Imprecise continuous-time Markov chains Efficient computational methods with guaranteed error bounds

Alexander Erreygers Jasper De Bock

Ghent University

ISIPTA'17

Efficient computational methods with guaranteed error bounds

Consider a family of random variables $(X_t)_{t \in \mathbb{R}_{\geq 0}}$ where, for all $t \in \mathbb{R}_{\geq 0}$, X_t takes values in a finite and ordered state space \mathscr{X} .

Let $\mathscr{L}(\mathscr{X})$ denote the set of all real-valued functions (vectors) on $\mathscr{X}.$

Consider a family of random variables $(X_t)_{t \in \mathbb{R}_{\geq 0}}$ where, for all $t \in \mathbb{R}_{\geq 0}$, X_t takes values in a finite and ordered state space \mathscr{X} .

Let $\mathscr{L}(\mathscr{X})$ denote the set of all real-valued functions (vectors) on \mathscr{X} .

A stochastic process P is a *precise (continuous-time) Markov chain* (pMC) if

$$P(X_{t+\Delta} = y | X_{t_1} = x_1, \dots, X_{t_n} = x_n, X_t = x)$$

= $P(X_{t+\Delta} = y | X_t = x) =: T_t^{t+\Delta}(x, y).$

Consider a family of random variables $(X_t)_{t \in \mathbb{R}_{\geq 0}}$ where, for all $t \in \mathbb{R}_{\geq 0}$, X_t takes values in a finite and ordered state space \mathscr{X} .

Let $\mathscr{L}(\mathscr{X})$ denote the set of all real-valued functions (vectors) on \mathscr{X} .

A stochastic process ${\rm P}$ is a precise (continuous-time) Markov chain (pMC) if

$$P(X_{t+\Delta} = y | X_{t_1} = x_1, \dots, X_{t_n} = x_n, X_t = x)$$

= $P(X_{t+\Delta} = y | X_t = x) =: T_t^{t+\Delta}(x, y).$

The *transition matrix* $T_t^{t+\Delta}$ thus defined determines conditional expectations:

$$[T_t^{t+\Delta} f](x) = \mathbb{E}(f(X_{t+\Delta})|X_t = x) = \mathbb{E}(f(X_{t+\Delta})|X_{t_1} = x_1, \dots, X_{t_n} = x_n, X_t = x).$$

Transition rate matrix

A pMC is called stationary if

$$(\forall t, \Delta \in \mathbb{R}_{\geq 0}) T_t^{t+\Delta} = T_0^{\Delta} \eqqcolon T_{\Delta}.$$

Transition rate matrix

A pMC is called stationary if

$$(\forall t, \Delta \in \mathbb{R}_{\geq 0}) \ T_t^{t+\Delta} = T_0^{\Delta} \eqqcolon T_{\Delta}.$$

In this case, there is a unique *transition rate matrix* Q—a matrix with non-negative off-diagonal elements and rows that sum up to zero—such that,

$$(\forall t \in \mathbb{R}_{\geq 0}) T_t^{t+\delta} = T_\delta \approx (I + \delta Q)$$
 for δ suff. small.

Transition rate matrix

A pMC is called stationary if

$$(\forall t, \Delta \in \mathbb{R}_{\geq 0}) \ T_t^{t+\Delta} = T_0^{\Delta} \eqqcolon T_{\Delta}.$$

In this case, there is a unique *transition rate matrix* Q—a matrix with non-negative off-diagonal elements and rows that sum up to zero—such that,

$$(\forall t \in \mathbb{R}_{\geq 0}) T_t^{t+\delta} = T_\delta \approx (I + \delta Q)$$
 for δ suff. small.

Similarly, for any non-stationary pMC there is a *time-dependent* transition rate matrix Q_t such that

$$(\forall t \in \mathbb{R}_{\geq 0}) T_t^{t+\delta} \approx (I + \delta Q_t)$$
 for δ suff. small.

