A Recourse Approach for the Capacitated Vehicle Routing Problem with Evidential Demands

# Nathalie Helal<sup>1</sup>, Frédéric Pichon<sup>1</sup>, Daniel Porumbel<sup>2</sup>, David Mercier<sup>1</sup> and Éric Lefèvre<sup>1</sup>

<sup>1</sup>Université d'Artois, LGI2A, F-62400 Béthune, France

<sup>2</sup>Conservatoire National des Arts et Métiers, EA 4629 CEDRIC , 75003 Paris, France



### Background - CVRP / CVRPSD

The Capacitated Vehicle Routing Problem (CVRP)

• Finding the least cost routes to serve customers deterministic demands while respecting problem constraints, in particular vehicles capacity constraints.



The CVRP with Stochastic Demands (CVRPSD)

• Customers have stochastic demands.

### The CVRPSD may be addressed by two main approaches:

- Chance Constrained Programming (CCP).
- Stochastic Programming with Recourse (SPR).

#### Alternative uncertainty framework

- In a previous work [1], the CVRP with Evidential Demands (CVRPED) modelled by a *belief function* based extension of CCP.
- In this paper, we model the CVRPED by a belief function based extension of the SPR and solve it using a metaheuristic algorithm.
- The first papers that handle discrete NP-hard problem involving uncertainty represented by belief functions.

### The CVRPSD may be addressed by two main approaches:

- Chance Constrained Programming (CCP).
- Stochastic Programming with Recourse (SPR).

#### Alternative uncertainty framework

- In a previous work [1], the CVRP with Evidential Demands (CVRPED) modelled by a *belief function* based extension of CCP.
- In this paper, we model the CVRPED by a belief function based extension of the SPR and solve it using a metaheuristic algorithm.
- The first papers that handle discrete NP-hard problem involving uncertainty represented by belief functions.

# Outline

# CVRP with Stochastic Demands The CVRP The CVRPSD modelled by SPR

# **2** CVRP with Evidential Demands

Belief function theory

The CVRPED modelled by a recourse approach

Uncertainty on recourses (failure situations)

Interval Demands

Experiments

# **3** Conclusions & perspectives

# CVRP with Stochastic Demands The CVRP The CVRPSD modelled by SPR

# 2 CVRP with Evidential Demands Belief function theory

- The CVRPED modelled by a recourse approach
  - Formalisation

Uncertainty on recourses (failure situations)

- Interval Demands
- Experiments

# **3** Conclusions & perspectives

5 / 24

# The CVRP

## Given:

- n = number of customers including the depot,
- m = number of vehicles,
- Q = vehicle capacity,
- $d_i = (known)$  demand of client *i*,
- $c_{i,j} = \text{cost of travelling from client } i$  to client j,
- $w_{i,j,k} = \begin{cases} 1 & \text{if } k \text{ travels from } i \text{ to } j, \\ 0 & \text{otherwise.} \end{cases}$
- $R_k$  = the route associated to vehicle k.



# **Objective function**: min $\sum_{k=1}^{m} C(R_k)$ ,

where: 
$$C(R_k) = \sum_{i=0}^n \sum_{j=0}^n c_{i,j} w_{i,j,k}$$
, the travel cost of route  $R_k$ .

### The CVRPSD

- $d_i$  represents the stochastic demand of i (cannot exceed Q).
- Need to verify the capacity constraints of the CVRPSD for all realizations of d<sub>i</sub> ⇒ unrealistic.

#### A SPR approach for the CVRPSD

Clients demands are collected until remaining vehicle capacity is not sufficient to pick up entire customer demand  $\Rightarrow$  failure.

• If failure  $\Rightarrow$  recourse (a return trip to the depot).

• Failure can happen at multiple customers except the first one.

### The CVRPSD

- *d<sub>i</sub>* represents the stochastic demand of *i* (cannot exceed *Q*).
- Need to verify the capacity constraints of the CVRPSD for all realizations of d<sub>i</sub> ⇒ unrealistic.

