The Complexity of Inferences and Explanations in
Probabilistic Logic Programming

Fabio G. Cozman, Denis D. Maua
Universidade de S3o Paulo

July 11, 2017

Overview

Probabilistic disjunctive logic programming.

The complexity of inferences and explanations.

Probabilistic disjunctive logic programs

m A probabilistic disjunctive logic program is a pair (P, PF):
m P is a disjunctive logic program (no functions) and
m PF is a set of probabilistic facts.

Probabilistic disjunctive logic programs

m A probabilistic disjunctive logic program is a pair (P, PF):
m P is a disjunctive logic program (no functions) and
m PF is a set of probabilistic facts.

m Predicate r, atom r(ty,...,tx), rule

AiV---VA, —By,...,By,not Cy,1,...,not Cp

Probabilistic disjunctive logic programs

m A probabilistic disjunctive logic program is a pair (P, PF):
m P is a disjunctive logic program (no functions) and
m PF is a set of probabilistic facts.

m Predicate r, atom r(ty,...,tx), rule

AiV---VA, —By,...,By,not Cy,1,...,not Cp

m A program without disjunction is normal.
m A program without logical variables is propositional.

Probabilistic facts

m A probabilistic fact is a fact associated with a probability:
P(A) = a.

m Probabilistic facts are assumed independent.

Example: the Bayesian network Asia

m Predicates smoking, cancer, and bronchitis.

m Probabilistic logic program (ProbLog notation):

0.5 :: smoking.
cancer :— smoking, al.
cancer :— not smoking, a2.
bronchitis :— smoking, a3.
bronchitis :— not smoking, a4. [Cancer} [Bronchitis}
0.1:: al. 0.01 :: a2.

S N
0.6 :: a3. 0.3 :: a4.

Stratified normal programs:

m ... the grounded dependency graph has no cycle containing a
negative edge.
m Example:

path(X, Y) :— edge(X, Y).
path(X, Y) :— edge(X, Z), path(Z, Y).

Stratified normal programs:

m ... the grounded dependency graph has no cycle containing a
negative edge.

m Example:

path(X, Y) :— edge(X, Y).
path(X, Y) :— edge(X, Z), path(Z, Y).

0.6 :: edge(1,2). 0.1 :: edge(1,3).

0.4 :: edge(2,5). 0.3:: edge(2,6).

0.3 :: edge(3,4). 0.8 :: edge(4,5).
0.2 :: edge(5,6).

A word on semantics

m The semantics of acyclic and stratified normal programs is
uncontroversial: just take the unique
stable model (= answer set = well-founded model).

A word on semantics

m The semantics of acyclic and stratified normal programs is
uncontroversial: just take the unique
stable model (= answer set = well-founded model).

Stable models:

m Consider logic program P.

m For some interpretation Z, take the reduct PZ:
m Ground P.
m Remove rules with subgoal not A and A € 7.
m Remove subgoals not A from remaining rules.
m Interpretation Z is stable model if Z is
the minimal model of PZ.

Non-stratified program (cycle with negative edge)

m Non-stratified program may have more than one stable model.

The Dilbert example

single(X) :— man(X), not husband(X).
husband(X) :— man(X), not single(X).
0.9 :: man(dilbert).

Non-stratified program (cycle with negative edge)

m Non-stratified program may have more than one stable model.

The Dilbert example

single(X) :— man(X), not husband(X).
husband(X) :— man(X), not single(X).
0.9 :: man(dilbert).

m man(dilbert) is false: a unique stable model s;.

Non-stratified program (cycle with negative edge)

m Non-stratified program may have more than one stable model.

The Dilbert example

single(X) :— man(X), not husband(X).
husband(X) :— man(X), not single(X).
0.9 :: man(dilbert).

m man(dilbert) is false: a unique stable model s;.

m man(dilbert) is true: there are two stable models,
sp = {husband(dilbert) = true, single(dilbert) = false},
and

s3 = {husband(dilbert) = false, single(dilbert) = true}.

What could be the semantics of a non-stratified program?

m Probabilities over well-founded models:

m Sato, Kameya and Zhou (2005),
m Hadjichristodolou and Warren (2012).
m Riguzzi (2015).

m Proposal by Lukasiewicz (2005):
informally, take the set of every possible probability
distributions that satisfy the rules and (probabilistic) facts.
m We adopt name credal semantics.
m Note: another recent semantics based on credal sets by
Michels et al. (2015).

An example

The Dilbert example

single(X) :— man(X), not husband(X).
husband(X) :— man(X), not single(X).
0.9 :: man(dilbert).

An example

The Dilbert example

single(X) :— man(X), not husband(X).
husband(X) :— man(X), not single(X).
0.9 :: man(dilbert).

m Take any v € [0, 1]:

P(s;) = 0.1, PB(sp) =09y, P(s3)=0.9(1—~).

An example: robot navigation (graph coloring...)

color(X, red) V color(X, green) V color(X, yellow) :— site(X).
clash :— not clash, edge(X, Y'), color(X, C), color(Y, C).
path(X, Y) :— edge(X, Y). path(X, Y) :— edge(X, Z), path(Z, Y).

An example: robot navigation (graph coloring...)

color(X, red) V color(X, green) V color(X, yellow) :— site(X).
clash :— not clash, edge(X, Y'), color(X, C), color(Y, C).
path(X, Y) :— edge(X, Y). path(X, Y) :— edge(X, Z), path(Z, Y).

site(1). site(2). site(3). site(4). site(5).
color(2,red). color(5, green).
0.5 :: edge(4,5).
edge(1,3). edge(1,4). edge(2,1). edge(2,4). edge(3,5). edge(4,3).

