▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Expert Opinion Extraction from a Biomedical Database

 $\begin{array}{ccc} \text{A. Samet}^1 & \overline{\text{T. Guyet}^1} & \text{B. Negrevergne}^2 \\ \text{T-T. Dao}^3 & \text{T. } \overline{\text{N. Hoang}^3} & \text{M. C. Ho-Ba-Tho}^3 \end{array}$

¹ IRISA-UMR6074
 ² LAMSADE - Université Paris Dauphine
 ³ UTC – UMR 7338 Biomechanics and Bioengineering

ECSQARU - 12/07/2017

Problematic

Example: **opinions** about efficiency of treatments

Practitioner	Treatment 1	Treatment 2
P_1	Bad ₁ ^{0.3} Average ₁ ^{0.7}	Good ₂ ¹
P_2	$\{\textit{Average}_1 \cup \textit{Bad}_1\}^1$	$Good_2^{0.5}$ Average ₂ ^{0.5}

- \rightarrow Bad₁^{0.3} Average₁^{0.7}: Bad for 30% of cases, Average for 70%
- \rightarrow {*Average*₁ \cup *Bad*₁}¹: undistinguishable opinion (but certainly) not Good)

Our objective: Extracting "shared opinions" from such database of opinions (uncertain data)

Challenges

- \rightarrow Developing an efficient algorithm to extract "shared opinions"
- \rightarrow Considering opinions as a whole

State-of-the-art methods

State-of-the-art

- Frameworks and algorithms based on probabilities, fuzzy set and evidence theory
- Approaches that consider subsets of the opinions
 - False knowledge: a fraction of the opinion is not representative
 - Too many useless patterns
 - ⇒ our proposal lies in extracting opinions that exist in the database

Example: efficiency of treatments (patterns with $\sigma=0.7$

Practitioner	Treatment 1	Treatment 2
P_1	$Bad_1^{0.3}$ Average ₁ ^{0.7}	Good ₂ ¹
<i>P</i> ₂	$\{\mathit{Average}_1 \cup \mathit{Bad}_1\}^1$	Good ^{0.5} Average ^{0.5}

- { $Treatment_1 = Average_1$ } is a frequent evidential pattern
- { $Treatment_1 = Bad_1^{0.3} Average_1^{0.7}$ }: is it representative of σ opinions?

State-of-the-art methods

State-of-the-art

- Frameworks and algorithms based on probabilities, fuzzy set and evidence theory
- Approaches that consider subsets of the opinions
 - False knowledge: a fraction of the opinion is not representative
 - Too many useless patterns
 - ⇒ our proposal lies in extracting opinions that exist in the database

Example: efficiency of treatments (patterns with $\sigma=0.7$

Practitioner	Treatment 1	Treatment 2
P_1	$Bad_1^{0.3}$ Average ₁ ^{0.7}	Good ₂ ¹
<i>P</i> ₂	$\{\mathit{Average}_1 \cup \mathit{Bad}_1\}^1$	Good ^{0.5} Average ^{0.5}

- { $Treatment_1 = Average_1$ } is a frequent evidential pattern
- { $Treatment_1 = Bad_1^{0.3} Average_1^{0.7}$ }: is it representative of σ opinions?

State-of-the-art methods

State-of-the-art

- Frameworks and algorithms based on probabilities, fuzzy set and evidence theory
- Approaches that consider subsets of the opinions
 - False knowledge: a fraction of the opinion is not representative
 - Too many useless patterns
 - ⇒ our proposal lies in extracting opinions that exist in the database

Example: efficiency of treatments (patterns with $\sigma=0.7$

Practitioner	Treatment 1	Treatment 2
<i>P</i> ₁	$Bad_1^{0.3} Average_1^{0.7}$	$Good_2^1$
<i>P</i> ₂	$\{\mathit{Average}_1 \cup \mathit{Bad}_1\}^1$	Good ₂ ^{0.5} Average ₂ ^{0.5}

- {*Treatment*₁ = Average₁} is a frequent evidential pattern
- {*Treatment*₁ = Bad₁^{0.3} Average₁^{0.7}}: is it representative of σ opinions?

