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The Pari-Mutuel Model

The Pari-Mutuel Model...
« Distortion model.
e Originated in horse racing.
Applied in finance, risk analysis, ...
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Precise probability Taxation from the house
0>0

S /

P(A) = max{(1 +6)Py(A4) — 4,0}
P(A) = mln{(1+5)P0( ), 1}

l

M(Py,8) = {P prob. | P(4) < P(4) < P(A)}
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Pari-Mutuel What is known about the Pari-Mutuel Model?

Model

B Statistical Reasoning with Imprecise Probabilities, P. Walley.
Chapman and Hall, London, 1991.

[ Inference and risk measurement with the pari-mutuel model,
R. Pelessoni et al. 1JAR, 2010.

3 A framework for imprecise robust one-class classification
models, L. Utkin. Int. J. Mach. Learn. & Cyber., 2014.
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The Pari-Mutuel Model

paz) Take Py = (0.6,0.3,0.1).
01 =0.1.
0 = 0.2.

85 =0.5.

p(z1)

p(z3)

5/24



The Pari-Mutuel Model

p(a) Take Py = (0.6,0.3,0.1).
{ 51 =0.1.
Pari-Mutuel (52 =0.2.

Model

03 = 0.5.

p(x1)

p(z3)
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Probability intervals

Z={[liw]|i=1,...,n}
M(Z) = {P prob. | I; < P({z;}) < u}.
l,u are the lower and upper envelopes of M(Z).

Theorem

Let Py be a probability, § > 0 and P, P the lower and upper
probability induced by the PMM. Define the probability interval:

= {([P{i}), Pl i =1, m).
Then M(Z) = M(Py,d), or equivalently P =1 and P = u.



Belief functions

Define k = min{|A| : P(A) > 0}.
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Theorem
Let P be the lower probability induced by a PMM (Py,d). P is a
belief function if and only if one of the following conditions hold:

1. k=n.

Focal sets: X, m(X) = 1.
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Theorem
Let P be the lower probability induced by a PMM (Py,d). P is a
belief function if and only if one of the following conditions hold:

1. k=n.
2.k=n—1and > P(X\{z;}) <1.

Focal sets: X, X\{z} Vz € X.
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Theorem
Let P be the lower probability induced by a PMM (Py,d). P is a
belief function if and only if one of the following conditions hold:

1. k=n.

2.k=n—1and > P(X\{z;}) <1.

3. k<n—1,3B with |B| =k and P(B) > 0, and P(A) > 0
if and only if B C A.

Focal sets: B, BU {z}, Vz ¢ B.
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Define k = min{|A| : P(A) > 0}.

Theorem
Let P be the lower probability induced by a PMM (Py,d). P is a
belief function if and only if one of the following conditions hold:

1. k=n.

2.k=n—1and > P(X\{z;}) <1.

3. k<n—1,3B with |B| =k and P(B) > 0, and P(A) > 0
if and only if B C A.

4k <n—1 3B with |B] = k— 1 and § = (T2, and
P(A) > 0 if and only if B C A.

Focal sets: BU {z}, Vx ¢ B.



Overview

Pari-Mutuel Model

Connection between the PMM and other models
Connection with probability intervals
Connection with belief functions

Number of extreme points induced by a PMM
Information fusion with PMMs

Conclusions

9/24



Number of
extreme
points
induced by a
PMM

Extreme points induced by a PMM

Since P is 2-monotone, all extreme points P, are generated by
the permutations o of {1,...,n}:

Pr({zo1)}) = P({zo1)}).

Po({o(1ys - s Toe)}) = PUTo), -+ -5 To@ })-
Proposition

Let P, P be the lower and upper probability induced by a PMM
(Po,0). Py is given by:

Po({zo@}) = P({zom}) Vi=1,...,5—1.
({ ])}) B({xa(j)v s 7x0(n)})7
PU({ aj-i-l)} =...=PU({$U(n)}):O,

where j satisfies

P({zoy, -5 To(j-1)}) < P({@oq), -2 203y }) = L.
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Maximal number of extreme points
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Theorem
Then maximal number of extreme points of M(Py,9) is:

1. %(g) if n is even.