### A SPR approach for the CVRPSD

- Clients demands are collected until remaining vehicle capacity is not sufficient to pick up entire customer demand ⇒ failure.
- If failure  $\Rightarrow$  recourse (a return trip to the depot).

• Failure can happen at multiple customers except the first one.

### The CVRPSD

- *d<sub>i</sub>* represents the stochastic demand of *i* (cannot exceed *Q*).
- Need to verify the capacity constraints of the CVRPSD for all realizations of d<sub>i</sub> ⇒ unrealistic.

### A SPR approach for the CVRPSD

- Clients demands are collected until remaining vehicle capacity is not sufficient to pick up entire customer demand ⇒ failure.
- If failure  $\Rightarrow$  recourse (a return trip to the depot).
- Failure can happen at multiple customers except the first one.

### The CVRPSD modelled by SPR

The objective function becomes:

$$\min\sum_{k=1}^m C_{\rm E}(R_k),$$

where  $C_{\rm E}(R_k)$  is the expected cost of  $R_k$  defined by  $C_{\rm E}(R_k) = C(R_k) + C_{\rm P}(R_k),$ 

with

- $C(R_k)$  the travel cost on  $R_k$  when no recourse action is performed;
- $C_{\rm P}(R_k)$  the expected penalty cost on  $R_k$  induced by failures.

# 1 CVRP with Stochastic Demands The CVRP The CVRPSD modelled by SPR

# **2** CVRP with Evidential Demands

## Belief function theory

The CVRPED modelled by a recourse approach

Formalisation Uncertainty on recourses (failure situations)

Experiments

# **3** Conclusions & perspectives

#### Needed concepts

• A variable x taking values in a finite domain X.

• A MF 
$$m^X : 2^X \rightarrow [0,1]$$
 s.t.  $\sum_{A \subseteq X} m^X(A) = 1.$ 

- A variable whose true value is known in the form of a MF is called an *evidential variable*.
- Given a MF  $m^X$  and a function h:  $X \to \mathbb{R}^+$ , then the upper expected value of *h* relative to  $m^X$  is :

$$E^*(h, m^X) = \sum_{A \subseteq X} m^X(A) \max_{x \in A} h(x).$$

# 1 CVRP with Stochastic Demands The CVRP The CVRPSD modelled by SPR

# **2** CVRP with Evidential Demands

## Belief function theory

# The CVRPED modelled by a recourse approach Formalisation

Uncertainty on recourses (failure situations)

Interval Demands

Experiments

# **3** Conclusions & perspectives

 $d_i$  represents the evidential demand of i (cannot exceed Q).

The recourse approach: failure situations

- Suppose a route *R* having *N* customers.
- $r_i = \left\{ \begin{smallmatrix} 1 \\ 0 \end{smallmatrix} 
  ight.$  if failure occurs at the *i*-th client on  $R \\ 0 \end{smallmatrix} 
  ight\}$  and  $r_1 = 0$ .
- Possible failure situations on R represented by vectors  $(r_2, r_3, \ldots, r_N) \in \Omega$  s.t.  $\Omega = \{0, 1\}^{N-1}$ .

Cost and uncertainty of each failure situation  $\omega\in\Omega_+$ 

Cost of each  $\omega \in \Omega$  determined by  $g : \Omega \to \mathbb{R}^+$ .

• The penalty cost upon failure on i is  $2c_{0,i} \Rightarrow g(\omega) = \sum r_i 2c_{0,i}$ .

A MF m<sup>Ω</sup> representing uncertainty on failure situations on R

 $d_i$  represents the evidential demand of i (cannot exceed Q).

### The recourse approach: failure situations

- Suppose a route *R* having *N* customers.
- $r_i = \left\{ \begin{smallmatrix} 1 \\ 0 \end{smallmatrix} 
  ight.$  if failure occurs at the *i*-th client on  $R \\ 0 \end{smallmatrix} 
  ight\}$  and  $r_1 = 0$ .