Transition rate matrix

A pMC is called stationary if

$$(\forall t, \Delta \in \mathbb{R}_{\geq 0}) \ T_t^{t+\Delta} = T_0^{\Delta} \eqqcolon T_{\Delta}.$$

In this case, there is a unique *transition rate matrix* Q—a matrix with non-negative off-diagonal elements and rows that sum up to zero—such that,

$$(\forall t \in \mathbb{R}_{\geq 0}) T_t^{t+\delta} = T_\delta \approx (I + \delta Q)$$
 for δ suff. small.

Similarly, for any non-stationary pMC there is a *time-dependent* transition rate matrix Q_t such that

$$(\forall t \in \mathbb{R}_{\geq 0}) T_t^{t+\delta} \approx (I + \delta Q_t)$$
 for δ suff. small.

In practice, a (non-)stationary pMC is characterised by specifying

- (i) a state space \mathscr{X} ,
- (ii) an initial distribution $P(X_0 = x)$, and
- (iii) a (time-dependent) transition rate matrix Q (Q_t).

Approximation conditional expectations

Combining some properties of stationary pMCs, we find that

$$E(f(X_t)|X_0 = x) = [T_t f](x) = [T_{\delta_1} \cdots T_{\delta_n} f](x)$$

$$\approx [(I + \delta_1 Q) \cdots (I + \delta_n Q) f](x).$$

where $\delta_{1:n} := \{\delta_1, \dots, \delta_n\}$ is a sequence of sufficiently small strictly positive time steps such that $\sum_{i=1}^n \delta_i = t$.

Approximation conditional expectations

Combining some properties of stationary pMCs, we find that

$$E(f(X_t)|X_0 = x) = [T_t f](x) = [T_{\delta_1} \cdots T_{\delta_n} f](x)$$

$$\approx [(I + \delta_1 Q) \cdots (I + \delta_n Q) f](x),$$

where $\delta_{1:n} := \{\delta_1, \dots, \delta_n\}$ is a sequence of sufficiently small strictly positive time steps such that $\sum_{i=1}^n \delta_i = t$.

In fact, it is well-known that

$$T_t = e^{tQ} = \lim_{n \to +\infty} \left(I + \frac{t}{n}Q \right)^n,$$

which is the unique time-dependent matrix that satisfies

$$\frac{\mathrm{d}}{\mathrm{d}t}T_t = QT_t$$
 with initial condition $T_0 = I$.

Approximation conditional expectations

Combining some properties of stationary pMCs, we find that

$$E(f(X_t)|X_0 = x) = [T_t f](x) = [T_{\delta_1} \cdots T_{\delta_n} f](x)$$

$$\approx [(I + \delta_1 Q) \cdots (I + \delta_n Q) f](x),$$

where $\delta_{1:n} := \{\delta_1, \dots, \delta_n\}$ is a sequence of sufficiently small strictly positive time steps such that $\sum_{i=1}^n \delta_i = t$.

In fact, it is well-known that

$$T_t = e^{tQ} = \lim_{n \to +\infty} \left(I + \frac{t}{n}Q \right)^n,$$

which is the unique time-dependent matrix that satisfies

$$\frac{\mathrm{d}}{\mathrm{d}t}T_t = QT_t$$
 with initial condition $T_0 = I$.

In general, obtaining an analytical expression for T_t is infeasible!

Efficient computational methods with guaranteed error bounds

In practice, using a stationary pMC is often not warranted, as

- \blacksquare exactly specifying the transition rate matrix Q is often infeasible, and
 - assuming stationarity is not always justified.

In practice, using a non-stationary pMC is often not warranted, as

- exactly specifying the time-dependent transition rate matrix Q_t is often infeasible, and
- assuming stationarity is not always justified.

In practice, using a (non-)stationary pMC is often not warranted, as

- exactly specifying the (time-dependent) transition rate matrix Q_t is often infeasible, and
- assuming stationarity is not always justified.

