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Probabilistic likelihood

Recall on probabilistic likelihood function

X1

D = (x11
x12

)
L(Θ,D) = θx11 ∗ θx12

⇒ Infer different types of models
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Probabilistic likelihood

Recall on probabilistic likelihood function

X1

D = (x11
x12

)
L(Θ,D) = θx11 ∗ θx12

⇒ Infer different types of models

Limitations of probabilistic likelihood

Imprecise data ?

Total ignorance : Probabilistic reasoning unsound

Evidential adaptation of likelihood function Ð→ limited [Couso and Dubois, 2017]
⇒ Possibilistic likelihood
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Possibility theory

Introduced by Zadeh [Zadeh, 1978] and developed by Dubois and Prade
[Dubois and Prade, 1988]

Possibility distribution : π ∶ Ω→ L = [0,1]

Extreme Cases :
Complete Knowledge : ∃ω0 ∈ Ω s.t. π(ω0) = 1 and ∀ω ≠ ω0, π(ω) = 0
Total Ignorance : ∀ω ∈ Ω, π(ω) = 1.

Normalization : ∃ω ∈ Ω s.t. π(ω) = 1
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Possibility theory

Introduced by Zadeh [Zadeh, 1978] and developed by Dubois and Prade
[Dubois and Prade, 1988]

Possibility distribution : π ∶ Ω→ L = [0,1]

Extreme Cases :
Complete Knowledge : ∃ω0 ∈ Ω s.t. π(ω0) = 1 and ∀ω ≠ ω0, π(ω) = 0
Total Ignorance : ∀ω ∈ Ω, π(ω) = 1.

Normalization : ∃ω ∈ Ω s.t. π(ω) = 1

Possibility measure Π : to what extent A is consistent with π

Π(A) = maxω∈A π(ω)

Necessity measure N : to what extent A is implied by π

N(A) = 1 −Π(¬A)
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Possibility distribution
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Possibilistic likelihood (1/2)

Random set likelihood function (Imprecise data)

A random set S =< Aik ⊆ Di ,m(Aik) > [Goodman and Nguyen, 1991]

m ∶ 2card(Di) ↦ [0,1]

X1

D = (x11, x12
x12

)
mL(m,D) = mx11,x12 ∗mx12

⇒ High complexity⇒ Approximation ?

π is a contour function of a random set [Shafer, 1976] :

CFm→π(xik) = π(xik) = ∑
Aik ∣xik ∈Aik

m(Aik)
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Possibilistic likelihood (1/2)

Random set likelihood function (Imprecise data)

A random set S =< Aik ⊆ Di ,m(Aik) > [Goodman and Nguyen, 1991]

m ∶ 2card(Di) ↦ [0,1]

X1

D = (x11, x12
x12

)
mL(m,D) = mx11,x12 ∗mx12

⇒ High complexity⇒ Approximation ?

π is a contour function of a random set [Shafer, 1976] :

CFm→π(xik) = π(xik) = ∑
Aik ∣xik ∈Aik

m(Aik)

Possibilistic likelihood function (Imprecise data)

X1

D = (x11, x12
x12

)
πL(π,D) = πx11 ∗ πx12 ∗ πx12
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Possibilistic likelihood (2/2)

Maximizing random sets likelihood

m̂ik = argmax(mLL(mik ,D)) =
NAik

N
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Possibilistic likelihood (2/2)

Maximizing random sets likelihood

m̂ik = argmax(mLL(mik ,D)) =
NAik

N

Maximizing possibilistic likelihood

Under constraint : ∑∣Di ∣
k=1 πik = Si : imprecision degree of Xi

π̂ik = argmax(πLL(πik ,D)) = Nik

N
∗ Si
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Possibilistic likelihood (2/2)

Maximizing random sets likelihood

m̂ik = argmax(mLL(mik ,D)) =
NAik

N

Maximizing possibilistic likelihood

Under constraint : ∑∣Di ∣
k=1 πik = Si : imprecision degree of Xi

π̂ik = argmax(πLL(πik ,D)) = Nik

N
∗ Si

argmax(mLL(mik ,D)) = m̂ik CF m→πÐÐÐÐ→ π∗ik

argmax(πLL(πik ,D)) = π̂ik
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Possibilistic likelihood (2/2)

Maximizing random sets likelihood

m̂ik = argmax(mLL(mik ,D)) =
NAik

N

Maximizing possibilistic likelihood

Under constraint : ∑∣Di ∣
k=1 πik = Si : imprecision degree of Xi

π̂ik = argmax(πLL(πik ,D)) = Nik

N
∗ Si

argmax(mLL(mik ,D)) = m̂ik CF m→πÐÐÐÐ→ π∗ik

argmax(πLL(πik ,D)) = π̂ik = π∗ik
⇒ Infer different types of possibilistic models from imprecise data : Case of possibilistic
networks
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Possibilistic networks [Fonck, 1992]

Possibilistic conditioning
Product-based ΠN∗ :

Product-based conditioning

π(ω∣∗A) =
⎧⎪⎪⎨⎪⎪⎩

π(ω)
Π(A) if ω ∈ A
0 otherwise.

