ntroduction O Bayesian C/ 00 Credal CAT 00000 Experiments 000 Conclusion O

Reliable Knowledge-Based Adaptive Tests by Credal Networks

Francesca Mangili, Claudio Bonesana, and Alessandro Antonucci

Istituto "Dalle Molle" di Studi sull'Intelligenza Artificiale Lugano (Switzerland)

http://ipg.idsia.ch/

ISIPTA 17 & ECSQARU 2017, Lugano

- Intelligent tutoring systems (computerized adaptive testing CAT)
- Probabilistic graphical model
- Expert knowledge elicitation

Adaptive Testing

Adaptive test? Test selecting the sequence of questions on the basis of the test taker ability.

Expected benefits

- reduced assessment time;
- increased accuracy;
- challenged/not discouraged test takers;
- improved security.

Introduction	CAT	Bayesian CAT	Credal CAT	Experiments	Conclusion
O	O●O	OO	00000	000	O
		CAT p	rocedure		

CAT requirements

Elements necessary to develop a CAT:

- Test taker knowledge model (skills and answers model)
- Question selection rule
- Stopping rule

Introduction	CAT	Bayesian CAT	Credal CAT	Experiments	Conclusion
0	000	•0	00000	000	0

Test taker knowledge model

► Test taker skills $\mathbf{X} = (X_1, X_2, ..., X_n)$ Hidden ► Answers to questions $\mathbf{Y} = (Y_1, ..., Y_m)$ Observable

Figure : A directed graph for CAT.

Evaluation:

- Condition the model on the observed answers y.
- Compute the marginal probabilities for each skill $P(X_i|\mathbf{y})$
- Assign each skill its most probable value.

ntroduction	
Э	

Bayesian CAT

Credal CAT 00000 Experiments 000 Conclusion O

Adaptive approach

- ► Goal: gather information about the student level X
- Selection criteria: information gain

$$IG(Y_{next}) = H(\mathbf{X}|\mathbf{y}) - H(\mathbf{X}|\mathbf{y}, Y_{next} = y)$$

 $y \text{ is not observed yet} \rightarrow \text{we work with the conditional entropy}$ $H(\mathbf{X}|\mathbf{y}, Y_{next}) := \sum_{y \in \{0,1\}} H(\mathbf{X}|\mathbf{y}, Y_{next} = y) P(Y_{next} = y|\mathbf{y})$

 Question selection rule: the question giving the maximum expected information gain is selected at each step

$$ilde{Y}_{next} := \arg \max_{ extsf{Y}_{next} \in \mathbf{Y}} \left[H(\mathbf{X} | \mathbf{y}) - H(\mathbf{X} | \mathbf{y}, Y_{next})
ight]$$

 Stopping rule: the test ends when entropy falls below a predefined threshold

Introduction	CAT	Bayesian CAT	Credal CAT	Experiments	Conclusion
0	000	00	00000	000	0
		Elici	tation		
		Ener	cacion		

Experts should elicit:

$$\triangleright P(X_{i+1}|X_i), \forall i=1,2,\ldots$$

$$> P(Y_j | X_{Y_j}), \forall j = 1, 2, \dots$$

Interval-valued probabilistic elicitation

 \triangleright can simplify the elicitation of the model

Judgement	impossible	improbable	uncertain	fifty-fifty	expected	probable
$\overline{P(Y_i X_{Y_i})}$	17.5-20%	22.5-25%	30-35%	60-65%	75-80%	95-97.5%

higher realism in the modeling of the expert knowledge, which is typically qualitative.

Replacing conditional PMF in the BN above with sets of probabilities we obtain credal networks.

Main issues:

- numerical inferences will be interval-valued, thus making debatable both the evaluation criterion an the information measure to adopt
- ▶ inference tasks in CNs typically belongs to higher complexity classes than their Bayesian counterparts ((updating is NP^{PP}-hard).

Introduction	CAT	Bayesian CAT	Credal CAT	Experiments	Conclusion
0	000	00	00000	000	0

Evaluation method

- Posterior probabilities of each skill are set-valued. They can be characterized by lower and upper bounds, say <u>P</u>(X_i|**y**) and <u>P</u>(X_i|**y**) for each X_i ∈ **X**.
- Maximality criterion is used to assign levels:
 - levels which are less probable than another level for all the elements of the credal set are rejected;
 - less conservative than interval dominance;
 - ▷ can be easily reduced to standard CNs updating by auxiliary nodes;
 - ▷ multiple non-rejected levels induce a situation of indecision.

Question selection criteria

- To use the information gain as decision criteria, computation of entropies should be extended to credal sets.
- Cautious approach: take upper entropy $\overline{H}(\mathbf{X})$.
- ▶ We need maximum values of conditional entropies to compute
 - \triangleright the joint entropy $H(\mathbf{X})$ and its posterior value;
 - ▷ the conditional entropies involved in question selection, i.e., $H(\mathbf{X}|\mathbf{y}, Y_{next})$
- Problem: computation of upper conditional entropies require the solution of a non-linear non-convex optimization.

Introduction	CAT	Bayesian CAT	Credal CAT	Experiments	Conclusion
0	000	00	00000	000	0

Question selection based on upper entropy

We introduce a number of approximations:

- we separately consider the entropy of each skill
- we approximate $\overline{H}(X_i|Y',\mathbf{y})$ by taking the maximum over $P(1|\mathbf{y})$ of

 $\overline{H}(X_i|\mathbf{y},1)P(1|\mathbf{y}) + \overline{H}(X_i|\mathbf{y},0)[1-P(1|\mathbf{y})]$

- ▶ we approximate H(X_i|y, y') by taking the maximum of H(X_i|y) over the credal set induced by the probability intervals [P(x_i|y), P(x_i|y)] This optimization is carried out by [Abellan and Moral, 2003].
- we select the question \tilde{Y}' leading to the maximum information gain:

$$\tilde{Y}_{next} := \arg \max_{Y_{next} \in \mathbf{Y}} \left[\overline{\overline{H}}(X_{Y_{next}} | \mathbf{y}) - \overline{\overline{H}}(X_{Y_{next}} | \mathbf{y}, Y_{next}) \right]$$
(1)

- Dataset: answers from 451 students to 95 question about German language.
- Each skill is assumed to have four ability levels: $X_i \in \{A1, A2, B1, B2\}.$
- Each question is influenced by a single background skill identified by the teachers.
- Three approaches have been simulated.
 - Credal network model
 - Bayesian network model with PMF obtained as centers of mass of the credal sets
 - ▷ Bayesian network model with indecision

itrod	uction	
)		

Ba

Credal CAT

Experiments 000 Conclusion O

Non adaptive test results

Algorithm	Average	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4
BN (acc)	63.09%	67.56%	60.85%	75.84%	48.10%
CN (<i>u</i> ₆₅)	65.37%	67.71%	66.67%	70.33%	56.76%

Introduction	CAT	Bayesian CAT	Credal CAT	Experiments	Conclusion
0	000	00	00000	000	0

Adaptive test results

Number of questions

- A procedure for adaptive testing built solely on expert knowledge has been proposed based on credal networks.
- Results are promising as the credal approach
 - simplifies the model elicitation
 - $\,\vartriangleright\,$ recognizes when a sharp decision about the student level should not be made
 - ▷ achieves an accuracy comparable to that of an indecisive Bayesian approach maximizing the expected u65 measure.
- ▶ However, the indecision of the CN test remains rather large.