

A generic belief function model to handle multi-criteria preferences

Sébastien Destercke CNRS, Heudiasyc, Université de Technologie de Compiègne

ECSQARU 2017

Where is Compiegne

A generic belief function model to handle multi-criteria preferences

Motivation

Many works on preferences under uncertainty:

- probability theory
- desirability
- prospect theory
- ...

Many works about uncertain (multi-criteria) preferences

- rank probabilistic models
- robust MCDM models
- random utility
- ...

Motivation: sequel

Recently, many works on collecting preference assessments to build robust (MCDM) preference models:

- version space, set-based approaches
- probabilistic approaches

Yet, few works on uncertainty in collected preferences (rather than in model). We do so by using belief functions:

- well-adapted to a non-statistical, fusion setting
- potential use of conflicting evidence to our advantage

A rather simple proposal

We assume

- A set of possible alternatives X
- A version space $\mathcal H$ of possible preference models over $\mathcal X$:
 - o Weighted averages, Choquet inegrals,
 - o CP-nets,...
- Decision maker provides items $(\mathcal{I}_i, \alpha_i)$ where
 - *I*: preference information (alternative comparisons, parameter assessments)
 - $\circ \alpha_i$: certainty degree about the provided information
- \mathcal{I}_i can be mapped into a set $H_i \subseteq \mathcal{H}$ of compatible hypothesis

An example

- X=set of students
- Evaluated over
 - Physics (P) \in [0, 10]
 - Math (M) \in [0, 10]
 - French (F) \in [0, 10]
- \mathcal{H} = weighted averages
- Specified by (*w_P*, *w_M*, *w_F*) with *w_P* + *w_M* + *w_F* = 1

Assume two students $x_1 = (0, 8, 5)$ and $x_2 = (8, 4, 5)$, agent says $I_1 = \{x_1 > x_2\}$ with $\alpha_1 = 0.6$, then

 $0w_P + 8w_M + 5w_F > 8w_P + 4w_M + 5w_F \rightarrow w_M > 2w_P$

An example

- \mathscr{X} =set of students
- Evaluated over
 - Physics (P) \in [0, 10]
 - Math (M) ∈ [0, 10]
 - French (F) \in [0, 10]
- \mathcal{H} = weighted averages
- Specified by (*w_P*, *w_M*, *w_F*) with *w_P* + *w_M* + *w_F* = 1

Assume two students $x_1 = (0, 8, 5)$ and $x_2 = (8, 4, 5)$, agent says $I_1 = \{x_1 > x_2\}$ with $\alpha_1 = 0.6$, then

 $0w_P + 8w_M + 5w_F > 8w_P + 4w_M + 5w_F \rightarrow w_M > 2w_P$

Mass functions and information combination

• Transform each item $(\mathcal{I}_i, \alpha_i)$ into a mass function m_i with

$$m_i(H_i) = \alpha_i \quad m_i(\mathcal{H}) = 1 - \alpha_i$$

• Given two such masses m_1, m_2 , combine them into

$$m_{1\cap 2}(H) = \sum_{H_i \in \mathcal{F}_i, H_1 \cap H_2 = H} m_1(H_1)m_2(H_2),$$

- The above equation being commutative and associative, extends to any number *n* of information
- Some mass can be given to ϕ in case of inconsistency

Example continued

• "Sciences more important than language"

•
$$W_P + W_M \ge W_F \rightarrow W_P + W_M \ge 0.5$$

•
$$H_2 = \{(w_P, w_M) : w_P + w_M \ge 0.5\}$$

• $\alpha_2 = 0.9$

The resulting mass is then

$$m(H_1) = 0.06, \ m(H_2) = 0.36, \ m(H_1 \cap H_2) = 0.54, \ m(\mathcal{H}) = 0.04.$$

heudiasyc

Inferences: choice and ranking

- Each H_i defines a partial order P_i over set \mathscr{X}
- Given a subset $\mathscr{A} = \{a_1, \ldots, a_n\}$ of alternatives
 - Choice: recommend a best alternative *a**, or a subset *A**
 - Ranking: propose a partial ranking of alternatives