• Possible failure situations on R represented by vectors  $(r_2, r_3, \ldots, r_N) \in \Omega$  s.t.  $\Omega = \{0, 1\}^{N-1}$ .

#### Cost and uncertainty of each failure situation $\omega \in \Omega$

- Cost of each  $\omega \in \Omega$  determined by  $g : \Omega \to \mathbb{R}^+$ .
- The penalty cost upon failure on i is  $2c_{0,i} \Rightarrow g(\omega) = \sum r_i 2c_{0,i}$ .
- A MF  $m^{\Omega}$  representing uncertainty on failure situations on R

 $d_i$  represents the evidential demand of i (cannot exceed Q).

### The recourse approach: failure situations

- Suppose a route *R* having *N* customers.
- $r_i = \begin{cases} 1 & \text{if failure occurs at the } i\text{-th client on } R \\ 0 & \text{otherwise} \end{cases}$  and  $r_1 = 0$ .

• Possible failure situations on *R* represented by vectors  $(r_2, r_3, \ldots, r_N) \in \Omega$  s.t.  $\Omega = \{0, 1\}^{N-1}$ .

#### Cost and uncertainty of each failure situation $\omega \in \Omega$

- Cost of each  $\omega \in \Omega$  determined by  $g : \Omega \to \mathbb{R}^+$ .
- The penalty cost upon failure on i is  $2c_{0,i} \Rightarrow g(\omega) = \sum r_i 2c_{0,i}$

• A MF  $m^{\Omega}$  representing uncertainty on failure situations on R

 $d_i$  represents the evidential demand of i (cannot exceed Q).

### The recourse approach: failure situations

- Suppose a route *R* having *N* customers.
- $r_i = \begin{cases} 1 & \text{if failure occurs at the } i\text{-th client on } R \\ 0 & \text{otherwise} \end{cases}$  and  $r_1 = 0$ .

• Possible failure situations on R represented by vectors  $(r_2, r_3, \ldots, r_N) \in \Omega$  s.t.  $\Omega = \{0, 1\}^{N-1}$ .

#### Cost and uncertainty of each failure situation $\omega \in \Omega$

- Cost of each  $\omega \in \Omega$  determined by  $g : \Omega \to \mathbb{R}^+$ .
- The penalty cost upon failure on *i* is  $2c_{0,i} \Rightarrow g(\omega) = \sum_{i=2}^{N} r_i 2c_{0,i}$ .
- A MF  $m^{\Omega}$  representing uncertainty on failure situations on R.

### A pessimistic attitude: penalty cost and upper expected cost

- The upper expected penalty cost of R is  $C_{\rm P}^*(R) = E^*(g, m^{\Omega})$ .
- The Objective of the CVRPED: min  $\sum_{k=1}^{m} C_{\rm E}^*(R_k)$ , with  $C_{\rm E}^*(R_k) = C(R_k) + C_{\rm P}^*(R_k)$ .
  - Similarities with robust optimisation.
  - Bayesian evidential demands  $\Rightarrow$  CVRPSD via SPR.

### A pessimistic attitude: penalty cost and upper expected cost

- The upper expected penalty cost of R is  $C_{\rm P}^*(R) = E^*(g, m^{\Omega})$ .
- The Objective of the CVRPED: min  $\sum_{k=1}^{m} C_{\rm E}^*(R_k)$ , with  $C_{\rm E}^*(R_k) = C(R_k) + C_{\rm P}^*(R_k)$ .
  - Similarities with robust optimisation.
  - Bayesian evidential demands  $\Rightarrow$  CVRPSD via SPR.

