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Precise continuous-time Markov chains
Consider a family of random variables (Xt)t∈R≥0

where, for all t ∈ R≥0,Xttakes values in a finite and ordered state spaceX .LetL (X ) denote the set of all real-valued functions (vectors) onX .

A stochastic process P is a precise (continuous-time) Markov chain (pMC) if
P(Xt+∆ = y|Xt1 = x1, . . . , Xtn = xn, Xt = x)

= P(Xt+∆ = y|Xt = x) =: T t+∆
t (x, y).

The transition matrix T t+∆
t thus defined determines conditional expectations:

[T t+∆
t f ](x) = E(f(Xt+∆)|Xt = x)

= E(f(Xt+∆)|Xt1 = x1, . . . , Xtn = xn, Xt = x).
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Precise continuous-time Markov chains
Transition rate matrix
A pMC is called stationary if

(∀t,∆ ∈ R≥0) T t+∆
t = T∆

0 =: T∆.

In this case, there is a unique transition rate matrix Q—a matrix withnon-negative off-diagonal elements and rows that sum up to zero—such that,
(∀t ∈ R≥0) T t+δt = Tδ ≈ (I + δQ) for δ suff. small.

Similarly, for any non-stationary pMC there is a time-dependent transition ratematrix Qt such that
(∀t ∈ R≥0) T t+δt ≈ (I + δQt) for δ suff. small.

In practice, a (non-)stationary pMC is characterised by specifying
(i) a state spaceX ,
(ii) an initial distribution P(X0 = x), and
(iii) a (time-dependent) transition rate matrix Q (Qt).
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Precise continuous-time Markov chains
Approximation conditional expectations
Combining some properties of stationary pMCs, we find that

E(f(Xt)|X0 = x) = [Ttf ](x) = [Tδ1 · · ·Tδnf ](x)

≈ [(I + δ1Q) · · · (I + δnQ)f ](x),

where δ1:n := {δ1, . . . , δn} is a sequence of sufficiently small strictly positivetime steps such that∑n
i=1 δi = t.

In fact, it is well-known that
Tt = etQ = lim

n→+∞

(
I +

t

n
Q

)n
,

which is the unique time-dependent matrix that satisfies
d

dt
Tt = QTt with initial condition T0 = I.

In general, obtaining an analytical expression for Tt is infeasible!
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Imprecise continuous-time Markov chains
In practice, using a stationary pMC is often not warranted, as
− exactly specifying the transition rate matrix Q is often infeasible, and
− assuming stationarity is not always justified.

Therefore, we assume that the time-dependent transition rate matrix Qt of apMC is only known to be contained in some (non-empty and bounded) set oftransition rate matricesQ.
Let PQ be the set of all Markov chains P consistent withQ, in the sense that

(∀t ∈ R≥0)(∃Qt ∈ Q) T t+δt ≈ I + δQt for δ suff. small.

Krak et al. (2017) use this set PQ to characterise an imprecise (continuous-time)Markov chain. They define the lower transition operator T t+∆
t as

[T t+∆
t f ](x) := E(f(Xt+∆)|Xt = x)

= E(f(Xt+∆)|Xt1 = x1, . . . , Xtn = xn, Xt = x),

where E(·|·) is the minimum of the conditional expectations induced by PQ.

4 / 13



Imprecise continuous-time Markov chains
In practice, using a non-stationary pMC is often not warranted, as
− exactly specifying the time-dependent transition rate matrix Qt is ofteninfeasible, and
− assuming stationarity is not always justified.

Therefore, we assume that the time-dependent transition rate matrix Qt of apMC is only known to be contained in some (non-empty and bounded) set oftransition rate matricesQ.
Let PQ be the set of all Markov chains P consistent withQ, in the sense that

(∀t ∈ R≥0)(∃Qt ∈ Q) T t+δt ≈ I + δQt for δ suff. small.

Krak et al. (2017) use this set PQ to characterise an imprecise (continuous-time)Markov chain. They define the lower transition operator T t+∆
t as

[T t+∆
t f ](x) := E(f(Xt+∆)|Xt = x)

= E(f(Xt+∆)|Xt1 = x1, . . . , Xtn = xn, Xt = x),

where E(·|·) is the minimum of the conditional expectations induced by PQ.