Conclusion and future works

Our proposal

Opinion mining framework

- Evidential databases for opinion modelling
- Define a measure of inclusion between opinions
- Define a measure of support based on the inclusion metric
- Developing a level-wise algorithms for opinion mining
- Apply on biomedical data reliability problem

Evidence theory

Belief function theory [Dempster 67 & Shafer 76]

- Let it be $\theta = \{H_1, H_2, ..., H_N\}$ the set all possible answers for a question Q: Frame of discernment
- A Basic Belief Assignment (BBA) is a $m: 2^{\theta} \rightarrow [0, 1]$ such that:

$$\sum_{A\subseteq\theta}m(A)=1$$

- A BBA *m* represents the state of knowledge of a rational agent *Ag* at an instant *t*
- m(A): part of belief accorded to A
- $m(\theta)$: represents the ignorance mass
- A is a focal element if and only if m(A) > 0

Evidential database

Definition

- An evidential database is a triplet $\mathcal{EDB} = (\mathcal{A}, \mathcal{O}, \mathcal{R}_{\mathcal{EDB}})$.
- A is a set of attributes.
- \mathcal{O} is a set of *d* transactions (i.e., rows).
- *R*_{EDB} expresses the relation between the jth line (i.e., transaction *T_j*) and the ith column (i.e., attribute *A_i*) by a normalized BBA.

Item & itemset

- An item is a BBA for a given attribute
- An itemset is a conjunction of BBAs (one per attribute)
 - an itemset contain an item for all attributes
 - $m_{ij} \in \mathcal{M}^{\Theta}$ denotes the opinion of *j*-th attribute for *i*-th transaction
 - $\bullet\,$ where \mathcal{M}^{Θ} set of all BBAs in \mathcal{EDB}

Problematic	Evidential databases	OpMiner	Experiments	Conclusion and future works
Example				

Practitioner	Treatment 1	Treatment 2
P_1	$m_{11}(Good_1) = 0.7$	$m_{12}(Good_2) = 0.4$
	$m_{11}(\Theta_1)=0.3$	$m_{12}(Average_2) = 0.2$
		$m_{12}(\Theta_2)=0.4$
P_2	$m_{21}(Good_1) = 0.6$	$m_{22}(Good_2) = 0.3$
	$m_{21}(\Theta_1)=0.4$	$m_{22}(\Theta_2)=0.7$

Table: Example of evidential database

•
$$m_{11} = \begin{cases} m_{11}(Good_1) = 0.7\\ m_{11}(\Theta_1) = 0.3 \end{cases}$$
 is an item.
• $\{m_{11}, m_{12}\}$ is an itemset.

◆□ → ◆□ → ◆目 → ◆□ → ◆□ →

Problematic

OpMiner

Experiments

Conclusion and future works

Inclusion between itemsets I

• Assuming an itemset $X = \{m_{ij} \in \mathcal{M}^{\theta}\}$, and \mathcal{EDB} a database of opinions, "how much" the pattern X appears in transaction?

 \rightarrow require to evaluate the inclusion of X in a transaction of \mathcal{EDB}

- Determining whether a pattern X is sufficiently frequent (given a threshold σ).
 - \rightarrow expected monotonicity property
 - def: if an itemset is not frequent, any super-itemset is frequent
 - enables efficient pruning of a priori unfrequent patterns

 \Rightarrow main idea: use commitment measures and its induced ordering

Conclusion and future works

Inclusion between itemsets II

Belief ordering

 Let m₁ and m₂ be two BBA's on Θ. m₁ ⊑ m₂ denotes that "m₁ is at least as committed as m₂"

• Three types of ordering have been proposed:

- pl-ordering (plausibility ordering) if $Pl_1(A) \leq Pl_2(A)$ for all $A \subseteq \Theta$, we write $m_1 \sqsubseteq_{pl} m_2$,
- q-ordering (communality ordering) if $q_1(A) \le q_2(A)$ for all $A \subseteq \Theta$, we write $m_1 \sqsubseteq_q m_2$,
- s-ordering (specialization ordering) if m₁ is a specialization of m₂, we write m₁ ⊑s m₂,

Conclusion and future works

◆□> ◆□> ◆豆> ◆豆> □ 豆

Inclusion between itemsets III

Plausibility based commitment measure

- Assuming two BBAs m_1 and m_2 such that $m_1 \sqsubseteq_{pl} m_2$.
- Assuming that $C(\cdot, \cdot)$ is a commitment measure between two BBAs.

