Probabilistic Logic Programming (PLP).

2 / 17



Markov Decision Processes

A Markov Decision Process (MDP) consists of:

I a set of states S;

I a set of actions A(s) for each state s;

I a transition model P(s ′|s, a) specifying the probability of next
state s ′ after executing action a in state s;

I a reward model R(s, a, s ′) specifying the reward (or cost) of
executing action a in state s and transitioning to state s ′;

I a set of decision stages D = 1, ...,H.
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Optimal policy, optimal value function

I The solution of an MDP with infinite horizon (i.e., H →∞) is a
stationary, deterministic optimal policy π∗ : S → A(s) that
maximizes

∞∑
t=0

γtR(st , a, st+1).

I The optimal policy produces the optimal value function
V ∗ : S → R satisfying the Bellman equation

V ∗(s) = max
a∈A(s)

{∑
s′∈S

P(s ′|s, a)(R(s, a, s ′) + γ V ∗(s ′))

}
,
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Markov Decision Processes with Imprecise Probabilities

I Suppose there is a set of probabilities modeling each state
transition.

I These sets are referred to as transition credal sets K(·|s, a).

I The Γ-maximin criterion selects a policy such that

V ∗(s) = max
a∈A(s)

{
min

P(·|s,a)∈K(·|s,a)

∑
s′∈S

P(s ′|s, a)(R(s, a, s ′)+γ V ∗(s ′))

}
.

5 / 17



MDPSTs

I A Markov Decision Process with Set-valued Transition
(MDPST) is a special MDPIP.

I After applying action a to state s, the
probability that the next state s ′ is in
the reachable set k ∈ F (s, a) is given
by m(k |s, a).

I Policy is obtained by simplified equation:

V ∗(s) = max
a∈A(s)

{ ∑
k∈F (s,a)

m(k |s, a) min
s′∈k

(R(s, a, s ′) + γ V ∗(s ′))

}
.
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Languages

I There are languages to specify MDPs; several combine logical
expressions with probabilities.

I The PPDDL language can even encode MDPSTs.
I But not intuitive at all.
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Probabilistic Logic Programming

I A probabilistic logic program is a pair Lp = 〈BK,PF〉 where:

I BK is a set of logical rules, and
I PF is a set of independent probabilistic facts.

I A logical rule is of the form

h1; ...; hl :− b1, ..., bm,not bm+1, ...,not bn.

I A probabilistic fact is denoted α :: f. where f is an atom annotated
with probability α ∈ [0, 1].
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Example: Viral Marketing

0.2 :: buy from marketing(Person).

0.3 :: buy from trust(Person).

buys(Person) :− buy from marketing(Person).

buys(Person) :− buy from trust(Person),

trusts(Person,Person2), buys(Person2).

trusts(alice, eve). trusts(eve, bob).

I What is the probability of Alice buying the product?

P(buys(alice)) = ?
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Example: Viral Marketing (continued)

...

0.15 :: invited party(Person).

buys(Husband) :− invited party(Husband),

married(Husband ,Wife), not buys(Wife).

buys(Wife) :− invited party(Wife),

married(Husband ,Wife), not buys(Husband).

married(alice, bob).

I How to compute the probability of P(buys(alice)) now?
In some situations, there is more than a (stable) model...
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Credal Semantics

I Propositional probabilistic facts αi :: f1, α2 :: f2, etc.

I Each total choice of probabilistic facts has probability∏
fi∈θ

αi

∏
fi 6∈θ

(1− αi ) .

I But some total choices may produce more than one stable
model!

I Credal semantics of a program is the set of all joint distributions
that can be produced this way.

I Important: this set is the dominating set of an infinitely
monotone Choquet capacity (!).

11 / 17



A PLP-based Language to Specify MDPIPs

I We need to extend the ProbLog language to define:

I special-purpose predicates for state variables and actions;
I syntax and semantics for specifying the transition function; and
I the dependencies of reward function and its utility attributes.

I An MDP-ProbLog program consists of three parts:

(i) a program Lspace
mdp declaring state variables and actions;

(ii) a program Ltransition
mdp encoding a transition model; and

(iii) a program Lreward
mdp encoding the reward model
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Viral Marketing (revisited)

marketed(ann,0)

marketed(bob,0)

market(ann,0)

market(bob,0)

marketed(ann,1)

marketed(bob,1)

buys(ann),1

buys(bob),1

trusts(ann,bob)

trusts(bob,ann)

Transition model

Transition model

Reward model

state fluent(marketed(P)) :− person(P).

state fluent(buys(P)) :− person(P).

action fluent(market(P)) :− person(P).
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Viral Marketing (revisited)

marketed(ann,0)

marketed(bob,0)

market(ann,0)

market(bob,0)

marketed(ann,1)

marketed(bob,1)

buys(ann),1

buys(bob),1

trusts(ann,bob)

trusts(bob,ann)

Transition model

Transition model

Reward model

0.5 :: forget(Person).

marketed(Person, 1) :− market(Person).

marketed(Person, 1) :− not market(Person), marketed(Person, 0), forget(Person).
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Viral Marketing (revisited)

marketed(ann,0)

marketed(bob,0)

market(ann,0)

market(bob,0)

marketed(ann,1)

marketed(bob,1)

buys(ann),1

buys(bob),1

trusts(ann,bob)

trusts(bob,ann)

Transition model

Transition model

Reward model

0.2 :: buy from marketing(Person). 0.3 :: buy from trust(Person).

buys(Person, 1) :− marketed(Person, 1), buy from marketing(Person).

buys(Person, 1) :− trusts(Person, Person2), buys(Person2, 1), buy from trust(Person).

utility(buys(Person, 1), 5). utility(market(Person), −1).
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A result, and an extension

Theorem
An MDP-ProbLog program specifies an MDPST.

I Now suppose there is indeterminacy on probability values.

I For instance,

[0.1, 0.3] :: buy from marketing(Person).
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Complexity of One-Step Inference

I If we have the state at time t, then what is the computational cost
of computing the upper probability of {Xt+1 = x}?

I More precisely: what is the cost of deciding whether P(Q|E) > γ?
(Note: reject if P(E) = 0...)

I As input, a program with a bound on predicate arity, and the
elements of the query.

15 / 17



Complexity of One-Step Inference

Theorem
Deciding one-step inference is an NPPP-complete problem.

Theorem
Deciding one-step inference when all probabilities are point-valued is

PPΣP
3 -complete problem.
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Conclusion

I Main goal: to introduce a language that can specify MDPIPs and
MDPSTs by combining probabilities with logic programming.

I Besides the language, main contribution is complexity analysis for
one-step inference.

I In the paper, a discussion of dynamic programming algorithm to
build Γ-maximin policies.

I Thanks to CNPq and FAPESP for support.
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