4 / 13



Imprecise continuous-time Markov chains
In practice, using a (non-)stationary pMC is often not warranted, as
− exactly specifying the (time-dependent) transition rate matrix Qt is ofteninfeasible, and
− assuming stationarity is not always justified.
Therefore, we assume that the time-dependent transition rate matrix Qt of apMC is only known to be contained in some (non-empty and bounded) set oftransition rate matricesQ.

Let PQ be the set of all Markov chains P consistent withQ, in the sense that
(∀t ∈ R≥0)(∃Qt ∈ Q) T t+δt ≈ I + δQt for δ suff. small.

Krak et al. (2017) use this set PQ to characterise an imprecise (continuous-time)Markov chain. They define the lower transition operator T t+∆
t as

[T t+∆
t f ](x) := E(f(Xt+∆)|Xt = x)

= E(f(Xt+∆)|Xt1 = x1, . . . , Xtn = xn, Xt = x),

where E(·|·) is the minimum of the conditional expectations induced by PQ.

4 / 13



Imprecise continuous-time Markov chains
In practice, using a (non-)stationary pMC is often not warranted, as
− exactly specifying the (time-dependent) transition rate matrix Qt is ofteninfeasible, and
− assuming stationarity is not always justified.
Therefore, we assume that the time-dependent transition rate matrix Qt of apMC is only known to be contained in some (non-empty and bounded) set oftransition rate matricesQ.
Let PQ be the set of all Markov chains P consistent withQ, in the sense that

(∀t ∈ R≥0)(∃Qt ∈ Q) T t+δt ≈ I + δQt for δ suff. small.

Krak et al. (2017) use this set PQ to characterise an imprecise (continuous-time)Markov chain. They define the lower transition operator T t+∆
t as

[T t+∆
t f ](x) := E(f(Xt+∆)|Xt = x)

= E(f(Xt+∆)|Xt1 = x1, . . . , Xtn = xn, Xt = x),

where E(·|·) is the minimum of the conditional expectations induced by PQ.

4 / 13



Imprecise continuous-time Markov chains
In practice, using a (non-)stationary pMC is often not warranted, as
− exactly specifying the (time-dependent) transition rate matrix Qt is ofteninfeasible, and
− assuming stationarity is not always justified.
Therefore, we assume that the time-dependent transition rate matrix Qt of apMC is only known to be contained in some (non-empty and bounded) set oftransition rate matricesQ.
Let PQ be the set of all Markov chains P consistent withQ, in the sense that

(∀t ∈ R≥0)(∃Qt ∈ Q) T t+δt ≈ I + δQt for δ suff. small.

Krak et al. (2017) use this set PQ to characterise an imprecise (continuous-time)Markov chain. They define the lower transition operator T t+∆
t as

[T t+∆
t f ](x) := E(f(Xt+∆)|Xt = x)

= E(f(Xt+∆)|Xt1 = x1, . . . , Xtn = xn, Xt = x),

where E(·|·) is the minimum of the conditional expectations induced by PQ.
4 / 13



Imprecise continuous-time Markov chains
Krak et al. (2017) prove that, under certainconditions onQ,

(∀t,∆ ∈ R≥0) T t+∆
t = T∆

0 =: T∆.

Moreover, they show that T t is the uniqueoperator that satisfies
d

dt
T t = QT t with T 0 = I,

For any stationary precisecontinuous-time Markov chain,
T t+∆
t = T∆

0 =: T∆.

Moreover, Tt is the uniquematrix that satisfies
d

dt
Tt = QTt with T0 = I,
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Approximation methods
For any sequence δ1:n of sufficiently small steps that sum up to t,

E(f(Xt)|X0 = x) = [T tf ](x) ≈ [(I + δ1Q) · · · (I + δnQ)f ](x).

A convenient framework to compute an approximation gn of T tf is
g0 ← f ,∆r ← ∆, i← 0while∆r > 0 do

i← i+ 1select some sufficiently small 0 < δi ≤ ∆r

gi ← gi−1 + δiQgi−1

∆r ← ∆r − δireturn gn

±ε

'
numerical integrationof a non-linear vectordifferential equation

We are interested in approximation methods (i.e., methods that select δ1:n)that a priori and theoretically guarantee that the error
‖T tf − gn‖ := max{|T tf(x)− gn(x)| : x ∈X }

is lower than the desired maximal error ε.
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Uniform approximation method
Krak et al. (2017) propose to use the same step size δ := t/n for every step.
They show that if n is greater than two lower bounds, one is guaranteed that

‖T tf − gn‖ ≤ ε.