2. mHL(LL), ifnis odd.
Number of 2
extreme
points
induced by a

B It coincides with the maximal number of extreme points

induced by a probability interval.
The upper bound can be attained for the uniform distribu-

tion.
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Number of extreme points

Given the PMM (P, 6) inducing P, P, define:
L= {ACX|P(A)=1}.
Proposition

Given a PMM ( Py, d), the number of extreme points of M (P, )
is bounded above by:

> N B
AeL |BCA,BeL

Furthermore, the upper bound is attained if and only if Py(A) >

1% forany A € L.

12 /24



Number of extreme points
X = {$1,l’2,1‘3,3§4}, P() = (0.05,0.15,0.2,0.6), 6=0.3:

PTANN

{z1, 22, z3}{x1,x2, xa {x1,x3, xa {x2,x3, %4}

Number of < { { ; } ~

extreme {z1,22} {z1,23} {z1,z4} {x2,23} {w2,24} {x3,%xa}

points
induced by a
PMM

{z1} {z2} {z3} {za}

M
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Number of extreme points
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{3,124} —> N B| = |{z3,24}] = 2.
Bg{xg,m},BEll
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X = {1‘1,1‘2,33‘3,.%’4}, P() = (0.05,0.15,0.2,0.6), 6 =0.3:

PTANN
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{xo, 3,24} —> N B| = |{z3,24}] = 2.

BC{x2,x3,x4},BEL
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Combining multiple PMMs
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Given two PMMs (P1,61), (P2, 62), we study:
« Conjunction: M(P3,61) N M(PZ,69).

« Disjunction: M(P¢,81) UM(PZ,52).

« Mixture: eM(P3,61) + (1 — e)M(PF,52).

Information
fusion with
PMMs
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Conjunction
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Proposition
M(P},61) N M(P2,65) is non-empty if and only if:

> min {(1+8) P ({z}), (14 62) Py ({z}),1} > 1.

zeX

Then, it is induced by a PMM (P{',8™) given by:

L:i?;:livt:?hn &= (Z min {(1 + 61)P01({x})’ (1 + 52)P01({$})7 1}) - L
reX

S min {(1+ 8) P ({2}), (1 + 82) P ({a})}

n_
Fo= 140"
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Conjunction

p(z2)

Information I D SUU
fusion with )
PMMs

p(z1)

p(z3)

M(P3,61) N M(P2,69)
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Disjunction

Proposition
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« Neither M(P},81) U M(Pg,02) nor its convex hull are in-

duced by a PMM.
« However, they can be outer-approximated by a PMM:

conv (M(P()l761> UM(P02752)) - M(P(SJ?(SU):

given by:
5 = (Z max {(1+ 81) B ({x}), (1 + @)P&({@)})
xeX
o mx {1 80P (). 1+ )R (D)}

1+0Y

-1
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Disjunction

p(x3)

M(Py,61) UM(PF, 62)
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Mixture
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Proposition
eM(Py,61) + (1 — e)M(P§, 82) is induced by a PMM (P, 6°)
given by:

5 =e(l+6)+(1—e)(1+8)—1.

pe _ L+ Py ({}) + (1 —)(1+ 02) P ({})
Information 0~ 1+ 08

fusion with
PMMs
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p(z3)

GM(PO17 51) + (1 - G)M(POQ’ 52)
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The PMM as an imprecise probability model:
« Extension to gambles (Pelessoni et al., Walley).

« The PMM and risk measures (Pelessoni et al.).
« Conditioning a PMM (Pelessoni et al.).

« PMM with a uniform distribution (Utkin).

Conclusions
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The PMM as an imprecise probability model:

« Extension to gambles (Pelessoni et al., Walley).
« The PMM and risk measures (Pelessoni et al.).
« Conditioning a PMM (Pelessoni et al.).

« PMM with a uniform distribution (Utkin).

Connection with other models of the IP Theory.

&

« Extreme points of M (P, 9).

Conclusions

Merging information given in terms of PMMs.

Al
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