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Goals

» To introduce a modeling language that can capture Markov
Decision Processes with Imprecise Probabilities (MDPIPs),

» by employing Probabilistic Logic Programming (PLP).
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Markov Decision Processes

A Markov Decision Process (MDP) consists of:

>

>

>

v

v

a set of states S;
a set of actions A(s) for each state s;

a transition model P(s’|s, a) specifying the probability of next
state s’ after executing action a in state s;

a reward model R(s, a, s’) specifying the reward (or cost) of
executing action a in state s and transitioning to state s’;

a set of decision stages D =1,...,H.
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Optimal policy, optimal value function

> The solution of an MDP with infinite horizon (i.e., H — o0) is a
stationary, deterministic optimal policy 7* : § — A(s) that
maximizes

Z’YtR(Sha’SH-l)'
t=0

» The optimal policy produces the optimal value function
V* : S — R satisfying the Bellman equation

V*(s) = max { Z P(s'|s,a)(R(s,a,s") +~ V*(s')) },

acA(s) Jrpy



Markov Decision Processes with Imprecise Probabilities

» Suppose there is a set of probabilities modeling each state
transition.

» These sets are referred to as transition credal sets (s, a).

» The -maximin criterion selects a policy such that

V*(s) = Z P(s'ls, a)(R(s,a,s')+vy V*(s)) }

max { min
aEA(S) ]P’('|S,3)EIC("S,3) s'eS



MDPSTs

» A Markov Decision Process with Set-valued Transition
(MDPST) is a special MDPIP.

&)@,
» After applying action a to state s, the

_/l /
probability that the next state s’ is in @r_\\’.<
the reachable set k € F(s,a) is given 13w

by m(k|s, a). @ .

F(s,al) = {{s1, s2},{s3, s4}}

» Policy is obtained by simplified equation:

V*(s) = Jax, { Z m(k|s, a) 21»:12 (R(s,;a,s") +~ V*(s)) } :

keF(s,a)

6
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Languages

» There are languages to specify MDPs; several combine logical
expressions with probabilities.

» The PPDDL language can even encode MDPSTs.
» But not intuitive at all.
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Probabilistic Logic Programming

> A probabilistic logic program is a pair L, = (BK, PF) where:

» BK is a set of logical rules, and
» PF is a set of independent probabilistic facts.
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Probabilistic Logic Programming

> A probabilistic logic program is a pair L, = (BK, PF) where:

» BK is a set of logical rules, and
» PF is a set of independent probabilistic facts.

> A logical rule is of the form

hy;...;h = by, ..., bn, not by, ..., not by,.

» A probabilistic fact is denoted « :: f. where f is an atom annotated
with probability « € [0, 1].
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Example: Viral Marketing

0.2 :: buy_from_marketing(Person).
0.3 :: buy_from_trust(Person).

buys(Person) :— buy_from_marketing(Person).
buys(Person) :— buy_from_trust(Person),

trusts(Person, Person2), buys(Person?2).

trusts(alice, eve). trusts(eve, bob).

» What is the probability of Alice buying the product?

P(buys(alice)) = ?



Example: Viral Marketing (continued)

0.15 :: invited_party(Person).

buys(Husband) :— invited_party( Husband),
married( Husband, Wife), not buys(Wife).
buys( Wife) :— invited_party( Wife),

married(Husband, Wife), not buys(Husband).

married(alice, bob).

> How to compute the probability of P(buys(alice)) now?
In some situations, there is more than a (stable) model...
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Credal Semantics

» Propositional probabilistic facts «; :: fi, ap i b, etc.
> Each total choice of probabilistic facts has probability

Ha; H(l—a,-) .

fico fiZ0

» But some total choices may produce more than one stable
model!

> Credal semantics of a program is the set of all joint distributions
that can be produced this way.

» Important: this set is the dominating set of an infinitely
monotone Choquet capacity (!).
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A PLP-based Language to Specify MDPIPs

> We need to extend the ProbLog language to define:

» special-purpose predicates for state variables and actions;
» syntax and semantics for specifying the transition function; and
» the dependencies of reward function and its utility attributes.

» An MDP-ProbLog program consists of three parts:
(i) a program LSFACE declaring state variables and actions;

(i) a program LIRANSITION encoding a transition model; and

(iii) a program L}ZWARD encoding the reward model
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Viral Marketing (revisited)

marketed(ann,0)

market (ann, 0)

marketed(ann,1)

trusts(ann,bob) buys(ann) ,1

trusts(bob,ann)

buys (bob) ,1

market (bob,0)

marketed (bob,0)

state_fluent(marketed(P)) :— person(P).
state_fluent(buys(P)) :— person(P).
action_fluent(market(P)) :— person(P).

marketed (bob,1)
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Viral Marketing (revisited)

Transition model

marketed(ann,0)

market (ann,0)

marketed(ann,1)

trusts(ann,bob) buys(ann) ,1
trusts(bob,ann) buys (bob) ,1

market (bob,0)

marketed (bob,0)

Transition model

marketed (bob,1)

0.5 :: forget(Person).
marketed(Person, 1) :— market(Person).

marketed(Person, 1) :— not market(Person), marketed(Person, 0), forget(Person).
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Viral Marketing (revisited)

marketed(ann,0)

marketed(ann,1)

market (ann,0)

trusts(ann,bob) buys(ann) ,1
Reward model
trusts(bob,ann) buys (bob) ,1

market (bob,0)

marketed (bob,1)

marketed (bob,0)

0.2 :: buy_from_marketing(Person). 0.3 :: buy_from_trust(Person).
buys(Person, 1) :— marketed(Person, 1), buy_from_marketing(Person).
buys(Person, 1) :— trusts(Person, Person2), buys(Person2, 1), buy_from_trust(Person).

utility(buys(Person, 1), 5). utility(market(Person), —1).
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A result, and an extension

Theorem
An MDP-ProblLog program specifies an MDPST.

» Now suppose there is indeterminacy on probability values.

» For instance,

[0.1,0.3] :: buy_from_marketing(Person).
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Complexity of One-Step Inference

» If we have the state at time t, then what is the computational cost
of computing the upper probability of {X;+1 = x}?

> More precisely: what is the cost of deciding whether P(Q|E) > 7?
(Note: reject if P(E) =0...)

> As input, a program with a bound on predicate arity, and the
elements of the query.
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Complexity of One-Step Inference

Theorem
Deciding one-step inference is an NPPP_complete problem.

Theorem

Deciding one-step inference when all probabilities are point-valued is
P

PP™: -complete problem.
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Conclusion

» Main goal: to introduce a language that can specify MDPIPs and
MDPSTs by combining probabilities with logic programming.

> Besides the language, main contribution is complexity analysis for
one-step inference.

» In the paper, a discussion of dynamic programming algorithm to
build '-maximin policies.

» Thanks to CNPq and FAPESP for support.
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