We modify their method slightly on two fronts:
+ we show that one of the two lower bounds can be less conservative, and
+ we provide a method to compute a posterior error bound that is lowerthan—or at worst equal to—ε.

In practice, the posterior error bound is often significantly smaller than ε.
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Adaptive approximation method
We propose a method that constructs the sequence δ1:n adaptively, byincreasing the step size δi everym iterations.

The adaptive method ismore efficient than the uniform method, in the sensethat
+ it selects step sizes δi such that the posterior error bound is as close tothe desired maximal error ε as possible, and
+ it requires (considerably) fewer iteration steps than the uniformapproximation method.
However,
− increasing the step size adds non-negligible computational overhead.

Want to know how this method actually works?Come see our poster on friday!
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Numerical comparison
We consider the Healthy-Sick imprecise Markov chain introduced in (Krak etal., 2017), and determine T tf up to the desired maximal error ε = 10−4 forsome t and some f .

duration of comp.method # iter. no p.e.b. with p.e.b. p. e. b.
uniform 80 000 0.414 1.19 4.29× 10−5adaptive (m = 1) 34 360 0.593 0.856 1.00× 10−4adaptive (m = 10) 34 369 0.224 0.529 1.00× 10−4

The adaptive method indeed

needs fewer iterations than,
takes less computational time than, and
results in a posterior error bound that is closer to ε compared to

the uniform method.
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Ergodicity



Ergodicity
Definition (De Bock, 2017)
An imprecise Markov chain is ergodic if

lim
t→+∞

[T tf ](x) = E∞(f) for all x ∈X and all f ∈ L (X ).

If this is the case, then E∞ is called the limit lower expectation.

Stationary precise Markov chains are a degenerate case of this definition.Indeed, a stationary precise Markov chain is ergodic if
lim

t→+∞
[Ttf ](x) = E∞(f) for all x ∈X and all f ∈ L (X ).

In this case, E∞ is called the limit (linear) expectation.
How do we approximate E∞(f)?
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lim
t→+∞

[Ttf ](x) = E∞(f) for all x ∈X and all f ∈ L (X ).

In this case, E∞ is called the limit (linear) expectation.
How do we approximate E∞(f)?
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The limit lower expectation E∞
Precise & stationary Imprecise
ergodic CTMC withTRM Q

ergodic DTMC withTM (I + δQ)

∀δ > 0,
δ ‖Q‖ < 2

E∞(f) = limn→+∞[(I + δQ)nf ](x)
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Precise & stationary Imprecise
ergodic CTMC withTRM Q

ergodic DTMC withTM (I + δQ)

∀δ > 0,
δ ‖Q‖ < 2

E∞(f) = limn→+∞[(I + δQ)nf ](x)

ergodic CTMC withLTRO Q

ergodic DTMC withLTO (I + δQ)Q = {Q}

Q = {Q}

new X∀δ > 0,
δ
∥∥Q
∥∥ < 2

E∞(f) = limn→+∞[(I + δQ)nf ](x)

at least not for all δ such that δ ∥∥Q∥∥ < 2!
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-imec

Guaranteed
approximat

ion method
s

From an applicat
ion point o

f view on
imprecise

(continuou
s-

time) Mark
ov chains (o

r iMCs, as i
ntroduced

in Markov c
hains:

An introduc
tion ), it is es

sential to ha
ve an efficie

nt computa
tional

method to
numerically

approximat
e T t f for som

e f ∈L (X ) and

some t ∈ R>0. We are
specifically

interested i
n methods

that yield

an approxim
ation Φt f of T t f such th

at the error
‖T t f −Φt f‖ is lowe

r

than some
desired ma

ximal error
ε . For ergo

dic iMCs, it
is often

also essent
ial to appro

ximate E∞( f ), see for
instance M

odelling

spectrum a
ssignment

in a two-se
rvice flexi-g

rid optical l
ink .

