Evenly Convex Credal Sets

Fabio G. Cozman Universidade de São Paulo

July 9, 2017

Goal

There are many axiomatizations for closed credal sets, and very few for more general credal sets (... Teddy's work).

- Here we focus on evenly convex credal sets (intersection of open halfspaces).
 - That is, we want to allow $\mathbb{P}(A) > 1/2$ and $\mathbb{P}(A) \leq 2/3$.
 - Not the most general convex sets, but still quite flexible.

- Focus on gambles over finite space Ω .
- $X \succ Y$ is understood as "X is preferred to Y".
- Assume that > is partial order.

- Focus on gambles over finite space Ω .
- $X \succ Y$ is understood as "X is preferred to Y".
- Assume that > is partial order.
- Assume also:

```
Monotonicity: If X(\omega) > Y(\omega) for all \omega \in \Omega, then X \succ Y; Cancellation: For all \alpha \in (0,1], X \succ Y iff \alpha X + (1-\alpha)Z \succ \alpha Y + (1-\alpha)Z.
```

- Focus on gambles over finite space Ω .
- $X \succ Y$ is understood as "X is preferred to Y".
- Assume that > is partial order.
- Assume also:

Monotonicity: If
$$X(\omega) > Y(\omega)$$
 for all $\omega \in \Omega$, then $X \succ Y$; Cancellation: For all $\alpha \in (0,1]$, $X \succ Y$ iff $\alpha X + (1-\alpha)Z \succ \alpha Y + (1-\alpha)Z$.

Then there is a cone \mathcal{D} (of desirable gambles) such that:

$$X \succ Y \text{ iff } X - Y \in \mathcal{D}.$$

- Focus on gambles over finite space Ω .
- $X \succ Y$ is understood as "X is preferred to Y".
- Assume that > is partial order.
- Assume also:

Monotonicity: If
$$X(\omega) > Y(\omega)$$
 for all $\omega \in \Omega$, then $X \succ Y$; Cancellation: For all $\alpha \in (0,1]$, $X \succ Y$ iff $\alpha X + (1-\alpha)Z \succ \alpha Y + (1-\alpha)Z$.

Then there is a cone $\mathcal D$ (of desirable gambles) such that:

$$X \succ Y \text{ iff } X - Y \in \mathcal{D}.$$

If the cone is an open set, then there is credal set ${\mathcal K}$ such that:

$$X \in \mathcal{D}$$
 iff $\mathbb{E}_{\mathbb{P}}[X] > 0$ for all $\mathbb{P} \in \mathcal{K}$.

Other conditions

Aumann's continuity: If $\alpha X + (1 - \alpha)Y \succ Z$ for all $\alpha > 0$, then either $Y \succ Z$ or $Y \not\sim Z$.

SSK-continuity If $X_i \succ Y_i$ for every i, and $\lim_i Y_i \succ Z$, then $\lim_i X_i \succ Z$, whenever limits exist.

Proposal: even continuity

Note that if
$$Y\succ 0$$
 is false, then, for $\lambda>0$, $X\succ 0$,

$$\lambda Y - X \succ 0$$
 is false.

Proposal: even continuity

Note that if $Y \succ 0$ is false, then, for $\lambda > 0$, $X \succ 0$,

$$\lambda Y - X \succ 0$$
 is false.

Even continuity If $Y \succ 0$ is false, then $\lim_i (\lambda_i Y - X_i) \succ 0$ is false for any sequence of $\lambda_i > 0$, $X_i \succ 0$ such that the limit exists.

That is: one cannot take an undesirable gamble Y and make it desirable, not even in the limit, by multiplying it by a positive number and subtracting from it a desirable gamble.

Main results

Definition

A preference ordering \succ is *coherent* when it satisfies monotonicity, cancellation, and even continuity.

Theorem

If a preference ordering \succ is coherent, then there is an evenly convex cone $\mathcal D$ of gambles, not containing the origin but containing the interior of the positive octant, such that $X \succ Y$ iff $X - Y \in \mathcal D$.

Theorem

If a preference ordering \succ is coherent, then there is a unique maximal evenly convex credal set $\mathcal K$ such that $X \succ Y$ iff for all $\mathbb P \in \mathcal K$ we have $\mathbb E_{\mathbb P}[X] > \mathbb E_{\mathbb P}[Y]$.

A few other results

Theorem

Suppose \succ is a coherent preference ordering, and the credal set $\mathfrak K$ represents \succ . A credal set $\mathfrak K'$ represents \succ iff $eco\mathfrak K'=\mathfrak K$.

Theorem

If \mathcal{F} is a face of $cl\mathcal{D}$, and $\mathcal{F} \cap \mathcal{D} \neq \emptyset$, then $\mathcal{F}^{\triangle} \cap \mathcal{C} = \emptyset$.

Is this necessary?

- If \succ is a coherent preference ordering, then SSK-continuity holds.
- Does SSK-continuity actually imply even equivalence?

Is this necessary?

- If \succ is a coherent preference ordering, then SSK-continuity holds.
- Does SSK-continuity actually imply even equivalence?
- YES in an important case! But NO in general.

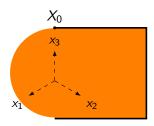
Theorem

Suppose \succ is a preference ordering satisfying monotonicity, cancellation, and SSK-continuity, with representing set of desirable gambles \mathcal{D} . If the closure of \mathcal{D} is the intersection of finitely many closed halfspaces, then \mathcal{D} is evenly convex.

But not in general...

Example

 $\Omega=\{\omega_1,\omega_2,\omega_3\}; \, \mathcal{B}$ as the union of the open circle with center (1/4,1/4,1/2) and radius $\sqrt{3/2}$ drawn on the simplex consisting of $x_1+x_2+x_3=1,$ and the closed polygon with four vertices $(3/4,3/4,-1/2),\,(-1/4,-1/4,3/2),\,(-2,3/2,3/2),\,(-1,5/2,-1/2);$ $X_0=(-1/4,-1/4,3/2),$ a non-exposed extreme point of $\mathcal{B}.$ The cone \mathcal{D}'' is the set of all rays emanating from the origin and going through points of \mathcal{B} except $X_0;$ it produces a preference ordering that satisfies SSK-continuity.



Conclusion

- Presented a few axioms on preference orderings that, together, imply a representation through evenly convex credal sets.
 - Novel Archimedean condition (even continuity) that implies even convexity.
- A similar representation can be obtained using SSK-continuity in many, but not all, cases.

■ Thanks to CNPq and FAPESP grants.