Therefore, we assume that the time-dependent transition rate matrix Q_t of a pMC is only known to be contained in some (non-empty and bounded) *set* of transition rate matrices \mathcal{Q} .

In practice, using a (non-)stationary pMC is often not warranted, as

- exactly specifying the (time-dependent) transition rate matrix Q_t is often infeasible, and
- assuming stationarity is not always justified.

Therefore, we assume that the time-dependent transition rate matrix Q_t of a pMC is only known to be contained in some (non-empty and bounded) *set* of transition rate matrices \mathcal{Q} .

Let $\mathbb{P}_{\mathscr{Q}}$ be the *set* of all Markov chains P consistent with \mathscr{Q} , in the sense that

 $(\forall t \in \mathbb{R}_{\geq 0})(\exists Q_t \in \mathscr{Q}) T_t^{t+\delta} \approx I + \delta Q_t \text{ for } \delta \text{ suff. small.}$

In practice, using a (non-)stationary pMC is often not warranted, as

- exactly specifying the (time-dependent) transition rate matrix Q_t is often infeasible, and
- assuming stationarity is not always justified.

Therefore, we assume that the time-dependent transition rate matrix Q_t of a pMC is only known to be contained in some (non-empty and bounded) *set* of transition rate matrices \mathcal{Q} .

Let $\mathbb{P}_{\mathscr{Q}}$ be the set of all Markov chains P consistent with \mathscr{Q} , in the sense that

$$(\forall t \in \mathbb{R}_{>0})(\exists Q_t \in \mathscr{Q}) T_t^{t+\delta} \approx I + \delta Q_t$$
 for δ suff. small.

Krak et al. (2017) use this set $\mathbb{P}_{\mathscr{Q}}$ to characterise an *imprecise (continuous-time) Markov chain*. They define the *lower transition operator* $\underline{T}_t^{t+\Delta}$ as

$$[\underline{T}_t^{t+\Delta} f](x) \coloneqq \underline{\mathrm{E}}(f(X_{t+\Delta})|X_t = x) = \underline{\mathrm{E}}(f(X_{t+\Delta})|X_{t_1} = x_1, \dots, X_{t_n} = x_n, X_t = x),$$

where $\underline{E}(\cdot|\cdot)$ is the minimum of the conditional expectations induced by $\mathbb{P}_{\mathscr{Q}}$.

Krak et al. (2017) prove that, under certain For any stationary precise conditions on \mathcal{Q} , continuous-time Markov chain,

$$(\forall t, \Delta \in \mathbb{R}_{\geq 0}) \ \underline{T}_t^{t+\Delta} = \underline{T}_0^\Delta \eqqcolon \underline{T}_\Delta.$$

$$T_t^{t+\Delta} = T_0^{\Delta} =: T_{\Delta}.$$

Krak et al. (2017) prove that, under certain For any stationary precise conditions on \mathcal{Q} , continuous-time Markov chain,

$$(\forall t, \Delta \in \mathbb{R}_{\geq 0}) \underline{T}_t^{t+\Delta} = \underline{T}_0^{\Delta} \eqqcolon \underline{T}_{\Delta}. \qquad T_t^{t+\Delta} = T_0^{\Delta} \eqqcolon T_{\Delta}.$$

Moreover, they show that \underline{T}_t is the unique Moreover, T_t is the unique operator that satisfies matrix that satisfies

$$\frac{\mathrm{d}}{\mathrm{d}t}\underline{T}_t = \underline{Q}\underline{T}_t \text{ with } \underline{T}_0 = I,$$

$$\frac{\mathrm{d}}{\mathrm{d}t}T_t = QT_t \text{ with } T_0 = I,$$

where \underline{Q} is the *lower transition rate operator* associated with \mathcal{Q} , defined as

$$[\underline{Q}f](x) \coloneqq \min\left\{[Qf](x) \colon Q \in \mathscr{Q}\right\}.$$

