

POSSIBILISTIC MDL: A NEW POSSIBILISTIC LIKELIHOOD BASED SCORE FUNCTION FOR IMPRECISE DATA

Maroua Haddad^{1,2}, Philippe Leray² and Nahla Ben Amor¹

¹ LARODEC Laboratory ISG-Tunis, University of Tunis, Tunisia. ²LS2N CNRS 6004, University of Nantes, France.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三目目 のへの

Possibilistic likelihood	Possibilistic Networks ∏N □□□□	Structure learning of IIN	Experimental results	Conclusion & perspectives
Outline				

Possibilistic likelihood ■□□□□	Possibilistic Networks ∏N □───	Structure learning of IIN	Experimental results	Conclusion & perspectives

Probabilistic likelihood

Recall on probabilistic likelihood function

$$\begin{array}{c} X_1 \\ \mathcal{D} = \begin{pmatrix} X_{11} \\ X_{12} \end{pmatrix} \\ \\ \Rightarrow \text{ Infer different types of models} \end{array}$$

Probabilistic likelihood

Recall on probabilistic likelihood function

$$\mathcal{D} = \begin{pmatrix} X_1 \\ x_{11} \\ x_{12} \end{pmatrix} \qquad \qquad L(\Theta, \mathcal{D}) = \theta_{x_{11}} * \theta_{x_{12}}$$

 \Rightarrow Infer different types of models

Limitations of probabilistic likelihood

- Imprecise data ?
- Total ignorance : Probabilistic reasoning unsound
- Evidential adaptation of likelihood function → limited [Couso and Dubois, 2017] ⇒ Possibilistic likelihood

◆□▶ ◆□▶ ▲□▶ ▲□▶ 三回目 のQ@

Possibilistic likelihood	Possibilistic Networks IIN	Structure learning of IIN	Experimental results	Conclusion & perspectives
Possibility	v theorv			

- Introduced by Zadeh [Zadeh, 1978] and developed by Dubois and Prade [Dubois and Prade, 1988]
- Possibility distribution : $\pi : \Omega \rightarrow L = [0, 1]$
- Extreme Cases :
 - Complete Knowledge : $\exists \omega_0 \in \Omega$ s.t. $\pi(\omega_0) = 1$ and $\forall \omega \neq \omega_0, \pi(\omega) = 0$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

- Total Ignorance : $\forall \omega \in \Omega, \pi(\omega) = 1$.
- Normalization : $\exists \omega \in \Omega \text{ s.t. } \pi(\omega) = 1$

Possibilistic likelihood	Possibilistic Networks IIN	Structure learning of IIN	Experimental results	Conclusion & perspectives	
Possibility	v theorv				

- Introduced by Zadeh [Zadeh, 1978] and developed by Dubois and Prade [Dubois and Prade, 1988]
- Possibility distribution : $\pi : \Omega \rightarrow L = [0, 1]$
- Extreme Cases :
 - Complete Knowledge : $\exists \omega_0 \in \Omega \text{ s.t. } \pi(\omega_0) = 1 \text{ and } \forall \omega \neq \omega_0, \pi(\omega) = 0$
 - Total Ignorance : $\forall \omega \in \Omega, \pi(\omega) = 1$.
- Normalization : $\exists \omega \in \Omega \text{ s.t. } \pi(\omega) = 1$
- Possibility measure Π : to what extent A is consistent with π

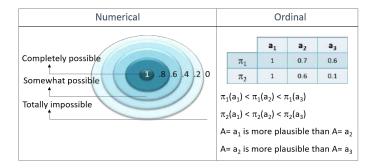
$$\Pi(A) = \max_{\omega \in A} \pi(\omega)$$

• Necessity measure N : to what extent A is implied by π

$$N(A) = 1 - \Pi(\neg A)$$

Possibilistic likelihood	Possibilistic Networks IIN	Structure learning of IIN	Experimental results	Conclusion & perspectives

Possibility distribution



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Structure learning of IIN

Experimental results Conclusion & perspectives

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Possibilistic likelihood (1/2)

Random set likelihood function (Imprecise data)

- A random set $S = \langle A_{ik} \subseteq D_i, m(A_{ik}) \rangle$ [Goodman and Nguyen, 1991]
- $m: 2^{card(D_i)} \mapsto [0, 1]$

 $\mathcal{D} = \begin{pmatrix} X_1 \\ X_{11}, X_{12} \\ X_{12} \end{pmatrix}$

$$mL(m, D) = m_{x_{11}, x_{12}} * m_{x_{12}}$$

 \Rightarrow High complexity \Rightarrow Approximation?

