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P(Xt+A = letl = T1y.-- ,th = .’En,Xt = IE)
=P(Xppa =y|Xy =2) = TtH_A(m,y)-

The transition matrix T} ™ thus defined determines conditional expectations:

(T2 fl(z) = B(f(Xipa) | X; = @)
=E(f(Xe40)| Xy, = 21,..., Xt, = 2p, Xt = ).

n
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A pMC is called stationary if
(Vt,A € Rsg) TITE =T = Ta.

In this case, there is a unique transition rate matrix (Q)—a matrix with
non-negative off-diagonal elements and rows that sum up to zero—such that,

(Vt € Rso) THH? =Ts ~ (I +6Q)  for d suff. small.

Similarly, for any non-stationary pMC there is a time-dependent transition rate
matrix Q; such that

(Vt € Rso) TP ~ (I 4+6Q;)  for § suff. small.

In practice, a (non-)stationary pMC is characterised by specifying
(i) astate space 2,

(i) an initial distribution P(X, = z), and

(iii) a (time-dependent) transition rate matrix @ (Q;).
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Precise continuous-time Markov chains

Approximation conditional expectations

Combining some properties of stationary pMCs, we find that
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where 01., := {d1,...,d,} is a sequence of sufficiently small strictly positive
time steps such that > | 6; = ¢.
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where 01., := {d1,...,d,} is a sequence of sufficiently small strictly positive
time steps such that > | 6; = ¢.

In fact, it is well-known that

t n
T, =¢'? = lim <J+ Q) ,
n—-+4+oo n
which is the unique time-dependent matrix that satisfies

d
&Tt = QT; with initial condition Ty, = I.

In general, obtaining an analytical expression for T; is infeasible!
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In practice, using a (non-)stationary pMC is often not warranted, as

B exactly specifying the (time-dependent) transition rate matrix Q; is often
infeasible, and

B assuming stationarity is not always justified.

Therefore, we assume that the time-dependent transition rate matrix Q; of a
pMC is only known to be contained in some (non-empty and bounded) set of
transition rate matrices 2.

Let P4 be the set of all Markov chains P consistent with 2, in the sense that

(Vt € R50)(3Q: € 2) T/ ™ ~ I +6Q; for § suff. small.

Krak et al. (2017) use this set P to characterise an imprecise (continuous-time)
Markov chain. They define the lower transition operator T*** as

[T f)(x) = E(f(Xesa)| Xe = )
= E(f(Xt+A)|Xt1 =T1y--.- 7Xt = Tn, Xt = $),

n

where E(+|-) is the minimum of the conditional expectations induced by P 5.
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Krak et al. (2017) prove that, under certain For any stationary precise
conditions on 2, continuous-time Markov chain,

(Vt,A € Rs) T2 = T8 = T4. TiIHA = T8 = Tha.

Moreover, they show that T, is the unique Moreover, 7} is the unique
operator that satisfies matrix that satisfies

d ) d

EL =QT, withT, =1, a1

where @ is the lower transition rate
operator associated with 2, defined as

[Qf(z) = min {[Qf](z): Q € 2}.

Ty = QT; with Ty = I,
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operator that satisfies matrix that satisfies
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Krak et al. (2017) show that Furthermore,

t n . f ) n
. T,= lim (I+-Q) .
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conditions on 2, continuous-time Markov chain,

(Vt,A € Rs) T2 = T8 = T4. TIHA = T8 = Ta.

Moreover, they show that T, is the unique Moreover, 7} is the unique

operator that satisfies matrix that satisfies
d i 4 T, with Ty = I
Ezt:QItW'chOZL it T W 0o=1,

For any sequence 1., of sufficiently small For any sequence d;.,, of steps
steps that sum up to ¢, that sumup tot,

[T, f](z) (T3 f](z) = [({ + 6:Q)
~[(I+6:Q) (I +8,Q)f](). (L +0,Q) fl(2).
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Uniform approximation method

Krak et al. (2017) propose to use the same step size § := t/n for every step.

They show that if n is greater than two lower bounds, one is guaranteed that

IZ.f = gull <.
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Uniform approximation method

Krak et al. (2017) propose to use the same step size § := t/n for every step.

They show that if n is greater than two lower bounds, one is guaranteed that

IZ.f = gull <.

We modify their method slightly on two fronts:

we show that one of the two lower bounds can be less conservative, and

we provide a method to compute a posterior error bound that is lower
than—or at worst equal to—e.

In practice, the posterior error bound is often significantly smaller than e.
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Adaptive approximation method

We propose a method that constructs the sequence §;.,, adaptively, by
increasing the step size §; every m iterations.
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increasing the step size §; every m iterations.

The adaptive method is more efficient than the uniform method, in the sense
that

it selects step sizes §; such that the posterior error bound is as close to
the desired maximal error € as possible, and

it requires (considerably) fewer iteration steps than the uniform
approximation method.

However,

B increasing the step size adds non-negligible computational overhead.

Want to know how this method actually works?
Come see our poster on friday!
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Numerical comparison

We consider the Healthy-Sick imprecise Markov chain introduced in (Krak et
al., 2017), and determine T, f up to the desired maximal error ¢ = 10~ for
some t and some f.

duration of comp.
method #iter. nop.e.b. withp.e.b. p. e. b.

uniform 80000 0.414 1.19 4.29 x 10~3
adaptive (m =1) 34360 0.593 0.856 1.00 x 104
adaptive (m = 10) 34369 0.224 0.529 1.00 x 10~*
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adaptive (m = 10) 34369 0.224 0.529 1.00 x 10~*

The adaptive method indeed

m needs fewer iterations than,

m takes less computational time than, and

B results in a posterior error bound that is closer to e compared to
the uniform method.
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Definition (De Bock, 2017)
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lim [T,fl(z) =E(f) forallze Z andall f € Z(Z).
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If this is the case, then E_ is called the limit lower expectation.
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lim [T,f](z) =E(f) forallze 2 andall f € Z(Z).

t——+o0

If this is the case, then E_ is called the limit lower expectation.

Stationary precise Markov chains are a degenerate case of this definition.
Indeed, a stationary precise Markov chain is ergodic if

lim [T,f](z) = E(f) forallz e 2 andall f € 2(Z).

t—+o0
In this case, E is called the limit (linear) expectation.

How do we approximate E__(f)?
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The limit lower expectation E_

Precise & stationary Imprecise

ergodic CTMC with
TRM Q

Vo > 0,
JQl <2

ergodic DTMC with
™ (I 4+ 6Q)

Eoo (f) = limn, 1o [(1 + 6Q)" f1(2)
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2 ={Q} ergodic CTMC with
...................... LTRO Q

Vo > 0,
i@l <2
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The limit lower expectation E_

Precise & stationary Imprecise
ergodic CTMCwith < ={@}  ergodic CTMC with
TRM Q LTRO Q
A
vé > 0, z| V6 >0, >:(
SRl <2 2| s)Ql <27/
ergodic DTMC with e ergodic DTMC with
™ (I 4+ 6Q) 2=1{Q)} LTO (I + 0Q)
Eo(f) = limn4oo[( +0Q)"fl(z)  Eoo(f) =T " fl(x)

at least not for all § such that § || Q|| < 2!
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Interested in a more detailed explanation?

Did not understand a word of what | was saying?

s
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