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Problematic

Example: opinions about efficiency of treatments

Practitioner Treatment 1 Treatment 2

P1 Bad0.3
1 Average0.7

1 Good1
2

P2 {Average1 ∪ Bad1}1 Good0.5
2 Average0.5

2

→ Bad0.3
1 Average0.7

1 : Bad for 30% of cases, Average for 70%

→ {Average1 ∪ Bad1}1: undistinguishable opinion (but certainly
not Good)

Our objective: Extracting “shared opinions” from such database of
opinions (uncertain data)

Challenges

→ Developing an efficient algorithm to extract ”shared opinions”

→ Considering opinions as a whole
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State-of-the-art methods

State-of-the-art

Frameworks and algorithms based on probabilities, fuzzy set
and evidence theory

Approaches that consider subsets of the opinions

False knowledge: a fraction of the opinion is not representative
Too many useless patterns

⇒ our proposal lies in extracting opinions that exist in the
database

Example: efficiency of treatments (patterns with σ = 0.7

Practitioner Treatment 1 Treatment 2

P1 Bad0.3
1 Average0.7

1 Good1
2

P2 {Average1 ∪ Bad1}1 Good0.5
2 Average0.5

2

{Treatment1 = Average1} is a frequent evidential pattern{
Treatment1 = Bad0.3

1 Average0.7
1

}
: is it representative of σ

opinions?
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Our proposal

Opinion mining framework

Evidential databases for opinion modelling

Define a measure of inclusion between opinions

Define a measure of support based on the inclusion metric

Developing a level-wise algorithms for opinion mining

Apply on biomedical data reliability problem
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Evidence theory

Belief function theory [Dempster 67 & Shafer 76]

Let it be θ = {H1,H2, ...,HN} the set all possible answers for
a question Q: Frame of discernment

A Basic Belief Assignment (BBA) is a m : 2θ → [0, 1] such
that: ∑

A⊆θ
m(A) = 1

A BBA m represents the state of knowledge of a rational
agent Ag at an instant t

m(A): part of belief accorded to A

m(θ): represents the ignorance mass

A is a focal element if and only if m(A) > 0
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Evidential database

Definition

An evidential database is a triplet EDB = (A,O,REDB).

A is a set of attributes.

O is a set of d transactions (i.e., rows).

REDB expresses the relation between the j th line (i.e.,
transaction Tj) and the i th column (i.e., attribute Ai ) by a
normalized BBA.

Item & itemset

An item is a BBA for a given attribute

An itemset is a conjunction of BBAs (one per attribute)

an itemset contain an item for all attributes
mij ∈MΘ denotes the opinion of j-th attribute for i-th
transaction
where MΘ set of all BBAs in EDB
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Example

Practitioner Treatment 1 Treatment 2

P1 m11(Good1) = 0.7 m12(Good2) = 0.4
m11(Θ1) = 0.3 m12(Average2) = 0.2

m12(Θ2) = 0.4
P2 m21(Good1) = 0.6 m22(Good2) = 0.3

m21(Θ1) = 0.4 m22(Θ2) = 0.7

Table: Example of evidential database

m11 =

{
m11(Good1) = 0.7

m11(Θ1) = 0.3
is an item.

{m11,m12} is an itemset.
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Inclusion between itemsets I

Assuming an itemset X = {mij ∈Mθ}, and EDB a database
of opinions, “how much” the pattern X appears in
transaction?

→ require to evaluate the inclusion of X in a transaction of EDB
Determining whether a pattern X is sufficiently frequent
(given a threshold σ).
→ expected monotonicity property

def: if an itemset is not frequent, any super-itemset is frequent
enables efficient pruning of a priori unfrequent patterns

⇒ main idea: use commitment measures and its induced ordering
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Inclusion between itemsets II

Belief ordering

Let m1 and m2 be two BBA’s on Θ. m1 v m2 denotes that
“m1 is at least as committed as m2”

Three types of ordering have been proposed:

pl-ordering (plausibility ordering) if Pl1(A) ≤ Pl2(A) for all
A ⊆ Θ, we write m1 vpl m2,
q-ordering (communality ordering) if q1(A) ≤ q2(A) for all
A ⊆ Θ, we write m1 vq m2,
s-ordering (specialization ordering) if m1 is a specialization of
m2, we write m1 vs m2,
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Inclusion between itemsets III

Plausibility based commitment measure

Assuming two BBAs m1 and m2 such that m1 vpl m2.

