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Scope of the talk

I linear programming theory has been shown to be a powerful tool for
(imprecise) decision theory regarding both

I e�cient computation of optimal acts w.r.t. complex criteria
(cf., e.g., Kikuti et al. (2012) or Utkin and Augustin (2005))

I providing theoretical insights on properties of optimal acts
(cf., e.g., Weichselberger (1996))

I our paper presents some new results concerning both regards including

I linear programs for Hodges and Lehmann and Walley's maximality

I connection between least favorable priors and Gamma-Maximin
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Setup and notation

We consider the standard model of (�nite) cardinal decision theory:

I A = {a1, . . . , an}: set of acts

I Θ = {θ1, . . . , θm}: set of states of the world

I u : A×Θ→ R: utility function, where uij := u(ai , θj) is the utility of choosing
act ai given θj is the true state of the world

u(ai , θj) θ1 · · · θm

a1 u(a1, θ1) · · · u(a1, θm)
...

... · · ·
...

an u(an, θ1) · · · u(an, θm)

I for every a ∈ A, de�ne ua : Θ→ R by ua(θ) := u(a, θ) for all θ ∈ Θ

I for every θ ∈ Θ, de�ne uθ : A→ R by uθ(a) := u(a, θ) for all a ∈ A
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Setup and notation, continued

Depending on the context, we also allow for randomized acts:

I call every probability measure λ on (A, 2A) a randomized act and denote by
G (A) the set of all randomized acts

I choosing λ is interpreted as leaving the �nal decision to a random experiment
which yields act ai with probability λ({ai})

I evaluate choosing λ given θ by G (u)(λ, θ) := Eλ
[
uθ
]

I for λ ∈ G (A), de�ne G (u)λ : Θ→ R by G (u)λ(θ) := G (u)(λ, θ)

I identify a ∈ A with δa ∈ G (A) and observe u(a, θ) = G (u)(δa, θ)
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Randomization: A toy example

I Consider a game between two players: Pinky (rows) and Brain (columns)

I Pinky chooses moves P = {p1, p2}, Brain reacts by moves B = {b1, b2}

I Pinky's utility up : P × B → R is given by the below table

I Brain's utility ub : B × P → R is given by ub(b, p) := −up(p, b)

up(·) b1 b2 Pinky's reward

p1 10 20 10
p2 30 5 5

I Pinky tosses a (fair) coin, i.e. chooses randomized act λ ≈
(
p1 p2
0.5 0.5

)
.

I He receives reward of minb G (up)(λ, b) = 12.5.
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Two ways of incorporating imperfect prior knowledge

Considered here: Decision problems with prior information on the states Θ.

If prior information is precisely given by an (undoubted) probability on the state
space, acts are most commonly ranked with respect to their expected utility values.

Otherwise (of interest here), we distinguish two di�erent cases:

(1) Uncertainty about precise probabilities: There is a precise prior probability π on
(Θ, 2Θ) available, however, there is some doubt about its full appropriateness.

Example: Prior available for an experiment; slight modi�cation of the setup

(2) Imprecise probabilities: A prior probability measure π on the state space Θ
cannot be fully speci�ed. Instead a credal setM of prior probabilities is com-
patible with the available information

Example: Event E1 is at least as likely as E2, i.e.M = {π|π(E1) ≥ π(E2)}
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(1) Uncertainty about precise priors: Hodges & Lehmann

One common way to deal with situation (1) is the decision criterion of Hodges &
Lehmann, which linearly trades of between maximin and expected utility.

Hodges & Lehmann optimality

Let π denote some prior on (Θ, 2Θ) and let α ∈ [0, 1] express the agent's trust in
its appropriateness. The function Φπ,α : G (A)→ R de�ned by

Φπ,α(λ) = (1− α) ·min
θ

G (u)(λ, θ)︸ ︷︷ ︸
Maximin utility

+ α · Eπ
[
G (u)λ

]︸ ︷︷ ︸
Expected utility

is called Hodges & Lehmann-criterion w.r.t. (π, α). Any randomized act λ∗ ∈ G (A)
maximizing the criterion is then called Φπ,α-optimal.

Natural question: How to determine/compute Φπ,α-optimal acts?

7 / 16



Determining optimal acts under (1)

Optimal randomized acts with respect to the criterion of Hodges and Lehmann can
be obtained by the following linear programming problem:

Hodges and Lehmann acts

Consider the linear programming problem

(1− α) · (w1 − w2) + α ·
n∑

i=1

Eπ(uai ) · λi −→ max
(w1,w2,λ1,...,λn)

with constraints (w1,w2, λ1, . . . , λn) > 0 and

•
∑n

i=1
λi = 1

• w1 − w2 6
∑n

i=1
uij · λi for all j = 1, . . . ,m

Then every optimal solution (w∗
1
,w∗

2
, λ∗

1
, . . . , λ∗n) induces a Φπ,α-optimal randomi-

zed act λ∗ ∈ G (A) by setting λ∗({ai}) := λ∗i .
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(2) Imprecise probabilistic information

We assume probabilistic information is expressed by a polyhedrical credal setM of
probability measures on (Θ, 2Θ) of the form

M :=
{
π| bs 6 Eπ(fs) 6 bs ∀s = 1, ..., r

}
where, for all s = 1, ..., r , we have

I fs : Θ→ R is a random variables on Θ and

I (bs , bs) ∈ R2 with bs 6 bs are lower and upper bounds for their expectation.