# CVRP with Stochastic Demands The CVRP The CVRPSD modelled by SPR

# **2** CVRP with Evidential Demands

## Belief function theory

## The CVRPED modelled by a recourse approach

Formalisation

Uncertainty on recourses (failure situations)

Interval Demands

Experiments

# **3** Conclusions & perspectives

A route *R* with N = 3 clients;

 $\theta_1 = 3$  and  $m_1(\theta_1) = 1;$ 

 $heta_2=3$  and  $m_2( heta_2)=1;$ 

 $\theta_3 = 5$  and  $m_3(\theta_3) = 1;$ 

Capacity limit Q = 5;

 $q_i, i = 1, \ldots, N$ , the vehicle load after serving *i*-th client:

- $r_1 = 0$  and  $q_1 = \theta_1 = 3$ .
- $r_2 = 1$  since  $q_1 + \theta_2 > Q$ , and  $q_2 = q_1 + \theta_2 Q = 1$ .
- $r_3 = 1$  since  $q_2 + \theta_3 > Q$ , and  $q_3 = q_2 + \theta_3 Q = 1$ .

 $f(\theta_1, \theta_2, \theta_3) = \omega$  and  $\omega \leftrightarrow (r_2 = 1, r_3 = 1)$ 



A route *R* with N = 3 clients;

- $heta_1 = 3$  and  $m_1( heta_1) = 1;$
- $\theta_2 = 3$  and  $m_2(\theta_2) = 1;$
- $\theta_3 = 5$  and  $m_3(\theta_3) = 1;$

Capacity limit Q = 5;

 $q_i, i = 1, \ldots, N$ , the vehicle load after serving *i*-th client:

- $r_1 = 0$  and  $q_1 = \theta_1 = 3$ .
- $r_2 = 1$  since  $q_1 + \theta_2 > Q$ , and  $q_2 = q_1 + \theta_2 Q = 1$ .
- $r_3 = 1$  since  $q_2 + \theta_3 > Q$ , and  $q_3 = q_2 + \theta_3 Q = 1$ .



2

3

A route *R* with N = 3 clients;

- $\theta_1 = 3$  and  $m_1(\theta_1) = 1;$
- $heta_2=3$  and  $m_2( heta_2)=1;$
- $\theta_3 = 5$  and  $m_3(\theta_3) = 1;$

Capacity limit Q = 5;

 $q_i, i = 1, \ldots, N$ , the vehicle load after serving *i*-th client:

- $r_1 = 0$  and  $q_1 = \theta_1 = 3$ .
- $r_2 = 1$  since  $q_1 + \theta_2 > Q$ , and  $q_2 = q_1 + \theta_2 Q = 1$ .
- $r_3=1$  since  $q_2+ heta_3>Q$ , and  $q_3=q_2+ heta_3-Q=1$ .



A route *R* with N = 3 clients;

- $heta_1 = 3$  and  $m_1( heta_1) = 1;$
- $heta_2=3$  and  $m_2( heta_2)=1;$
- $\theta_3 = 5$  and  $m_3(\theta_3) = 1;$

Capacity limit Q = 5;

 $q_i, i = 1, \ldots, N$ , the vehicle load after serving *i*-th client:

 $f( heta_1, heta_2, heta_3) = \omega$  and  $\omega \leftrightarrow (r_2 = 1, r_3 = 1)$ 



• 
$$f(\theta_1,\ldots,\theta_N)=(r_2,r_3,\ldots,r_N).$$

#### Imprecise clients demands

• MF 
$$m_i^{\Theta}$$
,  $i = 1, ..., N$ , on  $R$ , s.t  $m_i^{\Theta}(A_i) = 1$ ,  $A_i \subseteq \Theta$ .

• Then failure situation on R belongs to  $B \subseteq \Omega$ 

$$B = f(A_1, \ldots, A_N) = \bigcup_{(\theta_1, \ldots, \theta_N) \in A_1 \times \cdots \times A_N} f(\theta_1, \ldots, \theta_N).$$

 $m_i^{\Theta}, i = 1, ..., N$  have arbitrary number of focal sets The joint probability that  $\theta_i \in A_i \subseteq \Theta, i = 1, ..., N$  is

$$\prod_{i=1}^N m_i^{\Theta}(A_i) \Rightarrow \quad m^{\Omega}(B) = \sum_{f(A_1,...,A_N)=B} \prod_{i=1}^N m_i^{\Theta}(A_i).$$

Computing  $m^{\Omega}$ : evaluating  $f(A_1, \ldots, A_N)$  for all combinations of focal sets of  $m_i^{\Theta} \Rightarrow$  worst-case complexity  $\mathcal{O}(Q^N)$  (intractable).