$$\begin{array}{ll} \mathcal{C} & : 2^{\Theta} \times 2^{\Theta} \mapsto [0,1] \\ & (m_2,m_1) \rightarrow \begin{cases} 1 - ||\mathcal{P}l_{21}|| = 1 - \sqrt{\sum\limits_{A \subseteq \Theta} \mathcal{P}l_{21}(A)^2} & \textit{if } m_1 \sqsubseteq_{pl} m_2 \\ 0 & \textit{Otherwise} \end{cases}$$

where

$$Pl_{12}(A) = Pl_1(A) - Pl_2(A).$$

and

$$PI(A) = \sum_{B \cap A \neq \emptyset} m(B).$$

Problematic Evidential databases OpMiner Experiments Conclusion and future works
Support measure

- Assuming an itemset $X = \{m_{ij} \in \mathcal{M}^{\Theta}\}$
- The support of an item $x = m_{i'j}$ in a transaction T_i :

$$egin{array}{rl} Sup_{\mathcal{T}_i}: \mathcal{M}_i^{\Theta_j} & o & [0,1] \ & x & \mapsto & \mathcal{C}(x,m_{ij}) ext{ where } m_{ij} \in \mathcal{M}_i^{\Theta_j}. \end{array}$$

• The support of itemset X in T_i :

$$Sup_{T_i}(X) = \prod_{x \in X} Sup_{T_i}(x).$$

 \rightarrow Sup_{T_i}(X) \in [0, 1]

• The support of itemset X in \mathcal{EDB}

$$Sup_{\mathcal{EDB}}(X) = \frac{1}{d} \sum_{i=1}^{d} Sup_{\mathcal{T}_i}(X).$$

 \rightarrow Sup_{EDB} is anti-monotonic (see article)

Problematic	Evidential databases	OpMiner	Experiments	Conclusion and future works
Example				

Practitioner	Treatment 1	Treatment 2
P_1	$m_{11}(Good_1) = 0.7$	$m_{12}(Good_2) = 0.4$
	$m_{11}(\Theta_1)=0.3$	$m_{12}(Average_2) = 0.2$
		$m_{12}(\Theta_2)=0.4$
P_2	$m_{21}(Good_1) = 0.6$	$m_{22}(Good_2) = 0.3$
	$m_{21}(\Theta_1)=0.4$	$m_{22}(\Theta_2)=0.7$

Table: Example of evidential database

• Assuming
$$X = \begin{cases} \begin{cases} m(Good_1) = 0.8\\ m(\Theta_1) = 0.2 \end{cases} \end{cases}$$
,
 $Sup_{\mathcal{EDB}}(X) = \frac{C(m,m_{11}) \times C(m,m_{21})}{2} = 0.56$ (frequent pattern).
• Assuming $X = \begin{cases} m'(Good_2) = 1 \end{cases}$,
 $Sup_{\mathcal{EDB}}(X) = \frac{C(m',m_{12}) \times C(m',m_{22})}{2} = 0.22$ (infrequent pattern).

Problematic	Evidential databases	OpMiner	Experiments	Conclusion and future works
Example				

Practitioner	Treatment 1	Treatment 2
P_1	$m_{11}(Good_1) = 0.7$	$m_{12}(Good_2) = 0.4$
	$m_{11}(\Theta_1)=0.3$	$m_{12}(Average_2) = 0.2$
		$m_{12}(\Theta_2)=0.4$
P_2	$m_{21}(Good_1) = 0.6$	$m_{22}(Good_2) = 0.3$
	$m_{21}(\Theta_1)=0.4$	$m_{22}(\Theta_2)=0.7$

Table: Example of evidential database

• Assuming
$$X = \begin{cases} m(Good_1) = 0.8\\ m(\Theta_1) = 0.2 \end{cases}$$
,
 $Sup_{\mathcal{EDB}}(X) = \frac{C(m,m_{11}) \times C(m,m_{21})}{2} = 0.56 \text{ (frequent pattern)}.$
• Assuming $X = \begin{cases} m'(Good_2) = 1 \\ \frac{C(m',m_{12}) \times C(m',m_{22})}{2} = 0.22 \text{ (infrequent pattern)} \end{cases}$

.