Krak et al. (2017) prove that, under certain For any stationary precise conditions on \mathcal{Q} , continuous-time Markov chain,

$$(\forall t, \Delta \in \mathbb{R}_{\geq 0}) \underline{T}_t^{t+\Delta} = \underline{T}_0^{\Delta} \eqqcolon \underline{T}_{\Delta}. \qquad T_t^{t+\Delta} = T_0^{\Delta} \eqqcolon T_{\Delta}.$$

Moreover, they show that \underline{T}_t is the unique Moreover, T_t is the unique operator that satisfies matrix that satisfies

$$\frac{\mathrm{d}}{\mathrm{d}t}\underline{T}_t = \underline{Q}\underline{T}_t$$
 with $\underline{T}_0 = I$,

$$\frac{\mathrm{d}}{\mathrm{d}t}T_t = QT_t \text{ with } T_0 = I,$$

Krak et al. (2017) show that

Furthermore,

$$\underline{T}_t = \lim_{n \to +\infty} \left(I + \frac{t}{n} \underline{Q} \right)^n$$

$$T_t = \lim_{n \to +\infty} \left(I + \frac{t}{n} Q \right)^n.$$

Krak et al. (2017) prove that, under certain For any stationary precise conditions on \mathcal{Q} , continuous-time Markov chain,

$$(\forall t, \Delta \in \mathbb{R}_{\geq 0}) \underline{T}_t^{t+\Delta} = \underline{T}_0^{\Delta} \eqqcolon \underline{T}_{\Delta}. \qquad T_t^{t+\Delta} = T_0^{\Delta} \eqqcolon T_{\Delta}.$$

Moreover, they show that \underline{T}_t is the unique Moreover, T_t is the unique operator that satisfies matrix that satisfies

$$\frac{\mathrm{d}}{\mathrm{d}t}\underline{T}_t = \underline{Q}\underline{T}_t \text{ with } \underline{T}_0 = I, \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t}T_t = QT_t \text{ with } T_0 = I,$$

For any sequence $\delta_{1:n}$ of *sufficiently small* For any sequence $\delta_{1:n}$ of steps that sum up to t, that sum up to t,

$$[\underline{T}_t f](x) \qquad [T_t f](x) \approx [(I + \delta_1 \underline{Q}) \cdots (I + \delta_n \underline{Q}) f](x). \qquad [T_t f](x) \approx [(I + \delta_1 Q) \cdots (I + \delta_n Q) f](x).$$

Imprecise continuous-time Markov chains Efficient computational methods with guaranteed error bounds

For any sequence $\delta_{1:n}$ of sufficiently small steps that sum up to t,

 $\underline{\mathbf{E}}(f(X_t)|X_0=x) = [\underline{T}_t f](x) \approx [(I+\delta_1 \underline{Q})\cdots (I+\delta_n \underline{Q})f](x).$

For any sequence $\delta_{1:n}$ of sufficiently small steps that sum up to t,

 $\underline{\mathbf{E}}(f(X_t)|X_0=x) = [\underline{T}_t f](x) \approx [(I+\delta_1 \underline{Q})\cdots (I+\delta_n \underline{Q})f](x).$

A convenient framework to compute an approximation g_n of $\underline{T}_t f$ is

$$\begin{array}{c|c} g_0 \leftarrow f, \Delta_r \leftarrow \Delta, i \leftarrow 0 \\ \text{while } \Delta_r > 0 \text{ do} \\ & i \leftarrow i+1 \\ select \text{ some sufficiently small } 0 < \delta_i \leq \Delta_r \\ g_i \leftarrow g_{i-1} + \delta_i \underline{Q}g_{i-1} \\ \Delta_r \leftarrow \Delta_r - \delta_i \end{array} \simeq \begin{array}{c} \text{numerical integration} \\ \text{of a non-linear vector} \\ \text{differential equation} \\ \text{return } g_n \end{array}$$