An example: robot navigation (graph coloring...)

color(X, red) V color(X, green) V color(X, yellow) :— site(X).
clash :— not clash, edge(X, Y'), color(X, C), color(Y, C).
path(X, Y) :— edge(X, Y). path(X, Y) :— edge(X, Z), path(Z, Y).

site(1). site(2). site(3). site(4). site(5).
color(2, red). color(5, green).
: edge(4,5).
edge(1,3). edge(1,4). edge21 edge(2,4). edge(3,5). edge(4,3).

Inferences

m Inference: whether P(Q|E) > ~.

Inferences

m Inference: whether P(Q|E) > 7.

m MPE: whether there is an interpretation Q that agrees with
literals E, such that P(Q) > .

Inferences

m Inference: whether P(Q|E) > 7.

m MPE: whether there is an interpretation Q that agrees with
literals E, such that P(Q) > .

m MAP: whether there is a partial interpretation Q that agrees
with literals E, such that P(Q|E) > ~.

’ Propositional Bounded arity
Inferential | MPE | MAP | Inferential | MPE | MAP
Acyclic normal NP | NPPP ¥2 | NPPP
No negation, normal PP NP | NPPP | ppNP ¥P | NPPP
Stratified normal NP | NPPP ¥P | NPPP
Normal, credal NPPP ¥2 | NPPP
Normal, well-founded NPPP ¥2 | NPPP
Disjunctive, credal NPPP | PP™ | TP | NPPP

(Complexity class X = Nszfl.)
(Complexity class PP: class of problems solved by a probabilistic
polynomial-time Turing machine.)

(In orange: PGM2016, WPLP2016, ENIAC2016.)

’ Propositional Bounded arity
Inferential | MPE | MAP | Inferential | MPE | MAP
Acyclic normal NP | NPPP puY NPPP
No negation, normal PP NP | NPPP | PPNP ¥2 | NPPP
Stratified normal NP | NPPP ¥2 | NPPP
Normal, credal NPPP ¥2 | NPPP
Normal, well-founded NPPP ¥P | NPPP
Disjunctive, credal NPPP):f NPPP

(Complexity class ¥ = NPZ'Pfl.)
(Complexity class PP: class of problems solved by a probabilistic
polynomial-time Turing machine.)

’ Propositional Bounded arity
Inferential | MPE | MAP | Inferential | MPE | MAP
Acyclic normal NP | NPPP 5 NPPP
No negation, normal PP NP | NPPP | PPNP ¥2 | NPFP
Stratified normal NP | NPPP 5 | NPPP
Normal, credal ¥2 | NPPP
Normal, well-founded 2| NPPP
Disjunctive, credal):f NPPP

(Complexity class ¥ = NPZ'Pfl.)
(Complexity class PP: class of problems solved by a probabilistic
polynomial-time Turing machine.)

Propositional

Bounded arity

Inferential | MPE | MAP

Inferential | MPE | MAP

Acyclic normal NP | NPPP 5 NPPP
No negation, normal PP NP | NPPP | PPNP ¥2 | NPFP
Stratified normal NP | NPPP 5 | NPPP

Normal, credal

%7

Normal, well-founded

NP

Disjunctive, credal

PP™:

NPPP
NPPP

NPPP

24
bR

(Complexity class ¥ = NPZ'Pfl.)
(Complexity class PP: class of problems solved by a probabilistic
polynomial-time Turing machine.)

Propositional

Bounded arity

Inferential | MPE | MAP

Inferential | MPE | MAP

Acyclic normal NP | NPPP 5 NPPP
No negation, normal PP NP | NPPP | PPNP ¥2 | NPFP
Stratified normal NP | NPPP 5 | NPPP

Normal, credal

%7

Normal, well-founded

NP

Disjunctive, credal

PP™:

NPPP

(Complexity class ¥ = NPZ'Pfl.)
(Complexity class PP: class of problems solved by a probabilistic
polynomial-time Turing machine.)

Propositional

Bounded arity

Inferential | MPE | MAP

Inferential | MPE | MAP

Acyclic normal NP | NPPP 5 NPPP
No negation, normal PP NP | NPPP ppNP ¥2 | NPFP
Stratified normal NP | NPPP 5 | NPPP

Normal, credal

%7

Normal, well-founded

NP

Disjunctive, credal

PP™:

NPPP

(Complexity class ¥ = NPZ'Pfl.)
(Complexity class PP: class of problems solved by a probabilistic
polynomial-time Turing machine.)

Propositional

Bounded arity

Inferential | MPE | MAP | Inferential | MPE [MAP

Acyclic normal q NP NPPP q ¥y NPPP

No negation, normal PP NP | NPPP ppNP ¥2 | NPPP

Stratified normal NP | NPPP ¥2 | NPPP

Normal, credal ¥2 | NPPP NPPP
Normal, well-founded NP NPPP

Disjunctive, credal

PP™:

NPPP

(Complexity class ¥ = NPZ'Pfl.)
(Complexity class PP: class of problems solved by a probabilistic
polynomial-time Turing machine.)

Conclusion

m Main goal was to map the complexity of probabilistic
disjunctive logic programming (and its sub-languages) and
credal and well-founded semantics.

m Future work: remove bounds on arity, and consider query
complexity.

m Thanks to support by CNPq and FAPESP.

