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DEEP PROBABILISTIC GRAPHICAL MODELS

I Sum-Product Networks: sacrifice “interpretability” of Bayesian
networks for the sake of computational efficiency; represent
computations not interactions (Poon & Domingos 2011).

I Complex mixture distributions represented graphically as an
arithmetic circuit.
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EXAMPLE (POON AND DOMINGOS 2011)

Learn models from dataset of “faces”; then use it to complete
partial face
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SUM-PRODUCT NETWORK

Distribution S(X1, . . . , Xn) built by

I an indicator function over a single variable
I I(X = 0), I(Y = 1) (also written ¬x, y),

I a weighted sum of SPNs with same domain and nonnegative
weights

I S3(X,Y ) = 0.6 · S1(X,Y ) + 0.4 · S2(X,Y ),

I a product of SPNs with disjoint domains
I S3(X,Y, Z,W ) = S1(X,Y ) · S2(Z,W ).

We can assume that weights are normalized:
∑

iwi = 1.

Weighted sums have implicit latent variable:
0.6 · S1(X,Y ) + 0.4 · S2(X,Y ) =

∑
Z P (Z) · P (X,Y |Z).
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GRAPHICAL REPRESENTATION

I Rooted directed acyclic graph (directions are implicit below);
I Leaves are indicators;
I Sums and product nodes (edges leaving sum nodes are

weighted).
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EVALUATION (INFERENCE)

I Propagate values bottom-up:

P (A = 1) =

+0.45
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Note: takes linear time in the size of circuit!
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CREDAL SUM-PRODUCT NETWORKS

I Robustify SPNs by allowing weights to vary inside sets (for
instance, towards sensitivity analisys on SPN’s inference).

I New class of tractable imprecise graphical models.
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(w1, w2, w3) ∈ CH( [0.28, 0.45, 0.27],
[0.18, 0.55, .27], [0.18, 0.45, 0.37]),

0.54 ≤ w4 ≤ 0.64, 0.36 ≤ w5 ≤ 0.46,
0.09 ≤ w6 ≤ 0.19, 0.81 ≤ w7 ≤ 0.91,
0.27 ≤ w8 ≤ 0.37, 0.63 ≤ w9 ≤ 0.73,
0.72 ≤ w10 ≤ 0.82, 0.18 ≤ w11 ≤ 0.28,

w4 + w5 = 1, w6 + w7 = 1,
w8 + w9 = 1, w10 + w11 = 1
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7 / 15



WHAT DO WE WANT?

I To compute upper and lower unconditional probabilities.

I To compute upper and lower (conditional) expectations.

I To perform credal classification.

I To analyze robustness of SPNs.
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UPPER AND LOWER PROBABILITIES

Consider a CSPN {Sw : w ∈ C}, where C is the Cartesian product
of finitely-generated polytopes Ci, one for each sum node i.

THEOREM

Computing minw Sw(x) and maxw Sw(x) takes polynomial time in
the size of circuit and representation of sets Ci.

I Similar to evaluation of SPNs, except that sum nodes need to
solve LP.
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UPPER AND LOWER EXPECTATIONS

Given CSPN {Sw : w}, compute minw
∑

q,e f(q, e) Sw(q,e)∑
q′,e Sw(q′,e) .

THEOREM

Assuming that f is encoded succinctly, computing lower
conditional expectation is NP-hard.

THEOREM

Computing lower conditional expectations of a univariate f takes at
most polynomial time when each internal node has at most one
parent.

Note: Most structure learning algorithms generate SPNs of the
above form!
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CREDAL CLASSIFICATION

Given configurations c′, c′′ of variables C and evidence e decide:

min
w

(
Sw(c′, e)− Sw(c′′, e)

)
> 0.

THEOREM

Credal classification is coNP-complete.

THEOREM

Credal classification with a single class variable can be done in
polynomial time when each internal node has at most one parent.
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APPLICATION: COMPUTING ROBUSTNESS INDEX

I Handwritten digit recognition (70 handwritten 20× 30 images
per digit).

I We learn and check accuracy of an SPN using 50% - 50%
and 20% - 80% train-test splits (ramdomly multiple times).

I Robustness index: maximum ε s.t. locally ε-contaminating
weights of SPN does not change classification (that is, single
maximal=single e-admissible class).

I Compared against threshold-based robustness (when best -
second best probability is below a threshold).
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CSPN 20%-80% split Best - second best 20%-80% split

CSPN 50%-50% split Best - second best 50%-50% split

FIGURE: Average classification accuracy for instance below the given
robustness (x-axis values are multiplied by 20 to be visually compatible
with the probabilities).
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Robustness CSPN Best - second best
Measure Correct Wrong Correct Wrong
median 0.0363 0.0029 0.0909 0.0880
maximum 0.1524 0.0199 0.3333 0.3333
mean 0.0369 0.0043 0.0976 0.1042

TABLE: Robustness values for 50%/50% data split. Overall classification
accuracy of 99.31%.
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SUMMING UP!

I Sum-Product Networks offer a recently developed class of
probabilistic graphical models with linear time inference.

I Very promising results in “deep learning”: image completion,
image classification from pixels, representation learning, etc.

I Credal Sum-Product Networks extend SPNs to imprecise
setting:

I Unconditional inference still takes polynomial time.
I Conditional expectation is NP-hard; very useful subclass

admits polytime inference.
I Credal classification is also coNP-hard; again with very

useful tractable subclass.
I Encouraging preliminary results on handwritten digit

recognition task (code available upon request).
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