For any sequence $\delta_{1:n}$ of sufficiently small steps that sum up to t,

 $\underline{\mathbf{E}}(f(X_t)|X_0=x) = [\underline{T}_t f](x) \approx [(I+\delta_1 \underline{Q})\cdots(I+\delta_n \underline{Q})f](x).$

A convenient framework to compute an approximation g_n of $\underline{T}_t f$ is

 $\begin{array}{l} g_{0} \leftarrow f, \Delta_{r} \leftarrow \Delta, i \leftarrow 0 \\ \text{while } \Delta_{r} > 0 \text{ do} \\ & i \leftarrow i+1 \\ select \text{ some sufficiently small } 0 < \delta_{i} \leq \Delta_{r} \\ g_{i} \leftarrow g_{i-1} + \delta_{i} \underline{Q} g_{i-1} \\ \Delta_{r} \leftarrow \Delta_{r} - \delta_{i} \end{array} \xrightarrow{} \begin{array}{l} \text{numerical integration} \\ \text{of a non-linear vector} \\ \text{differential equation} \\ \text{return } g_{n} \end{array}$

We are interested in approximation methods (i.e., methods that select $\delta_{1:n}$) that *a priori and theoretically* guarantee that the error

$$\|\underline{T}_t f - g_n\| \coloneqq \max\{|\underline{T}_t f(x) - g_n(x)| : x \in \mathscr{X}\}\$$

is lower than the desired maximal error ϵ .

For any sequence $\delta_{1:n}$ of sufficiently small steps that sum up to t,

 $\underline{\mathbf{E}}(f(X_t)|X_0=x) = [\underline{T}_t f](x) \approx [(I+\delta_1 \underline{Q})\cdots(I+\delta_n \underline{Q})f](x).$

A convenient framework to compute an approximation g_n of $\underline{T}_t f$ is

 $\begin{array}{l} g_{0} \leftarrow f, \Delta_{r} \leftarrow \Delta, i \leftarrow 0 \\ \text{while } \Delta_{r} > 0 \text{ do} \\ & i \leftarrow i+1 \\ select \text{ some sufficiently small } 0 < \delta_{i} \leq \Delta_{r} \\ g_{i} \leftarrow g_{i-1} + \delta_{i} Qg_{i-1} \\ \Delta_{r} \leftarrow \Delta_{r} - \delta_{i} \end{array} \xrightarrow{} \begin{array}{l} \text{numerical integration} \\ \text{of a non-linear vector} \\ \text{differential equation} \\ \text{return } g_{n} \pm \epsilon \end{array}$

We are interested in approximation methods (i.e., methods that select $\delta_{1:n}$) that *a priori and theoretically* guarantee that the error

$$\|\underline{T}_t f - g_n\| \coloneqq \max\{|\underline{T}_t f(x) - g_n(x)| : x \in \mathscr{X}\}\$$

is lower than the desired maximal error ϵ .

Uniform approximation method

Krak et al. (2017) propose to use the same step size $\delta \coloneqq t/n$ for every step.

They show that if n is greater than two lower bounds, one is guaranteed that

 $\|\underline{T}_t f - g_n\| \le \epsilon.$

Uniform approximation method

Krak et al. (2017) propose to use the same step size $\delta \coloneqq t/n$ for every step.

They show that if n is greater than two lower bounds, one is guaranteed that

 $\|\underline{T}_t f - g_n\| \le \epsilon.$

We modify their method slightly on two fronts:

- 🗄 we show that one of the two lower bounds can be less conservative, and
- \blacksquare we provide a method to compute a *posterior error bound* that is lower than—or at worst equal to— ϵ .

Uniform approximation method

Krak et al. (2017) propose to use the same step size $\delta \coloneqq t/n$ for every step.

They show that if n is greater than two lower bounds, one is guaranteed that

 $\|\underline{T}_t f - g_n\| \le \epsilon.$

We modify their method slightly on two fronts:

- 🗄 we show that one of the two lower bounds can be less conservative, and
- \blacksquare we provide a method to compute a *posterior error bound* that is lower than—or at worst equal to— ϵ .