• 
$$f(\theta_1,\ldots,\theta_N)=(r_2,r_3,\ldots,r_N).$$

#### Imprecise clients demands

• MF 
$$m_i^{\Theta}$$
,  $i = 1, ..., N$ , on  $R$ , s.t  $m_i^{\Theta}(A_i) = 1$ ,  $A_i \subseteq \Theta$ .

• Then failure situation on R belongs to  $B \subseteq \Omega$ 

$$B = f(A_1, \ldots, A_N) = \bigcup_{(\theta_1, \ldots, \theta_N) \in A_1 \times \cdots \times A_N} f(\theta_1, \ldots, \theta_N).$$

 $m_i^{\heartsuit}, i = 1, \ldots, N$  have arbitrary number of focal sets

The joint probability that  $heta_i\in A_i\subseteq \Theta, i=1,\ldots,N$  is

$$\prod_{i=1}^{N} m_i^{\Theta}(A_i) \Rightarrow \quad m^{\Omega}(B) = \sum_{f(A_1, \dots, A_N) = B} \prod_{i=1}^{N} m_i^{\Theta}(A_i).$$

Computing  $m^{\Omega}$ : evaluating  $f(A_1, \ldots, A_N)$  for all combinations of focal sets of  $m_i^{\Theta} \Rightarrow$  worst-case complexity  $\mathcal{O}(Q^N)$  (intractable).

A Recourse Approach for the CVRP with Evidential Demands

• 
$$f(\theta_1,\ldots,\theta_N)=(r_2,r_3,\ldots,r_N).$$

#### Imprecise clients demands

• MF 
$$m_i^{\Theta}$$
,  $i = 1, \ldots, N$ , on  $R$ , s.t  $m_i^{\Theta}(A_i) = 1$ ,  $A_i \subseteq \Theta$ .

• Then failure situation on R belongs to  $B \subseteq \Omega$ 

$$B = f(A_1, \ldots, A_N) = \bigcup_{(\theta_1, \ldots, \theta_N) \in A_1 \times \cdots \times A_N} f(\theta_1, \ldots, \theta_N).$$

 $m_i^{\Theta}, i = 1, \dots, N$  have arbitrary number of focal sets

• The joint probability that  $\theta_i \in A_i \subseteq \Theta, i = 1, \dots, N$  is

$$\prod_{i=1}^N m_i^{\Theta}(A_i) \Rightarrow \quad m^{\Omega}(B) = \sum_{f(A_1,...,A_N)=B} \prod_{i=1}^N m_i^{\Theta}(A_i).$$

Computing  $m^{\Omega}$ : evaluating  $f(A_1, \ldots, A_N)$  for all combinations of focal sets of  $m_i^{\Theta} \Rightarrow$  worst-case complexity  $\mathcal{O}(Q^N)$  (intractable).

A Recourse Approach for the CVRP with Evidential Demands

• 
$$f(\theta_1,\ldots,\theta_N) = (r_2,r_3,\ldots,r_N).$$

#### Imprecise clients demands

• MF 
$$m_i^{\Theta}$$
,  $i = 1, ..., N$ , on  $R$ , s.t  $m_i^{\Theta}(A_i) = 1$ ,  $A_i \subseteq \Theta$ .