Some theor
etical resul

ts

Throughout
this poster,

we letX be a finite a
nd ordered

state space
,

and Q : L (X )→ L (X ) a generic
lower trans

ition rate o
perator.

For any f ∈L (X ), we define

‖ f‖ := max{| f (x)
| : x ∈X }

and ‖ f‖c
:= (max f −min f )/2.

A first—alth
ough minor

—result we
prove is tha

t

∥∥Q
∥∥ := sup

{∥∥Q f
∥∥ : f ∈L (X ),‖ f‖= 1

}
= 2max{

∣∣[QIx](x)
∣∣ : x ∈X }.

The two co
mputationa

l methods w
ith guarant

eed error b
ounds we

consider are
based on th

e following
theorem.

Theorem 1. Fix some f ∈L (X ) and t ∈ R≥0. Let Φt f be an ap
proxima-

tion of T t f . Then fo
r any δ ∈ R≥0 such that

δ ‖Q‖ ≤
2 and any m ∈ N,

∥∥T t+mδ f − (I+δQ)m Φt f
∥∥ ≤ ‖T t f −Φt f‖+mδ2 ‖Q‖

2 ‖Φt f‖c.

For any lowe
r transition o

perator T (a super-a
dditive, posi

tively homo
ge-

neous oper
ator that do

minates the
minimum),

Škulj and H
able (2013)

define the c
oefficient of

ergodicity

ρ(T ) := max{2‖T f‖c : f ∈L (X ),0≤ f ≤ 1}.
(1)

Obtaining th
e solution o

f the optimi
sation prob

lem in (1) is,
in general,

infeasible. H
owever, we

prove that a
computable

upper boun
d is

ρ(T )≤
ρ(T ) := max

{
max
x,y∈X

(
[T IA](x)

− [T IA](y)
)

: /0 6= A⊂X

}
, (2)

where T IA :=−T (−IA). The foll
owing novel

theorem is u
seful becau

se,

for all f ∈L (X ), m ∈ N and
δ ∈ R≥0 such that

δ
∥∥Q
∥∥ ≤ 2,

∥∥(I+δQ)m f
∥∥

c
≤ ρ((I+

δQ)m )‖ f‖c≤ ρ((I+
δQ)m )‖ f‖c.

(3)

Theorem 2. If Q is ergodic
(De Bock, 20

17), then the
re is some n < |X |

such that, fo
r any m≥ n and any δ ∈ R>0 that satis

fies δ
∥∥Q
∥∥ < 2,

ρ((I+
δQ)m )≤ ρ((I+

δQ)m )<
1.

Uniform ap
proximatio

n method

The uniform
approximat

ion method
was introdu

ced by (Kra
k et al.,

2017). They
suggest to a

pproximate
T t f with Ψ(δ ,n) f , where

Ψ(δ ,n)
:=
(

I+δQ
)n

and t = nδ . Given som
e desired m

aximal error
ε ∈R>0, they pro

pose a

way to selec
t the require

d number o
f grid steps

n—or equiv
alently, the

step size δ = t/n—which a
priori guara

ntees that ‖
T t f −Ψ(δ ,n) f‖ ≤ ε .

We modify
their metho

d in two wa
ys:

(i) we use a
less conserv

ative lower
bound for n; and

(ii) we a pos
teriori comp

ute a tighte
r guarantee

d error bou
nd ε′ .

Algorithm 1:Uniform a
pproximatio

n

g0← f , ε′ ← 0

n←
⌈

max{ t
∥∥Q
∥∥ /2 , t2

∥∥Q
∥∥2 ‖ f‖c/

ε}
⌉

δ ← t/n

for i = 0, . . . ,
n−1 do

ε′ ← ε′ +δ2
∥∥Q
∥∥2 ‖gi‖c

. If intereste
d in a tighte

r error boun
d

gi+1← gi+δQgi

return T t f =
gn± ε (or T t f =

gn± ε′ )

As a conseq
uence of Th

eorems 1 an
d 2 and Eqn

. (3), in case
Q is ergodic

,

an alternati
ve a priori g

uaranteed u
pper bound

for the erro
r is

‖T t f −Ψ(δ ,n) f‖ ≤ δ2
∥∥Q
∥∥2 ‖ f‖c

1−αk

1−α
≤ δ2

∥∥Q
∥∥2 ‖ f‖c

1−βk

1−β
, (4)

where k := dn/me, α := ρ((I+
δQ)m) and β := ρ((I+

δQ)m).