• π is a contour function of a random set [Shafer, 1976] :

$$\mathsf{CF}_{m \to \pi}(x_{ik}) = \pi(x_{ik}) = \sum_{A_{ik} \mid x_{ik} \in A_{ik}} m(A_{ik})$$

Structure learning of IIN

Experimental results Conclusion & perspectives

Possibilistic likelihood (1/2)

Random set likelihood function (Imprecise data)

- A random set $S = \langle A_{ik} \subseteq D_i, m(A_{ik}) \rangle$ [Goodman and Nguyen, 1991]
- $m: 2^{card(D_i)} \mapsto [0, 1]$

 $\mathcal{D} = \begin{pmatrix} X_1 \\ X_{11}, X_{12} \\ X_{12} \end{pmatrix}$

$$mL(m, D) = m_{x_{11}, x_{12}} * m_{x_{12}}$$

 \Rightarrow High complexity \Rightarrow Approximation?

• π is a contour function of a random set [Shafer, 1976] :

$$\mathsf{CF}_{m \to \pi}(x_{ik}) = \pi(x_{ik}) = \sum_{A_{ik} \mid x_{ik} \in A_{ik}} m(A_{ik})$$

Possibilistic likelihood function (Imprecise data)

$$\mathcal{D} = \begin{pmatrix} x_1 & \pi L(\pi) \\ x_{11}, x_{12} \\ x_{12} \end{pmatrix}$$

$$\pi L(\pi, \mathcal{D}) = \pi_{X_{11}} * \pi_{X_{12}} * \pi_{X_{12}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Possibilistic Networks IIN

Structure learning of IIN

Experimental results Conclusion & perspectives

◆□ > ◆□ > ◆□ > ◆□ > ●□ = のへで

Possibilistic likelihood (2/2)

Maximizing random sets likelihood

$$\hat{m}_{ik} = argmax(mLL(m_{ik}, \mathcal{D})) = \frac{N_{A_{ik}}}{N}$$

Structure learning of IIN

Experimental results Conclusion & perspectives

Possibilistic likelihood (2/2)

Maximizing random sets likelihood

$$\hat{m}_{ik} = argmax(mLL(m_{ik}, \mathcal{D})) = \frac{N_{A_{ik}}}{N}$$

Maximizing possibilistic likelihood

• Under constraint : $\sum_{k=1}^{|D_i|} \pi_{ik} = S_i$: imprecision degree of X_i

$$\hat{\pi}_{ik} = argmax(\pi LL(\pi_{ik}, \mathcal{D})) = \frac{N_{ik}}{N} * S_i$$

・ロト ・ 理ト ・ ヨト ・ ヨート ・ シック

Structure learning of IIN

Experimental results Conclusion & perspectives

Possibilistic likelihood (2/2)

Maximizing random sets likelihood

$$\hat{m}_{ik} = argmax(mLL(m_{ik}, \mathcal{D})) = \frac{N_{A_{ik}}}{N}$$

Maximizing possibilistic likelihood

• Under constraint : $\sum_{k=1}^{|D_i|} \pi_{ik} = S_i$: imprecision degree of X_i

$$\hat{\pi}_{ik} = argmax(\pi LL(\pi_{ik}, \mathcal{D})) = \frac{N_{ik}}{N} * S_i$$

$$argmax(mLL(m_{ik}, D)) = \hat{m}_{ik} \xrightarrow{CF_{m \to \pi}} \pi_{ik}^{*}$$
$$argmax(\pi LL(\pi_{ik}, D)) = \hat{\pi}_{ik}$$

・ロト ・ 理ト ・ ヨト ・ ヨート ・ シック

Structure learning of IIN

Experimental results Conclusion & perspectives

Possibilistic likelihood (2/2)

Maximizing random sets likelihood

$$\hat{m}_{ik} = argmax(mLL(m_{ik}, \mathcal{D})) = \frac{N_{A_{ik}}}{N}$$

Maximizing possibilistic likelihood

• Under constraint : $\sum_{k=1}^{|D_i|} \pi_{ik} = S_i$: imprecision degree of X_i

$$\hat{\pi}_{ik} = argmax(\pi LL(\pi_{ik}, \mathcal{D})) = \frac{N_{ik}}{N} * S_i$$

$$argmax(mLL(m_{ik}, \mathcal{D})) = \hat{m}_{ik} \quad CF_{m \to \pi} \quad \pi_{ik}^*$$

$$argmax(\pi LL(\pi_{ik}, \mathcal{D})) = \hat{\pi}_{ik} = \pi^*_{ik}$$

⇒ Infer different types of possibilistic models from *imprecise* data : Case of possibilistic networks

