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Introduction: Industry 4.0

The vision of SelSus is to create a new paradigm for highly effective, self-healing
production resources and systems to maximise their performance over longer life times
through highly targeted and timely repair, renovation and upgrading.

The SelSus System architecture

Diagnosis at component level

Data exchange over the cloud

Control software and system wide
integration

Model improvement from operational
data

Industry 4.0 (smart factory, IoT, cloud computing) is a trend of automation and data
exchange in manufacturing technologies (Wikipedia)
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Challenge: Improving Linear Axis OOBN

An OOBN model for RCA constructed from expert knowledge

Network Statistics
35 variables, 27 failure states, and five class instances
555 CPD entries and maximum CPD size of 128
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Algorithms for Parameter Learning I

A BN N = (X ,G,P) with P(X ) = P(X1, . . . ,Xn) =
∏

Xi∈X P(Xi |πXi )

Estimate the values of P from data D = {c1, . . . , cN} and expert
knowledge

Batch EM (4; 2)

Iterates an E and M step, processing all cases D in each iteration

θ∗ijk =
n(Xi = k , πij) + θijkαij

n(πij) + αij
, (1)

αij is the experience count for parent configuration πij

Incremental EM (6)

Iterates EM over D = D1, . . . ,Dm. The estimates θijk and αij produced
by one iteration of EM are used as virtual counts in the next iteration
of EM
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Algorithms for Parameter Learning II

Online EM (1)

Updates parameters after each case

θ∗ijk = (1− γ)mijk + γP(xijk |c), (2)

learning rate γ = (1 + n)−ρ where 0.5 < ρ < 1

Fractional Updating (5; 7)

Updates parameters after each case

θ∗ijk =
θijkαij + P(xijk |c)
αij + P(πij |c)

. (3)

OOBNs: compute the average expected counts for the run-time
instances of the node and increase the experience counts by the
number of run-time instances.
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Experimental Setup

In Industry 4.0, we add diagnostic capabilities at the component level

1 Is model improvement feasible using parameter learning
algorithms?

2 Can we improve model performance using operational data?
3 What is the time cost in a real setting?

The Knowledge Driven Model is the starting point for parameter
learning. Three data sets used in the analysis

Random sample D0 with N0 = 250,000 5% missing values
(Knowledge Driven Model)
Operational data D1 with N1 = 13,429 (Known)
Operational data D2 with N2 = 25,726 (Unknown)
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I: Learning from Random Sample

Purpose: Determine if learning is feasible
Data: A random sample D with N = 250,000
Model: Uniform Knowledge Driven Model
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I: Learning from Random Sample

Purpose: Determine if learning is feasible
Data: A random sample D with N = 250,000
Model: Uniform Knowledge Driven Model
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II: Diagnostic Performance

Purpose: Identify true root cause from randomly generated evidence
Data: Operational data D1 with N1 = 13,429
Model: Knowledge Driven Model

Algorithm Top-1 Top-5 µrank

Knowledge Driven Model 8 17 4.6
Batch EM 10 17 5.1
Online EM 9 17 4.5
Fractional update 10 21 3.4

For rank a lower number is better. A total of 27 failure states

Learning in Knowledge Driven Model using ρ = 0.99,
∑

j αij = 13,429
for all i and n0 = 13,429 are used
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III: Average Time Performance (ms)

Purpose: Determine cost of processing
Data: Operational data D2 with N1 = 25,726
Model: Knowledge Driven Model

Algorithm Configuration cases/request Total time (ms) Avg. time
Online EM Direct integration 1 1,730 0.067

SelSus Cloud 1000 11,367 0.44
SelSus Cloud 100 44,867 1.74
SelSus Cloud 10 496,199 19.29

Fractional Direct integration 1 1,533 0.067
Updating SelSus Cloud 1000 10,553 0.41

SelSus Cloud 100 42,111 1.64
SelSus Cloud 10 478,612 18.60

Average time cost of handling one case across integration levels
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Conclusion

Considered four parameter learning algorithms for continuous model
(OOBN) improvement using operational data

Experiments on Knowledge Driven Model with data
1 Learning is feasible
2 Improve diagnostic performance
3 Time cost is manageable

Learning from operational data appears to be a promising approach
even in the light of many hidden variable

Approach is being deployed at factory level in Italy and United
Kingdom
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