• Then failure situation on R belongs to  $B \subseteq \Omega$ 

$$B = f(A_1, \ldots, A_N) = \bigcup_{(\theta_1, \ldots, \theta_N) \in A_1 \times \cdots \times A_N} f(\theta_1, \ldots, \theta_N).$$

 $m_i^{\Theta}, i = 1, \dots, N$  have arbitrary number of focal sets

• The joint probability that  $\theta_i \in A_i \subseteq \Theta, i = 1, \dots, N$  is

$$\prod_{i=1}^N m_i^{\Theta}(A_i) \Rightarrow \quad m^{\Omega}(B) = \sum_{f(A_1,...,A_N)=B} \prod_{i=1}^N m_i^{\Theta}(A_i).$$

Computing  $m^{\Omega}$ : evaluating  $f(A_1, \ldots, A_N)$  for all combinations of focal sets of  $m_i^{\Theta} \Rightarrow$  worst-case complexity  $\mathcal{O}(Q^N)$  (intractable).

# 1 CVRP with Stochastic Demands The CVRP The CVRPSD modelled by SPR

# **2** CVRP with Evidential Demands

## Belief function theory

# The CVRPED modelled by a recourse approach

Formalisation Uncertainty on recourses (failure situations)

### Interval Demands

Experiments

# **3** Conclusions & perspectives

Depot

### Binary recourse tree example: route R with N = 3 clients

- $\theta_1 \in [\![4; 8]\!]$  and  $m_1([\![4; 8]\!]) = 1;$
- $\theta_2 \in [\![5;7]\!] \text{ and } m_2([\![5;7]\!]) = 1;$
- $\theta_3 \in [\![7;9]\!] \text{ and } m_3([\![7;9]\!]) = 1;$

Capacity limit Q = 10;

 $q_i, i = 1, \ldots, N$ , the vehicle load after visiting *i*-th clien



- $\theta_1 \in \llbracket 4; 8 \rrbracket \text{ and } m_1(\llbracket 4; 8 \rrbracket) = 1;$   $\theta_2 \in \llbracket 5; 7 \rrbracket \text{ and } m_2(\llbracket 5; 7 \rrbracket) = 1;$   $\theta_3 \in \llbracket 7; 9 \rrbracket \text{ and } m_3(\llbracket 7; 9 \rrbracket) = 1;$  Capacity limit Q = 10;  $q_i, i = 1, \dots, N$ , the vehicle load after visiting *i*-th client
  - $\llbracket 4; 8 \rrbracket \Rightarrow$  no failure and  $q_1 \in \llbracket 4; 8 \rrbracket$ .



1<sup>st</sup> level

$$\begin{array}{l} \theta_{1} \in \llbracket 4;8 \rrbracket \text{ and } m_{1}(\llbracket 4;8 \rrbracket) = 1; \\ \theta_{2} \in \llbracket 5;7 \rrbracket \text{ and } m_{2}(\llbracket 5;7 \rrbracket) = 1; \\ \theta_{3} \in \llbracket 7;9 \rrbracket \text{ and } m_{3}(\llbracket 7;9 \rrbracket) = 1; \\ \text{Capacity limit } Q = 10; \\ q_{i}, i = 1, \ldots, N, \text{ the vehicle load after visiting } i\text{-th clien} \\ \llbracket 4;8 \rrbracket + \llbracket 5;7 \rrbracket = \llbracket 9;15 \rrbracket \Rightarrow \left\{ \begin{matrix} \text{no failure} & q_{2} \in \llbracket 9;10 \rrbracket \\ \text{a failure} & q_{2} \in \llbracket 11-10;15-10 \rrbracket \right\}. \\ \hline (\llbracket 4;8 \rrbracket,0) & 1^{\text{st}} \text{ level} \end{matrix}$$