Problematic	Evidential databases	Opiviiner	Experiments	Conclusion and future works
OpMiner				
OnMin	or			

- Input: a table that contains precomputed plausibilities of all BBAs
- Two parameters:
 - maxlen: the maximum size of patterns
 - σ : the frequency threshold
- Level-wise mining algorithm
 - Generate candidates of size n from frequent patterns of size n-1
 - Evaluate the support of candidate patterns of size n
 - $n \leftarrow n+1$ until there is frequent patterns of size n

Search space

The generation of candidates is based on \mathcal{EDB} content

- only existing opinions are used
- avoid to explore a too wide search space (set of BBA)

Problematic Evidential databases OpMiner Experiments Conclusion and future works
OpMiner

Require: \mathcal{EDB} , minsup, \mathcal{EDB}_{nl} , maxlen Ensure: \mathcal{EIFF} 1: \mathcal{EIFF} , Items $\leftarrow \emptyset$, size $\leftarrow 1$ 2: Items \leftarrow CANDIDATE_GEN($\mathcal{EDB}, \mathcal{EIFF}, Items$) **3**: While (candidate $\neq \emptyset$ and size \leq maxlen) 4: for all pat ∈ candidate do 5: if Sup-PORT(pat, minsup, EDBpl, Size_EDB)> minsup then 6: 7: 8: 9: $\mathcal{ET}.\mathcal{F}.\mathcal{F} \leftarrow \mathcal{ET}.\mathcal{F}.\mathcal{F} \cup \mathsf{pat}$ end if end for size \leftarrow size + 1 10: candidate \leftarrow CANDIDATE_GEN(EDB, EIFF, Items) 11: End While 12: function SUPPORT(pat, minsup, \mathcal{EDB}_{pl} ,d) 13: $Sup \leftarrow 0$ 14: for i=1 to d do **1**5: for all $pl_{ii} \in \mathcal{M}_i$ do 16: $pl \leftarrow mtopl(pat) \setminus computes the$ plausibility out of a BBA 17: if $pl_{ii} > pl$ then 18: $Sup_{Trans} \leftarrow Sup_{Trans} \times 1 - ||pl_{ii} - pl||$ 19: end if 20: end for

21: $Sup \leftarrow Sup + Sup_{Trans}$ 22: end for 23: return -24: end function 25: function CANDIDATE_GEN(EDB, EIFF, Items) 26: if size(Items) = 0 then 27: 28: for all $BBA \in \mathcal{EDB}$ do while Items $\neq \emptyset$ and BBA $\not\sqsubseteq_{pl}$ it do 29: 30: if $ltems = \emptyset$ then Add(BBA, Item) 31: 32: 33: 34: 35: 36: 37: 36: 37: 39: 40: else Replace(BBA, it, Item) end if end while end for return Items else for all $BBA \in \mathcal{EIFF}$ do for all $it \in Items$ do if !same_attribute(it, BBA) then 41: Cand \leftarrow Cand \cup {BBA \cup it} 42: 43: 44: 45: end if end for end for return Cand 46: 47: end if end function

Experiments

- Comparison with two alternative approaches:
 - U-Apriori: probabilistic itemset miner
 - EDMA: Evidential itemset miner
- Evaluation criteria
 - number of patterns
 - computing time
 - qualitative evaluation
- Evaluation dataset: use of a real use-case

Application details

Application and dataset description [3]

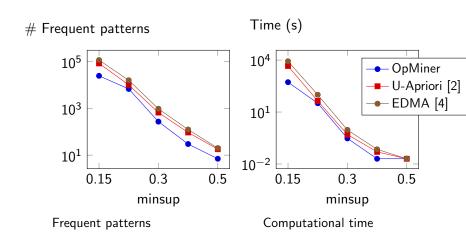
- Objective: biomedical data reliability (reliable clinical decision support).
- Data collection: systematic review process
 - 7 parameters: muscle morphology and mechanics and motion analysis
 - 20 data sources (papers) from reliable search engines (PubMed and ScienceDirect) : multiple sources (2-7) for one parameter
- Questionnaire: Google Form (remote assessment)
 - Four main questions: measuring technique, experimental protocol, number of samples, range of values
 - Four complementary questions: confidence levels
- Expert opinion database: international panel: 20 contacted and 11 (opinions received) from experts with different expertise (medical imaging, motion analysis)