Assuming that C (·, ·) is a commitment measure between two
BBAs.

C : 2Θ × 2Θ 7→ [0, 1]

(m2,m1)→

 1− ||Pl21|| = 1−
√ ∑

A⊆Θ

Pl21(A)2 if m1 vpl m2

0 Otherwise

where
Pl12(A) = Pl1(A)− Pl2(A).

and
Pl(A) =

∑
B∩A 6=∅

m(B).
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Support measure

Assuming an itemset X = {mij ∈MΘ}
The support of an item x = mi ′j in a transaction Ti :

SupTi
:MΘj

i → [0, 1]

x 7→ C (x ,mij) where mij ∈M
Θj

i .

The support of itemset X in Ti :

SupTi
(X ) =

∏
x∈X

SupTi
(x).

→ SupTi (X ) ∈ [0, 1]

The support of itemset X in EDB

SupEDB(X ) =
1

d

d∑
i=1

SupTi
(X ).

→ SupEDB is anti-monotonic (see article)
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Example

Practitioner Treatment 1 Treatment 2
P1 m11(Good1) = 0.7 m12(Good2) = 0.4

m11(Θ1) = 0.3 m12(Average2) = 0.2
m12(Θ2) = 0.4

P2 m21(Good1) = 0.6 m22(Good2) = 0.3
m21(Θ1) = 0.4 m22(Θ2) = 0.7

Table: Example of evidential database

Assuming X =

{{
m(Good1) = 0.8

m(Θ1) = 0.2

}
,

SupEDB(X ) = C(m,m11)×C(m,m21)
2 = 0.56 (frequent pattern).

Assuming X =
{{

m′(Good2) = 1
}

,

SupEDB(X ) = C(m′,m12)×C(m′,m22)
2 = 0.22 (infrequent pattern).
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OpMiner

OpMiner

Input: a table that contains precomputed plausibilities of all
BBAs

Two parameters:

maxlen: the maximum size of patterns
σ: the frequency threshold

Level-wise mining algorithm

Generate candidates of size n from frequent patterns of size
n − 1
Evaluate the support of candidate patterns of size n
n← n + 1 until there is frequent patterns of size n

Search space

The generation of candidates is based on EDB content

only existing opinions are used

avoid to explore a too wide search space (set of BBA)
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OpMiner

Require: EDB,minsup, EDBpl ,maxlen
Ensure: EIFF
1: EIFF, Items ← ∅, size ← 1

2: Items ← candidate gen(EDB, EIFF, Items)

3: While (candidate 6= ∅ and size ≤ maxlen)

4: for all pat ∈ candidate do

5: if Sup-
port(pat,minsup, EDBpl , Size EDB)≥ minsup
then

6: EIFF ← EIFF ∪ pat

7: end if
8: end for
9: size ← size + 1
10: candidate ←

candidate gen(EDB, EIFF, Items)

11: End While
12: function Support(pat, minsup, EDBpl ,d)

13: Sup ← 0

14: for i=1 to d do
15: for all plij ∈ Mi do

16: pl ← mtopl(pat)\\ computes the
plausibility out of a BBA

17: if plij ≥ pl then

18:
SupTrans ← SupTrans × 1− ||plij − pl||

19: end if
20: end for

21: Sup ← Sup + SupTrans
22: end for

23: return
SupI
d

24: end function
25: function candidate gen(EDB, EIFF , Items)

