(Generalized) Linear Regression on Microaggregated Data

Paul Fink, Thomas Augustin

Department of Statistics LMU Munich

July 11th, 2017 ISIPTA '17 / ECSQARU 2017 Lugano, Switzerland

Biography

Paul Fink	PhD student in group Foundations of Statis-
	tics and Their Applications
	M. Sc. in Statistics
	Strong interest in the analysis of so-called deficient data, e.g. anonymized data
Thomas Augustin	Head of group <i>Foundations of Statistics and Their Applications</i>

Anonymization: Background

- General Aim: Sharing of micro data to a broader audience, e.g. in Official Statistics
- ► Issue: Protection of sensitive information to prohibit disclosure of records (→ privacy)
- Solution: Anonymization in a way that balance
 - 1. the privacy requirement and
 - 2. the contained statistical quality
- Microaggregation as a set of methods for anonymization of metrical variables

How severe does the anonymization affect the analysis outcome?

Microaggregation

Typical structure of microaggregation techniques

- Grouping: Partition individual records of the micro data into clusters such that records within a cluster are similar and each cluster contains at least $k \ge 3$ records
- Aggregation: Replacement of each individual record within a cluster by the cluster's characteristic value, e.g. mean or median

Many microaggregation techniques available, differing mostly in grouping step

Representation as data transformation:

$$\mathbf{x} \stackrel{m}{\longrightarrow} \tilde{\mathbf{x}}$$

Microaggregation – Example (k = 3)

Original data x

ID	Turnover	Profit	
1	70.951	4.270	
2	15.610	-3.029	:
3	105.593	-4.160	•
4	80.929	-2.215	
5	17.156	-9.941	
6	6.020	2.140	:
7	102.936	-13.475	
8	49.407	-6.167	
9	143.424	-6.826	:
10	59.793	9.404	

Microaggregation – Example (k = 3)

Original data \boldsymbol{x}

Individual Ranking $\tilde{\mathbf{x}} = m(\mathbf{x})$

ID	Turnover	Profit			ID	Turnover	Profit	
1	70.951	4.270			1	65.270	5.271	
2	15.610	-3.029	:		2	12.929	-3.893	:
3	105.593	-4.160	•		3	117.318	-3.893	•
4	80.929	-2.215			4	65.270	-3.893	
5	17.156	-9.941			5	12.929	-10.081	
6	6.020	2.140	:		6	12.929	5.271	:
7	102.936	-13.475			7	117.318	-10.081	
8	49.407	-6.167			8	65.270	-3.893	
9	143.424	-6.826	:		9	117.318	-10.081	:
10	59.793	9.404	•		10	65.270	5.271	•
Turn	over:		60		90	1	20	150
Ť ,			\rightarrow					\rightarrow
6	2 5	8	10	1 4		73	9	

Anonymized data \tilde{x}

ID	Turnover	Profit	
1	65.270	5.271	
2	12.929	-3.893	•
3	117.318	-3.893	•
4	65.270	-3.893	
5	12.929	-10.081	
6	12.929	5.271	:
7	117.318	-10.081	
8	65.270	-3.893	
9	117.318	-10.081	÷
10	65.270	5.271	•

Anonymized data \tilde{x}

ID	Turnover	Profit	
1	65.270	5.271	
2	12.929	-3.893	:
3	117.318	-3.893	•
4	65.270	-3.893	
5	12.929	-10.081	
6	12.929	5.271	:
7	117.318	-10.081	
8	65.270	-3.893	
9	117.318	-10.081	:
10	65.270	5.271	•

Compatible data x_1 : $m(x_1) = \tilde{x}$

ID	Turnover	Profit	
1	73.316	9.039	
2	15.214	-4.874	:
3	164.674	-2.066	•
4	47.416	-6.369	
5	7.849	-13.106	
6	15.724	3.691	:
7	103.918	-6.923	
8	75.067	-2.263	
9	83.362	-10.214	:
10	65.281	3.083	•

Anonymized data \tilde{x}

ID	Turnover	Profit	
1	65.270	5.271	
2	12.929	-3.893	:
3	117.318	-3.893	•
4	65.270	-3.893	
5	12.929	-10.081	
6	12.929	5.271	:
7	117.318	-10.081	
8	65.270	-3.893	
9	117.318	-10.081	:
10	65.270	5.271	•