We will consider the following alternatives in our example:

	Ρ	М	F		Ρ	М	F
a ₁	4	3	9	a_3	8	7	3
a_2	5	9	6	a_4	7	1	7

 $P_1 = \{(a_1, a_4), (a_2, a_3)\}, P_2 = P_{\mathcal{H}} = \{\}, P_{1 \cap 2} = \{(a_1, a_4), (a_2, a_1), (a_2, a_3)\}.$

Choice

- Max_i denotes maximal elements of P_i
- Max_i= superset of A*, maximal elements of the true underlying partial order
- Plausibility that a given subset A is a subset of A*:

$$PI(A \subseteq A^*) = \sum_{A \subseteq Max_i} m(H_i)$$

- $Pl({a} \subseteq A^*) = 1$ only if ${a}$ maximal element of every P_i
- We can have $A \subseteq B$ with $PI(A \subseteq A^*) \ge PI(B \subseteq A^*)$
- Take subset with maximal plausibility

$$Max_1 = \{a_1, a_2\}, Max_{1\cap 2} = \{a_2\}, Max_2 = Max_{\mathcal{H}} = \mathcal{A}$$

$$\{a_1\} \ \{a_2\} \ \{a_3\} \ \{a_4\} \ \{a_1, a_2\} \ \{a_1, a_3\} \ \{a_1, a_4\} \ \{a_2, a_3\} \ \{a_2, a_4\} \ \{a_3, a_4\}$$

$$PI \ 0.46 \ 1 \ 0.4 \ 0.4 \ 0.4 \ 0.4 \ 0.4 \ 0.4$$

A generic belief function model to handle multi-criteria preferences

heudiasyc

Ranking

- Compute for every pair the interval $[Bel(a_i > a_j), Pl(a_i > a_j)]$
- For a_i, get interval-valued score

$$[\underline{s}_i, \overline{s}_i] = \sum_{a_i \neq a_i} [Bel(a_i > a_j), Pl(a_i > a_j)]$$

Rank according to the corresponding interval order

Conflicting information

Combination may lead to non-null mass $m(\phi)$ on empty set:

- due to inconsistent information given by DM
- due to a too limited set of models ${\mathcal H}$

Belief functions therefore interesting to solve these two issues by

- picking a subset of consistent information items
- choosing an adequate space of models

Choosing a model: example

- "Mathematics should account for 4/10 to 8/10 of the score"
- $0.8 \ge w_M \ge 0.4$

•
$$H_3 = \{(w_P, w_M) : 0.8 \ge w_M \ge 0.4\}$$

•
$$\alpha_3 = 0.9$$

The resulting mass on the empty set is

$$m(\phi) = 0.6 \cdot 0.9 \cdot 0.9 = 0.486$$

Model choice algorithm

Algorithm 1: Algorithm to select preference model

Input: Spaces $\mathcal{H}^1 \subseteq ... \subseteq \mathcal{H}^K$, Information $\mathcal{I}_1, ..., \mathcal{I}_F$, threshold τ , i = 1**Output:** Selected hypothesis space \mathcal{H}^* **repeat**

```
foreach j \in \{0, ..., m\} do Evaluate H'_j;
Combine m^i_1, ..., m^i_F into m^i;
i \leftarrow i+1
until m^i(\emptyset) \le \tau or i = K+1;
```


Example continued

- \mathcal{H}^i = i-additive Choquet integral
- \mathcal{H}^1 = weighted average, 3 parameters

 $\Rightarrow m(\phi) = 0.486$

• \mathcal{H}^2 = 2-additive, 6 parameters

$$\Rightarrow m(\phi) = 0$$

• \mathcal{H}^2 adequate model to represent provided preferences

Conclusions and perspectives

Our proposed model:

- easily integrates uncertainty in preference expression
- is quite generic regarding to the used model
- could be useful for information selection and/or model choice

The next steps are to

- instantiate it for some specific models (Choquet integrals, CP-net, ...)
- define optimal elicitation strategies (in the line of Viappiani et al.)
- check that these latter do not suffer from same defect as similar strategies with certain answers
- connect them to Bayesian preference learning