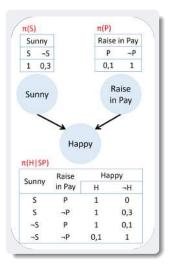
・ロト ・ 理ト ・ ヨト ・ ヨート ・ シック

Possibilistic Networks ∏N ■□□□ Structure learning of ITN

Experimental results

Conclusion & perspectives □

Possibilistic networks [Fonck, 1992]



Possibilistic conditioning

- Product-based ΠN_{*} :
 - Product-based conditioning

$$\pi(\omega|_*A) = \begin{cases} \frac{\pi(\omega)}{\Pi(A)} & \text{if } \omega \in A \\ 0 & \text{otherwise.} \end{cases}$$

● Min-based ΠN_{min}

 π

• Min-based conditioning

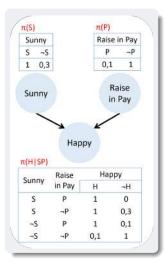
$$(\omega|_{min}A) = \begin{cases} 1 & \text{if } \pi(\omega) = \Pi(A) \text{ and } \omega \in A \\ \pi(\omega) & \text{if } \pi(\omega) < \Pi(A) \text{ and } \omega \in A \\ 0 & \text{otherwise.} \end{cases}$$

Possibilistic Networks ∏N ■□□□ Structure learning of ITN

Experimental results

Conclusion & perspectives

Possibilistic networks [Fonck, 1992]



Possibilistic chain rule

$$\pi(X_1,..,X_n) = \bigotimes_{i=1..n} \pi(X_i | Pa(X_i))$$

 $\Pi N_* : \otimes = * : / \Pi N_{min} : \otimes = min :$

Joint possibility distribution

Sunny	Raise in Pay	Нарру	•	min
S	Р	н	0,1	0,1
S	P	−H	0	0
5	P	н	1	1
S	¬₽	~H	0,3	0,3
-5	P	н	0,03	0,1
~S	р	-H	0,03	0,1
S	¬P	н	0,03	0,1
-S	P	-H	0,3	0,3

(日)

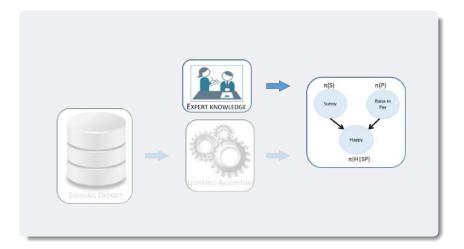
Possibilistic Networks IIN

Structure learning of ⊓N

Experimental results

Conclusion & perspectives □

How to build a possibilistic network?



<ロ> <四> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

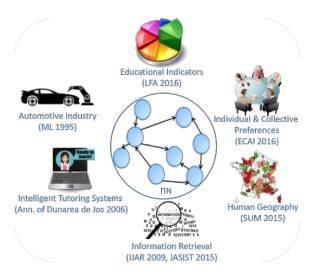
Possibilistic	likelihood	

Structure learning of IIN

Experimental results

Conclusion & perspectives

Applications

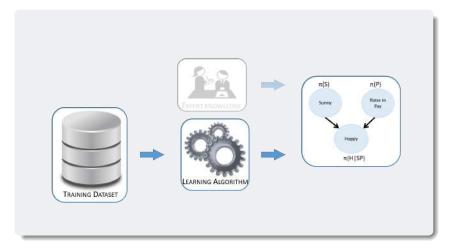


Structure learning of ⊓N

Experimental results

Conclusion & perspectives

How to build a possibilistic network?



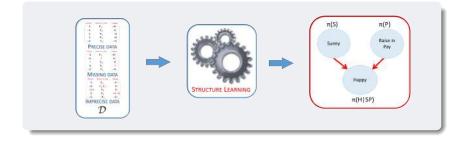
・ロト・<回ト・<国ト・<回ト・<ロト

Structure learning of ⊓N

Experimental results

Conclusion & perspectives

Structure learning of IIN



◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Structure learning of IIN

Experimental results

Conclusion & perspectives $\hfill\square$

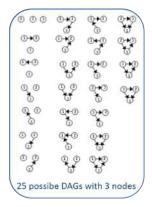
Structure learning of BN

Score-based approach

Search space (DAGs)

$$NS(n) = \begin{cases} 1 \text{ if } n = 0 \text{ or } n = 1\\ \sum_{i=1}^{n} (-1)^{i+1} C_i^n 2^i (n-1) NS(n-i) \text{ if } n > 1 \end{cases}$$