Compatible data \mathbf{x}_2 : $m(\mathbf{x}_2) = \tilde{\mathbf{x}}$

ID	Turnover	Profit	
1	53.567	4.247	
2	10.763	-8.688	:
3	109.089	-9.058	•
4	69.812	-1.507	
5	13.955	-9.480	
6	14.069	6.509	:
7	133.563	-9.999	
8	79.483	3.681	
9	109.302	-10.764	:
10	58.218	5.057	•

Anonymized data \tilde{x}

Compatible data \mathbf{x}_2 : $m(\mathbf{x}_2) = \tilde{\mathbf{x}}$

ID	Turnover	Profit		ID	Turnover	Profit	••
1	65.270	5.271		1	53.567	4.247	
2	12.929	-3.893	:	2	10.763	-8.688	:
3	117.318	-3.893	•	3	109.089	-9.058	•
4	65.270	-3.893		4	69.812	-1.507	
5	12.929	-10.081		5	13.955	-9.480	
6	12.929	5.271	:	6	14.069	6.509	:
7	117.318	-10.081		7	133.563	-9.999	
8	65.270	-3.893		8	79.483	3.681	
9	117.318	-10.081	:	9	109.302	-10.764	:
10	65.270	5.271	•	10	58.218	5.057	·

Microaggregated data induce set of compatible data:

$$\mathbb{X}(\tilde{\mathbf{x}}) = \{\mathbf{x} \mid m(\mathbf{x}) = \tilde{\mathbf{x}}\}$$

(Generalized) Linear Regression

Modeling the conditional expectation $\mathbb{E}(\boldsymbol{Y}|\boldsymbol{X})$ by a (transformed) linear predictor $\boldsymbol{x}\beta$.

Estimation of the parameter of interest β by maximum likelihood: Log-likelihood: $\ell(\beta; \mathbf{x}, \mathbf{y}) \longrightarrow \max_{\beta}$ (1)Score function: $s(\beta; \mathbf{x}, \mathbf{y}) = \frac{\partial \ell(\beta; \mathbf{x}, \mathbf{y})}{\partial \beta} = 0$ (Generalized) Linear Regression on Microaggregated Data

Analysis of contained statistical quality with respect to (generalized) linear regression

for microaggregated covariate(s) \tilde{x} on a non-microaggregated response y.

Of interest is the connection between y and the unobserved x!

$$\mathbb{X}(\tilde{\boldsymbol{x}}) = \{ \boldsymbol{x} \mid m(\boldsymbol{x}) = \tilde{\boldsymbol{x}} \}$$
Nuisance Parameter Optimization
Partial Identification

Treating of the underlying true values as nuisance parameters

$$\hat{oldsymbol{eta}}$$
 : $\ell(oldsymbol{eta}, oldsymbol{x}; oldsymbol{y}) \longrightarrow \max_{oldsymbol{eta}, oldsymbol{x} \in \mathbb{X}}$

In linear regression the *nice* score function structure reduces the complexity of the optimization task.

Incorporating additional (in)equalities specific for the applied microaggregation technique \longrightarrow More concise estimates

Partial Identification

Aim: Estimating the collection region

$$\hat{oldsymbol{B}}:=\{\hat{oldsymbol{eta}}\mid \exists oldsymbol{x}_0\in\mathbb{X}:oldsymbol{s}(\hat{oldsymbol{eta}};oldsymbol{x}_0,oldsymbol{y})=0\}$$

Estimation of component wise lower and upper bounds on β :

$$\hat{eta}_{m{q}} \longrightarrow \min/\max$$

such that

- all score functions requirements and
- additional (in)equalities specific for the applied microaggregation technique

are satisfied.

Solving via penalized optimization approach:

$$\hat{\beta}_q \pm \sum_{r=0}^p \lambda_r(s_r(\hat{\beta}; \boldsymbol{x}, \boldsymbol{y}))^2 \longrightarrow \min / \max$$

Summary and Outlook

Microaggregated data induce set of compatible data

$$\mathbb{X}(\tilde{\boldsymbol{x}}) = \{ \boldsymbol{x} \mid m(\boldsymbol{x}) = \tilde{\boldsymbol{x}} \}$$
Nuisance Parameter Optimization
Partial Identification

Simulation study with three microaggregation techniques

- Analysis of contained statistical quality with respect to generalized linear regression, e.g. logistic regression
- Analysis on the influence of the microaggregation technique