Adaptive ap
proximatio

n method

We observe
that in pract

ice, the a po
steriori dete

rmined erro
r bound ε′

is often muc
h smaller th

an the desir
ed maximal

error ε . By combi
ning

Theorems 1
and 2, we fi

nd that one
way to get

the posteri
or error

bound close
r to ε is to incre

ase the step
size δ over time

.

In the adapt
ive approxim

ation metho
d we propos

e, we achiev
e this by

re-evaluatin
g the step s

ize after eve
ry m iterations

.

Algorithm 2: Adaptive
approximat

ion

g0← f , ∆← t, i← 0, ε′ ← 0

while ∆ > 0 and ‖gi‖c>
0 do

i← i+1

δi←min{∆,2/
∥∥Q
∥∥ ,ε/(t

∥∥Q
∥∥2 ‖gi−1‖c)}

if mδi >
∆ then

mi← d∆
/δie

δi← ∆/mi

else mi← m

gi← gi−1

repeat mi times
ε′ ← ε′ +δ2

i

∥∥Q
∥∥2 ‖gi‖c

. If intereste
d in a tighte

r error boun
d

gi← gi+δiQgi

∆← ∆−miδ

return T t f =
gi± ε (or T t f =

gi± ε′ )

Computatio
nal compar

ison

We compar
e the unifor

m and adap
tive approxi

mation met
hods using

the Healthy
-Sick model

introduced
in (Krak et a

l., 2017). The
obtained

results are
collected in

the table b
elow, wher

e n is the nu
mber of

iterations a
nd D (D′ ) is the

duration in
seconds of

the comput
ations

without (wit
h) keeping t

rack of ε′ . We chos
e ε = 10−

4 .

n
D

D′
ε′

Uniform
8000

0 0.414
1.19

4.29×10
−5

Adaptive (m
= 1) 3436

0 0.593
0.856

1.00×10
−4

Adaptive (m
= 10) 3436

9 0.224
0.529

1.00×10
−4

Approxima
ting E∞( f )

Let Q be the tra
nsition rate

matrix of a
stationary a

nd ergodic p
recise

Markov cha
in. Then

lim
t→+∞

[Tt f ](x
) = E∞( f ) for all f ∈L (X ) and all x ∈

X .

It is well kno
wn that E∞ is the uni

que expecta
tion operato

r that satisfi
es

E∞(Q
f ) = 0 for all f ∈L (X ).

Consequen
tly, it is also

the unique
expectation

operator th
at, for all

δ ∈ R>0 such that
δ ‖Q‖<

2, satisfies

E∞((I
+δQ) f ) = E∞( f ) for all f ∈L (X ).

By the theo
ry of discret

e-time Mark
ov chains, th

e above equ
ality actu-

ally implies
that, for all

δ ∈ R>0 such that
δ ‖Q‖<

2,

E∞( f ) =
lim

n→+∞
(I+δQ)n f for all f ∈L (X ).

In the impr
ecise case,

all these ni
ce connecti

ons do not
necessarily

hold. Let Q be the lo
wer transiti

on rate ope
rator of an

ergodic iMC
.

Then
lim
t→+∞

[T t f ](
x) = E∞( f ) for all f ∈L (X ) and all x ∈

X ,

where E∞ is a lowe
r expectatio

n operator.
Unfortunat

ely, it does
not

hold in gene
ral that

E∞(Q
f ) = 0 for all f ∈L (X ),

or that, for
all δ ∈ R>0 such that

δ
∥∥Q
∥∥ < 2,

E∞((
I+δQ) f ) = E∞( f ) for all f ∈L (X ).

Therefore,
to the best

of our know
ledge, the

only way to
approxi-

mate E∞( f ) = limt→+∞[T t f ](
x) is to use a

n approxim
ation Φt f of T t f . If

‖T t f −Φt f‖ ≤
ε/2 and ‖Φt f‖c≤ ε/2, then

∣∣∣∣E∞( f )−
maxΦt f +

minΦt f

2

∣∣∣∣≤ ε.

See you at the po
ster session on f

riday!

Interested in a more detailed explanation?
Did not understand a word of what I was saying?
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