Least favorable priors

In the following, one additional concept will be needed:

I for π ∈M, let B(π) := sup{Eπ(ua) : a ∈ A} and Aπ := argmaxa∈AEπ(ua)

I call π− ∈M a least favorable prior (lfp) if B(π−) ≤ B(π) for all π ∈M
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Computing least favorable priors

The following proposition describes an easy linear program for determining a least
favorable prior distributions from a given credal set.

Least favorable priors

Let (A,Θ, u) andM be as before. Consider the linear program

w1 − w2 −→ min
(w1,w2,π1,...,πm)

with constraints (w1,w2, π1, . . . , πm) > 0 and

•
∑m

j=1
πj = 1

• bs 6
∑m

j=1
fs(θj) · πj 6 bs for all s = 1, ..., r

• w1 − w2 >
∑m

j=1
uij · πj for all i = 1, . . . n

Then every optimal solution (w∗
1
, . . . , π∗m) induces a least favorable prior π− ∈M

by setting π−({θj}) := π∗j .
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Decision making under (2)

If uncertainty is characterized by a credal set M, many di�erent approaches for
decision making exist. We focus on three of these, namely

Walley's maximality: An act a∗ ∈ A is said to beM-maximal, if

∀ a ∈ A ∃ πa ∈M : Eπa(ua∗) > Eπa(ua)

E-admissibility: An act a∗ ∈ A is said to beM-admissible, if

∃ π ∈M ∀ a ∈ A : Eπ(ua∗) > Eπ(ua)

Gamma-Maximin: An randomized act λ∗ ∈ G (A) is said to beM-Maximin
optimal i� for all λ ∈ G (A):

EM
[
G (u)λ∗

]
> EM

[
G (u)λ

]
where EM(X ) := minπ∈M Eπ(X ) for random variables X : Θ→ R.
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A linear program for maximality

The set of maximal (non-randomized) acts can be determined by running the fol-
lowing linear program for every act a ∈ A under consideration:

Checking maximality of non-randomized acts

Let az ∈ A be any act. Consider the linear program

n∑
i=1

( m∑
j=1

γij

)
−→ max

(γ11,...,γnm)

with constraints (γ11, . . . , γnm) > 0 and

•
∑m

j=1
γij 6 1 for all i = 1, . . . , n

• bs 6
∑m

j=1
fs(θj) · γij 6 bs for all s = 1, ..., r , i = 1, . . . , n

•
∑m

j=1
(uij − uzj) · γij 6 0 for all i = 1, . . . , n

Then az ∈ A isM-Maximal i� the optimal outcome equals n.
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A slight modi�cation: c-constraint maximality

Checking c-constraint maximality of pure acts

Let az ∈ A be any act and let c ∈ [0, 1]. Consider the linear program

n∑
i=1

( m∑
j=1

γij

)
−→ max

(γ11,...,γnm)

with constraints (γ11, . . . , γnm) > 0 and

•
∑m

j=1
γij 6 1 for all i = 1, . . . , n

• bs 6
∑m

j=1
fs(θj) · γij 6 bs for all s = 1, ..., r , i = 1, . . . , n

•
∑m

j=1
(uij − uzj) · γij 6 0 for all i = 1, . . . , n

• 1

2

∑m
j=1
|γi1j − γi2j | 6 c for all i1, i2 ∈ {1, . . . , n}

Then az ∈ A is cM-Maximal i� the optimal outcome equals n.
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Crossing the border between (1) and (2)

For the special case of an ε-contamination model of the form

M(π0,ε) := {(1− ε)π0 + επ : π ∈ P(Θ)}

where

I ε > 0 is a �xed contamination parameter and

I π0 ∈ P(Θ) is the central distribution,

Gamma-Maximin is mathematically closely related to the Hodges & Lehmann:

EM(π0,ε)
(X ) = min

π∈P(Θ)
((1− ε)Eπ0(X ) + εEπ(X ))

= (1− ε)Eπ0(X ) + ε min
π∈P(Θ)

Eπ(X )

= (1− ε)Eπ0(X ) + ε min
θ∈Θ

X (θ)

M(π0,ε)-Maximin ≈ Hodges & Lehmann w.r.t. (1− ε) and π0.
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A result beyond computation

Gamma-Maximin and lfps

Let (A,Θ, u) andM be as before. Then the following holds:

i) If π− is a lfp fromM, then for all optimal randomizedM-Maximin acts
λ∗ ∈ G (A) we have λ∗({a}) = 0 for all a ∈ A \ Aπ− .

ii) Let π− denote a lfp fromM and let λ∗ ∈ G (A) denote a randomized
M-Maximin act. Then for all a ∈ Aπ− we have

Eπ−
[
ua
]

= EM
[
G (u)λ∗

]

Corollary

If there exists a lfp π− from M such that Aπ− = {az} for some z ∈ {1, . . . , n},
then δaz ∈ G (A) is the unique randomizedM-Maximin act. Speci�cally, considering
randomized acts is unnecessary in such situations.
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Summary and outlook

We investigated

I linear programming approaches for determining optimal randomized acts

I what can be learned by dualizing our programs

Future research includes:

I considerM is non-degenerated, i.e. π({θ}) > 0 for all (π, θ) ∈M×Θ

I then every lfp π− fromM is non-degenerated as well

I by complementary slackness property, the constraints in the linear program
for determining for Gamma-Maximin acts are binding: when su�cient?
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