Min-based ΠNmin

Min-based conditioning

π(ω∣minA) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if π(ω) = Π(A) and ω ∈ A
π(ω) if π(ω) < Π(A) and ω ∈ A
0 otherwise.
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Possibilistic networks [Fonck, 1992]

Possibilistic chain rule

π(X1, ..,Xn) = ⊗i=1..nπ(Xi ∣Pa(Xi))

ΠN∗ : ⊗ = ∗ ∶ / ΠNmin : ⊗ = min ∶

Joint possibility distribution
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How to build a possibilistic network ?
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Applications
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How to build a possibilistic network ?
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Structure learning of ΠN
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Structure learning of BN

Score-based approach

Search space (DAGs)

NS(n) = { 1 if n = 0 or n = 1
∑n

i=1(−1)i+1Cn
i 2i(n − 1)NS(n − i) if n > 1

Exhaustive search is impossible

Heuristics to traverse DAGs space :
Reducing search space : Search sub-networks
with high scores and combine them
Performing greedy search : Search in networks
space and pick the one with the highest score
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Score properties

Decomposability

Likelihood equivalence

Two equivalent structures have the same score
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Structure learning of ΠN
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Structure learning of ΠN

Score-based approaches : πMWST, πK2 [Borgelt and Kruse, 2003]

Hybrid method : [Sangüesa et al., 1998]

⇒ Not based on likelihood function
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Possibilistic score

Possibilistic MDL

Minimum description length (MDL) principle [Rissanen, 1978]

Compromise between likelihood and complexity

πMDL(G∣D) = πLL(π,G,D) − dim(G)

πMDL(G∣D) =
n
∑
i=1

qi

∑
j=1

ri
∑
k=1

Nijk log π̂(X = xik ∣Pa(Xi) = xj) −
n
∑
i=1

∣Di ∣ ∗ ∏
Xj ∈Pa(Xi)

∣Dj ∣

Score properties :

Decomposability ✓
Likelihood equivalence ?
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Evaluation strategy [Haddad et al., 2015]
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Structure learning algorithm evaluation (1/2)

Experimental protocol

1 Generate 20 random ΠN0 possibilistic networks ({10, 20} variables)
2 Sample ΠN0 ⇒ data sets of 1000 observations using Consonant_sampling,

Imp_control_sampling, Cons_control_sampling algorithms [Haddad et al., 2015]
3 Learn possibilistic networks ΠNl using greedy search πGS combined with πMDL

and networks structures using existing methods πK2, πMWST combined with
dχ2 and dmi [Borgelt and Kruse, 2003]

4 Compute editing distance between ΠN0 and ΠNl : number of operations required
to transform ΠN0 DAG into ΠNl DAG
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Structure learning algorithm evaluation (2/2)

Editing distance
PPPPPPMethod

n 10 20

πGS + πMDL 19.77 +/- 1.5 31.55 +/- 2.92
πGS + ∑d

χ2
28.83 +/- 2.32 51.66 +/- 1.33

πGS + ∑dmi
35.66 +/- 2.06 49.55 +/- 1.41-

πMWST + dχ2 23.44 +/- 1.63 47.33 +/- 0.88
πMWST + dmi 22.77 +/- 1.6 47.55 +/- 1.41
π K2 + dχ2 27.44 +/- 2.95 42.22 +/- 6.87
πK2 + dmi 28.38 +/- 4.53 42.77 +/- 5.66

πMDL outperforms dχ2 and dmi when used by GS
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Conclusion & perspectives

Conclusion

Two likelihood functions : random set likelihood function and possibilistic
likelihood function

Infer different types of random set/possibilistic models : Case of possibilistic
networks
⇒ Learn possibilistic network structure from imprecise data : experimentally
validated

Perspectives

A comparative study on a large number of benchmarks and problems

Use numerical evaluation measures e.g. distance measure between joint and
local distributions

Evaluate the impact of non-satisfaction of Markov likelihood property on the
learned possibilistic network structure quality
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