26: if size(Items) = 0 then

27: for all BBA ∈ EDB do
28: while Items 6= ∅ and BBA 6vpl it do

29: if Items = ∅ then
30: Add(BBA, Item)

31: else
32: Replace(BBA, it, Item)

33: end if
34: end while
35: end for
36: return Items
37: else
38: for all BBA ∈ EIFF do
39: for all it ∈ Items do
40: if !same attribute(it, BBA) then

41: Cand ← Cand ∪ {BBA ∪ it}
42: end if
43: end for
44: end for
45: return Cand
46: end if
47: end function
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Experiments

Comparison with two alternative approaches:

U-Apriori: probabilistic itemset miner
EDMA: Evidential itemset miner

Evaluation criteria

number of patterns
computing time
qualitative evaluation

Evaluation dataset: use of a real use-case
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Application details

Application and dataset description [3]

Objective: biomedical data reliability (reliable clinical decision
support).

Data collection: systematic review process

7 parameters: muscle morphology and mechanics and motion
analysis
20 data sources (papers) from reliable search engines (PubMed
and ScienceDirect) : multiple sources (2-7) for one parameter

Questionnaire: Google Form (remote assessment)

Four main questions: measuring technique, experimental
protocol, number of samples, range of values
Four complementary questions: confidence levels

Expert opinion database: international panel: 20 contacted and 11
(opinions received) from experts with different expertise (medical
imaging, motion analysis)
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Opinion dataset

Expert S1
Q1 Conf1 Q2 Conf2 Q3 Conf3 Q4 Conf4

1 Hig Hig Hig Hig Mo Hig Hig Mo
2 Hig Ver Mo Ver Hig Ver Mo Ver
3 Hig Hig Hig Hig Hig Hig Hig Hig
4 Hig Hig Mo Hig Hig Hig Mo Hig
5 Lo Ver Lo Ver Mo Ver Mo Ver
6 Mo Mo Mo Mo Lo Hig Lo Hig
7 Mo Ver Mo Ver Hig Ver Mo Ver
8 Mo Ver Lo Hig Hig Ver Lo Ver
9 Mo Ver Mo Hig Hig Ver Mo Hig

10 Mo Hig Mo Hig Mo Hig Mo Hig
11 Ver Ver Ver Ver Ver Ver Ver Ver
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Mining performance

0.15 0.3 0.5

101

103

105

minsup

# Frequent patterns

Frequent patterns
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10−2

101

104

minsup

Time (s)

OpMiner

U-Apriori [2]

EDMA [4]

Computational time
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Pattern comparison

EDMA S1 best pattern OpMiner S1 best pattern

{Q1=Hig or Mod, Q2=Hig or Mod, {m1(Mo1) = 1,

{
m2(Mo2) = 0.8

m2(Θ2) = 0.2

Q3=Hig or Mod, Q4=Hig or Mod} m3(Hig3) = 1,

{
m4(Mo4) = 0.8

m4(Θ4) = 0.2
}

Classical pattern Vs. OpMiner pattern
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Pattern comparison

EDMA S1 best pattern OpMiner S1 best pattern

{m1(Hig1 ∪ Mod1) = 1, m2(Hig2 ∪
Mod2) = 1,

{m1(Mo1) = 1,

{
m2(Mo2) = 0.8

m2(Θ2) = 0.2

m3(Hig3 ∪ Mod3) = 1,m4(Hig4 ∪
Mod4) = 1}

m3(Hig3) = 1,

{
m4(Mo4) = 0.8

m4(Θ4) = 0.2
}
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Conclusion and Perspectives

Conclusion

We tackle the extraction of shared opinion patterns from
uncertain database (evidential databases)

We proposed to use a measure based on commitment to
encode itemset inclusion (use of plausibility)

We derived a support measure for BBAs

Application on expert opinion biomedical database

Perspectives

Refining the inclusion and support measure using the
specialization matrix of Smets [5]

Improving the scalability of OpMiner by decremental pruning
[1]
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Thank You
for your attention.
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