 $\begin{array}{l} \theta_{1} \in \llbracket 4; 8 \rrbracket \text{ and } m_{1}(\llbracket 4; 8 \rrbracket) = 1; \\ \theta_{2} \in \llbracket 5; 7 \rrbracket \text{ and } m_{2}(\llbracket 5; 7 \rrbracket) = 1; \\ \theta_{3} \in \llbracket 7; 9 \rrbracket \text{ and } m_{3}(\llbracket 7; 9 \rrbracket) = 1; \\ Capacity limit Q = 10; \\ q_{i}, i = 1, \dots, N, \text{ the vehicle load after visiting } i\text{-th clien:} \\ \text{If } \llbracket 9; 10 \rrbracket + \llbracket 7; 9 \rrbracket = \llbracket 16; 19 \rrbracket \Rightarrow \text{ a failure, } q_{3} \in \llbracket 16 - 10; 19 - 10 \rrbracket, \end{array}$ 



 $\begin{array}{l} \theta_{1} \in \llbracket 4;8 \rrbracket \text{ and } m_{1}(\llbracket 4;8 \rrbracket) = 1; \\ \theta_{2} \in \llbracket 5;7 \rrbracket \text{ and } m_{2}(\llbracket 5;7 \rrbracket) = 1; \\ \theta_{3} \in \llbracket 7;9 \rrbracket \text{ and } m_{3}(\llbracket 7;9 \rrbracket) = 1; \\ \text{Capacity limit } Q = 10; \\ q_{i}, i = 1, \ldots, N, \text{ the vehicle load after visiting } i\text{-th clien} \\ \text{If } \llbracket 9;10 \rrbracket + \llbracket 7;9 \rrbracket = \llbracket 16;19 \rrbracket \Rightarrow \text{ a failure, } q_{3} \in \llbracket 16 - 10;19 - 10 \rrbracket, \end{array}$ 







- $\theta_1 \in [\![4; 8]\!]$  and  $m_1([\![4; 8]\!]) = 1;$
- $\theta_2 \in [\![5;7]\!] \text{ and } m_2([\![5;7]\!]) = 1;$
- $\theta_3 \in [\![7; 9]\!] \text{ and } m_3([\![7; 9]\!]) = 1;$

Capacity limit Q = 10;

- 3 Depot
- $q_i, i = 1, \ldots, N$ , the vehicle load after visiting *i*-th client

Worst case complexity is  $\mathcal{O}(2^{N-1})$ .



# 1 CVRP with Stochastic Demands The CVRP The CVRPSD modelled by SPR

# **2** CVRP with Evidential Demands

Belief function theory The CVRPED modelled by a recourse approach Formalisation Uncertainty on recourses (failure situations) Interval Demands

# Experiments

# **3** Conclusions & perspectives

#### Metaheuristic

Simulated annealing to solve the CVRPED via recourse.

### CVRPED Benchmarks

Transformed each deterministic demand  $d^{det}$  in CVRP data sets, into an evidential demand with associated MF

$$m^{\Theta}(\{d^{det}\}) = \alpha,$$
  
$$m^{\Theta}(\llbracket \lfloor d^{det} - \gamma \cdot d^{det} \rfloor; \lceil d^{det} + \gamma \cdot d^{det} \rceil \rrbracket) = 1 - \alpha$$

with  $\alpha \in (0, 1)$  and  $\gamma \in [0, 1]$ .

#### Proposition

The optimal solution upper expected cost is non decreasing in  $\gamma$ 

 $\Rightarrow$  a lower bound on the optimal solution upper expected cost

#### Metaheuristic

Simulated annealing to solve the CVRPED via recourse.

### CVRPED Benchmarks

Transformed each deterministic demand  $d^{det}$  in CVRP data sets, into an evidential demand with associated MF

$$m^{\Theta}(\{d^{det}\}) = \alpha,$$
  
$$m^{\Theta}([[d^{det} - \gamma \cdot d^{det}]; [d^{det} + \gamma \cdot d^{det}]]) = 1 - \alpha$$

with  $\alpha \in (0, 1)$  and  $\gamma \in [0, 1]$ .