- Exhaustive search is impossible
- Heuristics to traverse DAGs space :
 - Reducing search space : Search sub-networks with high scores and combine them
 - Performing greedy search : Search in networks space and pick the one with the highest score



Possibilistic likelihood	Possibilistic Networks ПN	Structure learning of IIN	Experimental results	Conclusion & perspectives
Score pro	perties			

Likelihood equivalence

• Two equivalent structures have the same score

$$\left(\begin{array}{c} x_1 \rightarrow x_3 \rightarrow x_4 \end{array} \right) \left(\begin{array}{c} x_1 \leftarrow x_3 \leftarrow x_4 \end{array} \right)$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

Structure learning of IIN

Experimental results

Conclusion & perspectives

◆□ > ◆□ > ◆□ > ◆□ > ●□ = のへで

Structure learning of IIN

Structure learning of IIN

Experimental results

Conclusion & perspectives

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ●□ ● ● ● ●

Structure learning of IIN

- Score-based approaches : πMWST, πK2 [Borgelt and Kruse, 2003]
- Hybrid method : [Sangüesa et al., 1998]
- ⇒ Not based on likelihood function

Possibilistic likelihood	Possibilistic Networks ∏N □───	Structure learning of ⊓N	Experimental results	Conclusion & perspectives
Possibilist	tic score			

Possibilistic MDL

- Minimum description length (MDL) principle [Rissanen, 1978]
- Compromise between likelihood and complexity

 $\pi MDL(G|\mathcal{D}) = \pi LL(\pi, G, \mathcal{D}) - dim(G)$

$$\pi MDL(G|\mathcal{D}) = \sum_{i=1}^{n} \sum_{j=1}^{q_i} \sum_{k=1}^{r_i} N_{ijk} \log \hat{\pi}(X = x_{ik} | Pa(X_i) = x_j) - \sum_{i=1}^{n} |D_i| * \prod_{X_j \in Pa(X_i)} |D_j|$$

▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

Score properties :

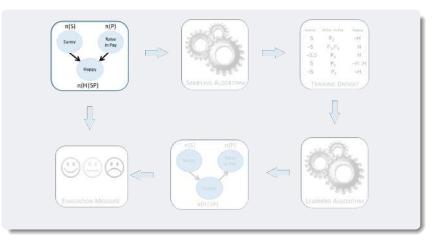
- Decomposability
- Likelihood equivalence?

Structure learning of IIN

Experimental results

Conclusion & perspectives

Evaluation strategy [Haddad et al., 2015]



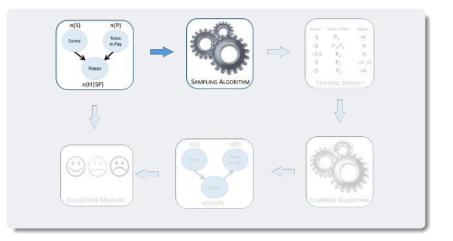
◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼

Structure learning of IIN

Experimental results

Conclusion & perspectives

Evaluation strategy [Haddad et al., 2015]



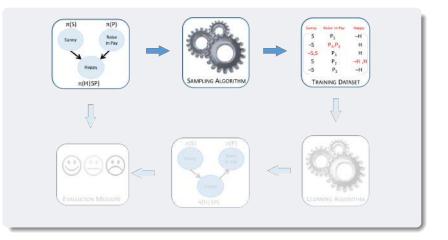
きょう きょう きょう きょう きょう

Structure learning of IIN

Experimental results

Conclusion & perspectives

Evaluation strategy [Haddad et al., 2015]

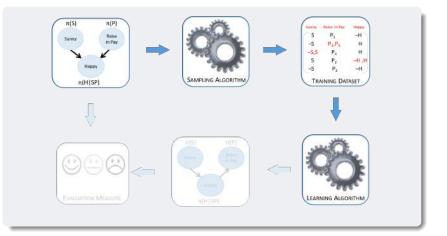


Structure learning of IIN

Experimental results

Conclusion & perspectives

Evaluation strategy [Haddad et al., 2015]



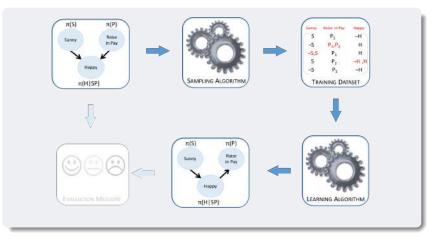
◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Structure learning of IIN