Conclusion and future works

Opinion dataset

Expert		S1							
	Q_1	$Conf_1$	Q_2	Conf ₂	Q_3	Conf ₃	Q_4	Conf ₄	
1	Hig	Hig	Hig	Hig	Мо	Hig	Hig	Мо	
2	Hig	Ver	Мо	Ver	Hig	Ver	Мо	Ver	
3	Hig	Hig	Hig	Hig	Hig	Hig	Hig	Hig	
4	Hig	Hig	Мо	Hig	Hig	Hig	Мо	Hig	
5	Lo	Ver	Lo	Ver	Мо	Ver	Мо	Ver	
6	Мо	Мо	Мо	Мо	Lo	Hig	Lo	Hig	
7	Мо	Ver	Мо	Ver	Hig	Ver	Мо	Ver	
8	Мо	Ver	Lo	Hig	Hig	Ver	Lo	Ver	
9	Мо	Ver	Мо	Hig	Hig	Ver	Мо	Hig	
10	Мо	Hig	Мо	Hig	Мо	Hig	Мо	Hig	
11	Ver	Ver	Ver	Ver	Ver	Ver	Ver	Ver	





OpMiner

Experiments

Conclusion and future works

< □ > < □ > < □ > < □ > < □ > < □ > = □

Pattern comparison

EDMA S1 best pattern	OpMiner S1 best pattern	
{Q1=Hig or Mod, Q2=Hig or Mod,	$(m_1(Mo_1) - 1) \int m_2(Mo_2) = 0.8$	
	$\{m_1(m_2) = 1, \ m_2(\Theta_2) = 0.2$	
Q3=Hig or Mod, Q4=Hig or Mod}	$m_3(Hig_3) = 1, \begin{cases} m_4(Mo_4) = 0.8 \\ m_4(\Theta_4) = 0.2 \end{cases} \}$	
	$m_3(mg_3) = 1, \ m_4(\Theta_4) = 0.2$	
Classical pattern Vs. OpMiner pattern		

OpMiner

Experiments

Conclusion and future works

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Pattern comparison

EDMA S1 best pattern	OpMiner S1 best pattern
EDMA SI best pattern $\{m_1(Hig_1 \cup Mod_1) = 1, m_2(Hig_2 \cup Mod_2) = 1, \}$	$\{m_1(Mo_1) = 1, \begin{cases} m_2(Mo_2) = 0.8\\ m_2(\Theta_2) = 0.2 \end{cases}$
$egin{array}{llllllllllllllllllllllllllllllllllll$	$m_3(Hig_3) = 1, egin{cases} m_4(Mo_4) = 0.8 \ m_4(\Theta_4) = 0.2 \end{cases}$
Classical pattern Vs. OpMiner pattern	

Conclusion and future works

Conclusion and Perspectives

Conclusion

- We tackle the extraction of shared opinion patterns from uncertain database (evidential databases)
- We proposed to use a measure based on commitment to encode itemset inclusion (use of plausibility)
- We derived a support measure for BBAs
- Application on expert opinion biomedical database

Perspectives

- Refining the inclusion and support measure using the specialization matrix of Smets [5]
- Improving the scalability of OpMiner by decremental pruning [1]

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Thank You for your attention.

・ロト ・雪 ・ ・ ヨ ・ ・ ・ ・

Charu C Aggarwal.

Managing and Mining Uncertain Data, volume 3. Springer, 2010.

C-K Chui, B. Kao, and E. Hung.

Mining frequent itemsets from uncertain data.

in Proceedings of the 11th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Nanjing, China, pages 47–58, 2007.

Tuan Nha Hoang, Tien-Tuan Dao, and Marie-Christine Ho Ba Tho.

Clustering of children with cerebral palsy with prior biomechanical knowledge fused from multiple data sources.

In Proceedings of 5th International Symposium Integrated Uncertainty in Knowledge Modelling and Decision Making, Da Nang, Vietnam, pages 359–370, 2016.

Ahmed Samet, Eric Lefèvre, and Sadok Ben Yahia.

Evidential data mining: precise support and confidence. Journal of Intelligent Information Systems, pages 1–29, 2016.

Philippe Smets.

The application of the matrix calculus to belief functions. International Journal of Approximate Reasoning, 31(1–2):1–30, 2002.