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Introduction: Industry 4.0

The vision of SelSus is to create a new paradigm for highly effective, self-healing
production resources and systems to maximise their performance over longer life times
through highly targeted and timely repair, renovation and upgrading.
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The SelSus System architecture

Industry 4.0 (smart factory, loT, cloud computing) is a trend of automation and data
exchange in manufacturing technologies (Wikipedia)



Challenge: Improving Linear Axis OOBN

An OOBN model for RCA constructed from expert knowledge
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Network Statistics

@ 35 variables, 27 failure states, and five class instances
@ 555 CPD entries and maximum CPD size of 128




Algorithms for Parameter Learning |

ABN N = (X, G, P) with P(X) = P(Xi,..., Xa) = [Txex P(Xilmx)

Estimate the values of P from data D = {cy, ..., cy} and expert
knowledge

Batch EM (4; 2)
Iterates an E and M step, processing all cases D in each iteration

5 _ n(X, = k,ﬂ',‘j) + 9,-jka,-j
n(7r,-,-) + ajj

(1)

ik —
«ajj is the experience count for parent configuration 7

Incremental EM (6)

lterates EM over D = Dy, ..., Dp. The estimates 0% and «; produced
by one iteration of EM are used as virtual counts in the next iteration
of EM




Algorithms for Parameter Learning |l

Online EM (1)
Updates parameters after each case

i = (1 —=2)m +vP(xj|c), (2)

learning rate v = (1 + n)~” where 0.5 < p < 1

Fractional Updating (5; 7)

Updates parameters after each case
. _ 9,-/-ka,-/- ¢ P(X,‘jk‘C)
T ey Plmlo)

OOBNs: compute the average expected counts for the run-time
instances of the node and increase the experience counts by the
number of run-time instances.



Experimental Setup

In Industry 4.0, we add diagnostic capabilities at the component level

@ Is model improvement feasible using parameter learning
algorithms?

@ Can we improve model performance using operational data?
© What is the time cost in a real setting?

The Knowledge Driven Model is the starting point for parameter
learning. Three data sets used in the analysis

@ Random sample Dy with Ny = 250, 000 5% missing values
(Knowledge Driven Model)

@ Operational data Dy with Ny = 13,429 (Known)

@ Operational data D, with N, = 25,726 (Unknown)



I: Learning from Random Sample

Purpose: Determine if learning is feasible
Data: A random sample D with N = 250,000
Model: Uniform Knowledge Driven Model
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: Learning from Random Sample

Purpose: Determine if learning is feasible
Data: A random sample D with N = 250,000
Model: Uniform Knowledge Driven Model

400000 : !
Batch EM —— r
350000 ~ |ncremental EM X - =
_| Online EM, p = 0.99 — |
300000 Online EM, p=0.6 -
& 250000 Online EM, p = 0.501 —-— L
£ Fractional Update - o
> 200000 L
£
= 150000 - L
100000 — L
50000 L

0
0 50000 100000 150000
Number of cases

Accumulated time in milliseconds (ms)

\
200000

250000



lI: Diagnostic Performance

Purpose: Identify true root cause from randomly generated evidence
Data: Operational data Dy with Ny = 13,429
Model: Knowledge Driven Model

Algorithm | Top-1 | Top-5 | fhrank
Knowledge Driven Model 8 17 4.6
Batch EM 10 17 5.1
Online EM 9 17 4.5
Fractional update 10 21 3.4

For rank a lower number is better. A total of 27 failure states

Learning in Knowledge Driven Model using p = 0.99, 3~ aj = 13,429
for all i and ny = 13,429 are used
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: Average Time Performance (ms)

Purpose: Determine cost of processing

Data: Operational data D, with Ny = 25,726

Model: Knowledge Driven Model

Algorithm | Configuration | cases/request | Total time (ms) | Avg. time
Online EM | Direct integration 1 1,730 0.067
SelSus Cloud 1000 11,367 0.44
SelSus Cloud 100 44,867 1.74
SelSus Cloud 10 496,199 19.29
Fractional Direct integration 1 1,533 0.067
Updating SelSus Cloud 1000 10,553 0.41
SelSus Cloud 100 42,111 1.64
SelSus Cloud 10 478,612 18.60

Average time cost of handling one case across integration levels
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Conclusion

Considered four parameter learning algorithms for continuous model
(OOBN) improvement using operational data
Experiments on Knowledge Driven Model with data

@ Learning is feasible

@ Improve diagnostic performance

© Time cost is manageable

Learning from operational data appears to be a promising approach
even in the light of many hidden variable

Approach is being deployed at factory level in ltaly and United
Kingdom
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