Experimental results

Conclusion & perspectives

Evaluation strategy [Haddad et al., 2015]



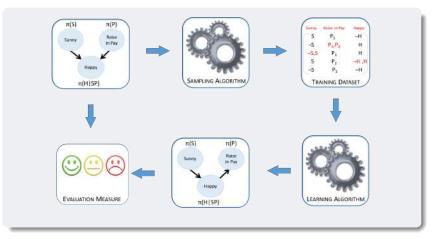
◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Structure learning of IIN

Experimental results

Conclusion & perspectives □

Evaluation strategy [Haddad et al., 2015]



Experimental results

Conclusion & perspectives

Structure learning algorithm evaluation (1/2)

Experimental protocol

- Generate 20 random ΠN₀ possibilistic networks ({10, 20} variables)
- Sample ΠN₀ ⇒ data sets of 1000 observations using Consonant_sampling, Imp_control_sampling, Cons_control_sampling algorithms [Haddad et al., 2015]
- Learn possibilistic networks ΠN_l using greedy search πGS combined with πMDL and networks structures using existing methods πK_2 , $\pi MWST$ combined with d_{χ^2} and d_{mi} [Borgelt and Kruse, 2003]
- Compute editing distance between ΠN_0 and ΠN_1 : number of operations required to transform ΠN_0 DAG into ΠN_1 DAG

Structure learning of IIN

Experimental results

Conclusion & perspectives

Structure learning algorithm evaluation (2/2)

	Editing distance		
n Method	10	20	
π GS + π <i>MDL</i>	19.77 +/- 1.5	31.55 +/- 2.92	
$\pi GS + \sum_{d_{\chi^2}}$	28.83 +/- 2.32	51.66 +/- 1.33	
$\pi GS + \sum_{d_{mi}}$	35.66 +/- 2.06	49.55 +/- 1.41-	
π MWST + d_{χ^2}	23.44 +/- 1.63	47.33 +/- 0.88	
π MWST + d_{mi}	22.77 +/- 1.6	47.55 +/- 1.41	
π K2 + d_{χ^2}	27.44 +/- 2.95	42.22 +/- 6.87	
πK2 + d _{mi}	28.38 +/- 4.53	42.77 +/- 5.66	

• πMDL outperforms d_{χ^2} and d_{mi} when used by GS

Structure learning of ITN

Experimental results

Conclusion & perspectives

Conclusion & perspectives

Conclusion

- Two likelihood functions : random set likelihood function and possibilistic likelihood function
- Infer different types of random set/possibilistic models : Case of possibilistic networks

 \Rightarrow Learn possibilistic network structure from imprecise data : experimentally validated

Perspectives

- A comparative study on a large number of benchmarks and problems
- Use numerical evaluation measures e.g. distance measure between joint and local distributions
- Evaluate the impact of non-satisfaction of Markov likelihood property on the learned possibilistic network structure quality

References I

Borgelt, C. and Kruse, R. (2003).

Operations and evaluation measures for learning possibilistic graphical models. *Artificial Intelligence*, 148(1):385–418.

Couso, I. and Dubois, D. (2017).

Maximum likelihood under incomplete information : Toward a comparison of criteria. In Soft Methods for Data Science, pages 141–148. Springer.

Dubois, D. and Prade, H. (1988).

Possibility theory. Springer.

Fonck, P. (1992).

Propagating uncertainty in a directed acyclic graph.

In Proceedings of the fourth Information Processing and Management of Uncertainty Conference, volume 92, pages 17–20.

Goodman, I. R. and Nguyen, H. T. (1991).

Uncertainty models for knowledge-based systems.

Technical report, DTIC Document.

Haddad, M., Leray, P., and Amor, N. B. (2015).

Evaluating product-based possibilistic networks learning algorithms. In Proceedings of Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pages 312–321.

▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

References II

Rissanen, J. (1978).

Modeling by shortest data description. *Automatica*, 14(5):465–471.

Sangüesa, R., Cabós, J., and Cortes, U. (1998).

Possibilistic conditional independence : A similarity-based measure and its application to causal network learning.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ●□ ● ● ● ●

International Journal of Approximate Reasoning, 18(1):145–167.

Shafer, G. (1976).

A mathematical theory of evidence, volume 1. Princeton university press Princeton.

Zadeh, L. A. (1978).

Fuzzy sets as a basis for a theory of possibility. *Fuzzy Sets and Systems*, 100 :9–34.