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Overview

Probabilistic disjunctive logic programming.

The complexity of inferences and explanations.



Probabilistic disjunctive logic programs

m A probabilistic disjunctive logic program is a pair (P, PF):
m P is a disjunctive logic program (no functions) and
m PF is a set of probabilistic facts.



Probabilistic disjunctive logic programs

m A probabilistic disjunctive logic program is a pair (P, PF):
m P is a disjunctive logic program (no functions) and
m PF is a set of probabilistic facts.

m Predicate r, atom r(ty,...,tx), rule

AiV---VA, —By,...,By,not Cy,1,...,not Cp



Probabilistic disjunctive logic programs

m A probabilistic disjunctive logic program is a pair (P, PF):
m P is a disjunctive logic program (no functions) and
m PF is a set of probabilistic facts.

m Predicate r, atom r(ty,...,tx), rule

AiV---VA, —By,...,By,not Cy,1,...,not Cp

m A program without disjunction is normal.
m A program without logical variables is propositional.



Probabilistic facts

m A probabilistic fact is a fact associated with a probability:
P(A) = a.

m Probabilistic facts are assumed independent.



Example: the Bayesian network Asia

m Predicates smoking, cancer, and bronchitis.

m Probabilistic logic program (ProbLog notation):

0.5 :: smoking.
cancer :— smoking, al.
cancer :— not smoking, a2.
bronchitis :— smoking, a3.
bronchitis :— not smoking, a4. [Cancer} [Bronchitis}
0.1:: al. 0.01 :: a2.

S N
0.6 :: a3. 0.3 :: a4.




Stratified normal programs:

m ... the grounded dependency graph has no cycle containing a
negative edge.
m Example:

path(X, Y) :— edge(X, Y).
path(X, Y) :— edge(X, Z), path(Z, Y).



Stratified normal programs:

m ... the grounded dependency graph has no cycle containing a
negative edge.

m Example:

path(X, Y) :— edge(X, Y).
path(X, Y) :— edge(X, Z), path(Z, Y).

0.6 :: edge(1,2). 0.1 :: edge(1,3).

0.4 :: edge(2,5). 0.3:: edge(2,6).

0.3 :: edge(3,4). 0.8 :: edge(4,5).
0.2 :: edge(5,6).



A word on semantics

m The semantics of acyclic and stratified normal programs is
uncontroversial: just take the unique
stable model (= answer set = well-founded model).



A word on semantics

m The semantics of acyclic and stratified normal programs is
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Stable models:

m Consider logic program P.

m For some interpretation Z, take the reduct PZ:
m Ground P.
m Remove rules with subgoal not A and A € 7.
m Remove subgoals not A from remaining rules.
m Interpretation Z is stable model if Z is
the minimal model of PZ.



Non-stratified program (cycle with negative edge)

m Non-stratified program may have more than one stable model.

The Dilbert example

single(X) :— man(X), not husband(X).
husband(X) :— man(X), not single(X).
0.9 :: man(dilbert).
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Non-stratified program (cycle with negative edge)

m Non-stratified program may have more than one stable model.

The Dilbert example

single(X) :— man(X), not husband(X).
husband(X) :— man(X), not single(X).
0.9 :: man(dilbert).

m man(dilbert) is false: a unique stable model s;.

m man(dilbert) is true: there are two stable models,
sp = {husband(dilbert) = true, single(dilbert) = false},
and

s3 = {husband(dilbert) = false, single(dilbert) = true}.



What could be the semantics of a non-stratified program?

m Probabilities over well-founded models:

m Sato, Kameya and Zhou (2005),
m Hadjichristodolou and Warren (2012).
m Riguzzi (2015).

m Proposal by Lukasiewicz (2005):
informally, take the set of every possible probability
distributions that satisfy the rules and (probabilistic) facts.
m We adopt name credal semantics.
m Note: another recent semantics based on credal sets by
Michels et al. (2015).
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An example

The Dilbert example

single(X) :— man(X), not husband(X).
husband(X) :— man(X), not single(X).
0.9 :: man(dilbert).

m Take any v € [0, 1]:

P(s;) = 0.1, PB(sp) =09y, P(s3)=0.9(1—~).



An example: robot navigation (graph coloring...)

color(X, red) V color(X, green) V color(X, yellow) :— site(X).
clash :— not clash, edge(X, Y'), color(X, C), color(Y, C).
path(X, Y) :— edge(X, Y). path(X, Y) :— edge(X, Z), path(Z, Y).



An example: robot navigation (graph coloring...)

color(X, red) V color(X, green) V color(X, yellow) :— site(X).
clash :— not clash, edge(X, Y'), color(X, C), color(Y, C).
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site(1). site(2). site(3). site(4). site(5).
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An example: robot navigation (graph coloring...)

color(X, red) V color(X, green) V color(X, yellow) :— site(X).
clash :— not clash, edge(X, Y'), color(X, C), color(Y, C).
path(X, Y) :— edge(X, Y). path(X, Y) :— edge(X, Z), path(Z, Y).

site(1). site(2). site(3). site(4). site(5).
color(2, red). color(5, green).
: edge(4,5).
edge(1,3). edge(1,4). edge21 edge(2,4). edge(3,5). edge(4,3).
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Inferences

m Inference: whether P(Q|E) > 7.

m MPE: whether there is an interpretation Q that agrees with
literals E, such that P(Q) > .

m MAP: whether there is a partial interpretation Q that agrees
with literals E, such that P(Q|E) > ~.
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Propositional

Bounded arity

Inferential | MPE | MAP | Inferential | MPE [ MAP

Acyclic normal q NP NPPP q ¥y NPPP

No negation, normal PP NP | NPPP ppNP ¥2 | NPPP

Stratified normal NP | NPPP ¥2 | NPPP

Normal, credal ¥2 | NPPP NPPP
Normal, well-founded NP NPPP

Disjunctive, credal

PP™:

NPPP

(Complexity class ¥ = NPZ'Pfl.)
(Complexity class PP: class of problems solved by a probabilistic
polynomial-time Turing machine.)




Conclusion

m Main goal was to map the complexity of probabilistic
disjunctive logic programming (and its sub-languages) and
credal and well-founded semantics.

m Future work: remove bounds on arity, and consider query
complexity.

m Thanks to support by CNPq and FAPESP.