### Proposition

The optimal solution upper expected cost is non decreasing in  $\gamma$ 

 $\Rightarrow$  a lower bound on the optimal solution upper expected cost

$$\Leftrightarrow \quad \gamma = \mathbf{0}.$$

### Table: Simulated annealing results when $\alpha = 0.8$ and $\gamma = 0.1$

|          | Best    | Penalty | Avg     | Stand. | Avg     | Best cost    |
|----------|---------|---------|---------|--------|---------|--------------|
| Instance | cost    | cost    | cost    | dev.   | runtime | $\gamma = 0$ |
| A-n32-k5 | 843,06  | 0.03%   | 874,18  | 9,19   | 1837s.  | 839,18       |
| A-n33-k5 | 705,69  | 0.37%   | 724,11  | 8,39   | 2241s.  | 697,12       |
| A-n33-k6 | 773,55  | 0.75%   | 793,07  | 10,42  | 2271s.  | 758,36       |
| A-n34-k5 | 820,37  | 1.40%   | 837,04  | 9,19   | 2975s.  | 812,16       |
| A-n36-k5 | 884,51  | 0.34%   | 914,85  | 13,84  | 2715s.  | 869,10       |
| A-n37-k5 | 722,57  | 0%      | 753,51  | 12,86  | 2634s.  | 720,85       |
| A-n37-k6 | 1044,27 | 3.06%   | 1071,27 | 12,74  | 3111s.  | 995,07       |
| A-n38-k5 | 781,69  | 8.36%   | 816,67  | 18,44  | 4525s.  | 748,64       |
| A-n39-k5 | 890,88  | 1.57%   | 935,58  | 19     | 5068s.  | 885,04       |
| A-n39-k6 | 896,60  | 0.34%   | 916,91  | 16.11  | 3196s.  | 884,09       |
| A-n44-k6 | 1051,21 | 2.46%   | 1104,58 | 24,88  | 3922s.  | 1019,07      |
| A-n45-k6 | 1091,72 | 6.01%   | 1129,21 | 18,98  | 5444s.  | 1006,90      |
| A-n45-k7 | 1296,37 | 0.94%   | 1348,57 | 23,02  | 3237s.  | 1246,14      |
| A-n46-k7 | 1060,47 | 0.05%   | 1087,16 | 16     | 2865s.  | 1045,93      |
| A-n48-k7 | 1241,33 | 0.11%   | 1274,24 | 20,97  | 3119s.  | 1227,79      |

- ∢ ≣ →

# CVRP with Stochastic Demands The CVRP The CVRPSD modelled by SPR

# 2 CVRP with Evidential Demands Belief function theory The CVRPED modelled by a recourse approach Formalisation Uncertainty on recourses (failure situations) Interval Demands

Experiments

# **3** Conclusions & perspectives

### Conclusions

- The CVRPED modelled by an evidential extension of the SPR.
- A technique making computations tractable in realistic cases.
- Experiments using a simulated annealing algorithm.

#### Perspectives

- More recourse policies.
- Improving the solving algorithm.

#### References

N. Helal, F. Pichon, D. Porumbel, D. Mercier, and E. Lefèvre. The capacitated vehicle routing problem with evidential demands: a belief-constrained programming approach.

In *Belief Functions: Theory and Applications*, volume 9861 of *LNCS*, pages 212–221. Springer, 2016.

### Conclusions

- The CVRPED modelled by an evidential extension of the SPR.
- A technique making computations tractable in realistic cases.
- Experiments using a simulated annealing algorithm.

### Perspectives

- More recourse policies.
- Improving the solving algorithm.

#### References



### Conclusions

- The CVRPED modelled by an evidential extension of the SPR.
- A technique making computations tractable in realistic cases.
- Experiments using a simulated annealing algorithm.

### Perspectives

- More recourse policies.
- Improving the solving algorithm.

### References

N. Helal, F. Pichon, D. Porumbel, D. Mercier, and E. Lefèvre.

The capacitated vehicle routing problem with evidential demands: a belief-constrained programming approach.

In *Belief Functions: Theory and Applications*, volume 9861 of *LNCS*, pages 212–221. Springer, 2016.

# Thank you for your attention.