In practice, the posterior error bound is often significantly smaller than ϵ .

Imprecise continuous-time Markov chains Efficient computational methods with guaranteed error bounds

We propose a method that constructs the sequence $\delta_{1:n}$ adaptively, by increasing the step size δ_i every m iterations.

We propose a method that constructs the sequence $\delta_{1:n}$ adaptively, by increasing the step size δ_i every m iterations.

The adaptive method is *more efficient* than the uniform method, in the sense that

- it selects step sizes δ_i such that the posterior error bound is as close to the desired maximal error ϵ as possible, and
- it requires (considerably) fewer iteration steps than the uniform approximation method.

We propose a method that constructs the sequence $\delta_{1:n}$ adaptively, by increasing the step size δ_i every m iterations.

The adaptive method is *more efficient* than the uniform method, in the sense that

- it selects step sizes δ_i such that the posterior error bound is as close to the desired maximal error ϵ as possible, and
- it requires (considerably) fewer iteration steps than the uniform approximation method.

However,

increasing the step size adds non-negligible computational overhead.

We propose a method that constructs the sequence $\delta_{1:n}$ adaptively, by increasing the step size δ_i every m iterations.

The adaptive method is *more efficient* than the uniform method, in the sense that

- it selects step sizes δ_i such that the posterior error bound is as close to the desired maximal error ϵ as possible, and
- it requires (considerably) fewer iteration steps than the uniform approximation method.

However,

increasing the step size adds non-negligible computational overhead.

Want to know how this method actually works?

Come see our poster on friday!

We consider the Healthy-Sick imprecise Markov chain introduced in (Krak et al., 2017), and determine $\underline{T}_t f$ up to the desired maximal error $\epsilon = 10^{-4}$ for some t and some f.

	duration of comp.			
method	# iter.	no p.e.b.	with p.e.b.	p. e. b.
uniform	80 000	0.414	1.19	4.29×10^{-5}
adaptive ($m = 1$)	34 360	0.593	0.856	$1.00 imes10^{-4}$
adaptive ($m = 10$)	34 369	0.224	0.529	$1.00 imes 10^{-4}$

We consider the Healthy-Sick imprecise Markov chain introduced in (Krak et al., 2017), and determine $\underline{T}_t f$ up to the desired maximal error $\epsilon = 10^{-4}$ for some t and some f.

	duration of comp.			
method	# iter.	no p.e.b.	with p.e.b.	p. e. b.
uniform	80 000	0.414	1.19	4.29×10^{-5}
adaptive ($m = 1$)	34 360	0.593	0.856	$1.00 imes10^{-4}$
adaptive ($m=10$)	34 369	0.224	0.529	$1.00 imes10^{-4}$

The adaptive method indeed

needs fewer iterations than,

the uniform method.

We consider the Healthy-Sick imprecise Markov chain introduced in (Krak et al., 2017), and determine $\underline{T}_t f$ up to the desired maximal error $\epsilon = 10^{-4}$ for some t and some f.

	duration of comp.			
method	# iter.	no p.e.b.	with p.e.b.	p. e. b.
uniform	80 000	0.414	1.19	4.29×10^{-5}
adaptive ($m = 1$)	34 360	0.593	0.856	$1.00 imes10^{-4}$
adaptive ($m=10$)	34 369	0.224	0.529	$1.00 imes 10^{-4}$

The adaptive method indeed

- needs fewer iterations than,
- takes less computational time than, and

the uniform method.

We consider the Healthy-Sick imprecise Markov chain introduced in (Krak et al., 2017), and determine $\underline{T}_t f$ up to the desired maximal error $\epsilon = 10^{-4}$ for some t and some f.

	duration of comp.			
method	# iter.	no p.e.b.	with p.e.b.	p. e. b.
uniform	80 000	0.414	1.19	4.29×10^{-5}
adaptive ($m = 1$)	34 360	0.593	0.856	$1.00 imes10^{-4}$
adaptive ($m=10$)	34 369	0.224	0.529	$1.00 imes 10^{-4}$

The adaptive method indeed

- needs fewer iterations than,
- takes less computational time than, and

results in a posterior error bound that is closer to ϵ compared to the uniform method.

Definition (De Bock, 2017)

An imprecise Markov chain is ergodic if

$$\lim_{t \to +\infty} [\underline{T}_t f](x) = \underline{\mathbb{E}}_{\infty}(f) \quad \text{ for all } x \in \mathscr{X} \text{ and all } f \in \mathscr{L}(\mathscr{X}).$$

If this is the case, then $\underline{\mathrm{E}}_\infty$ is called the *limit lower expectation*.

Definition (De Bock, 2017)

An imprecise Markov chain is ergodic if

 $\lim_{t\to+\infty} [\underline{T}_t f](x) = \underline{\mathbb{E}}_\infty(f) \qquad \text{for all } x\in \mathscr{X} \text{ and all } f\in \mathscr{L}(\mathscr{X}).$

If this is the case, then $\underline{\mathrm{E}}_{\infty}$ is called the *limit lower expectation*.

Stationary precise Markov chains are a degenerate case of this definition. Indeed, a stationary precise Markov chain is ergodic if

$$\lim_{t \to +\infty} [T_t f](x) = \mathcal{E}_{\infty}(f) \quad \text{ for all } x \in \mathscr{X} \text{ and all } f \in \mathscr{L}(\mathscr{X}).$$

In this case, E_{∞} is called the *limit (linear) expectation*.

Definition (De Bock, 2017)

An imprecise Markov chain is ergodic if

 $\lim_{t\to+\infty} [\underline{T}_t f](x) = \underline{\mathbb{E}}_\infty(f) \qquad \text{for all } x\in \mathscr{X} \text{ and all } f\in \mathscr{L}(\mathscr{X}).$

If this is the case, then $\underline{\mathrm{E}}_{\infty}$ is called the *limit lower expectation*.

Stationary precise Markov chains are a degenerate case of this definition. Indeed, a stationary precise Markov chain is ergodic if

$$\lim_{t \to +\infty} [T_t f](x) = \mathcal{E}_{\infty}(f) \quad \text{ for all } x \in \mathscr{X} \text{ and all } f \in \mathscr{L}(\mathscr{X}).$$

In this case, E_∞ is called the *limit (linear) expectation*.

How do we approximate $\underline{\mathbf{E}}_{\infty}(f)$?

The limit lower expectation \underline{E}_{∞}

 $\mathcal{E}_{\infty}(f) = \lim_{n \to +\infty} [(I + \delta Q)^n f](x)$

The limit lower expectation $\underline{\mathrm{E}}_{\infty}$

The limit lower expectation $\underline{\mathrm{E}}_{\infty}$

Interested in a more detailed explanation?

References

Jasper De Bock.

The limit behaviour of imprecise continuous-time Markov chains. *Journal of Nonlinear Science*, 27(1):159–196, 2017.

- Gert de Cooman, Filip Hermans, and Erik Quaeghebeur. Imprecise Markov chains and their limit behavior. *Probability in the Engineering and Informational Sciences*, 23(4):597–635, 2009.
- Thomas Krak, Jasper De Bock, and Arno Siebes.
 Imprecise continuous-time Markov chains.
 2017. Accepted for publication in IJAR. arXiv:1611.05796 [math.PR].
- 📔 Damjan Škulj.

Efficient computation of the bounds of continuous time imprecise Markov chains.

Applied Mathematics and Computation, 250:165–180, 2015.

Damjan Škulj and Robert Hable.

Coefficients of ergodicity for Markov chains with uncertain parameters. *Metrika*, 76(1):107–133, 2013.