

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

A study of the Pari-Mutuel Model from the point of view of Imprecise Probabilities

I. Montes, E. Miranda and S. Destercke

UNIVERSIDAD OVIEDO University of Oviedo, Spain Technologic University of Compiègne, France

ISIPTA 2017

Overview

Pari-Mutuel Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

Pari-Mutuel Model

onnection between the PMM and other models Connection with probability intervals Connection with belief functions

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

UNIB

Pari-Mutuel Model

Connection between the PMM and other models

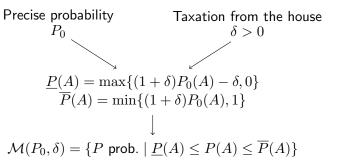
Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

The Pari-Mutuel Model

- Distortion model.
- Originated in horse racing.
- Applied in finance, risk analysis, ...



Connection between the PMM and other models

Number of extreme points induced by a PMM

Informatior fusion with PMMs

Conclusions

What is known about the Pari-Mutuel Model?

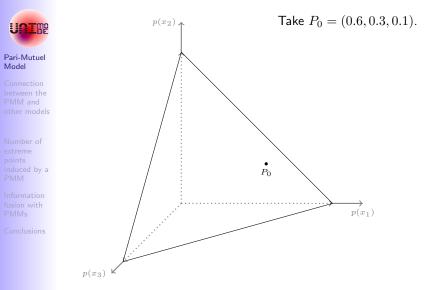
The Pari-Mutuel Model

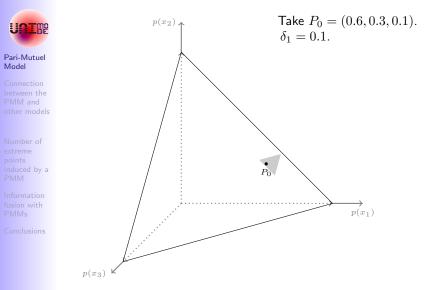
Statistical Reasoning with Imprecise Probabilities, P. Walley. Chapman and Hall, London, 1991.

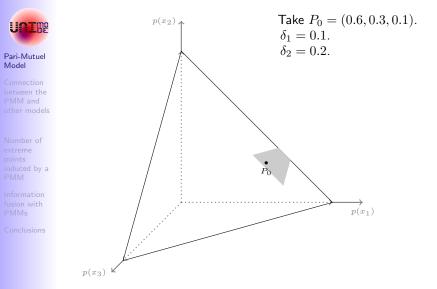
In In R.

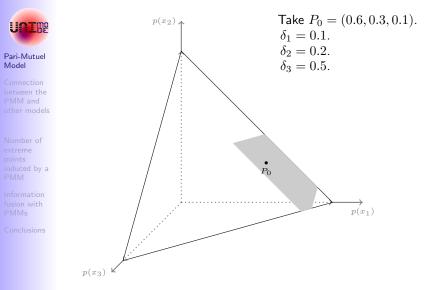
Inference and risk measurement with the pari-mutuel model, R. Pelessoni et al. IJAR, 2010.

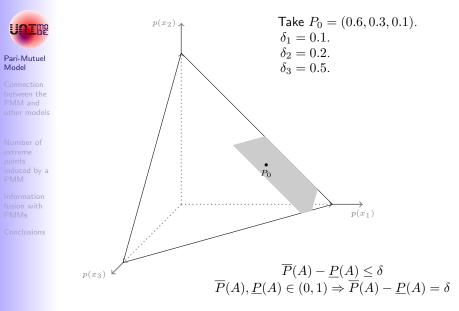
A framework for imprecise robust one-class classification models, L. Utkin. Int. J. Mach. Learn. & Cyber., 2014.











Overview

Pari-Mutue Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

Pari-Mutuel Model

Connection between the PMM and other models Connection with probability intervals Connection with belief functions

lumber of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

Probability intervals

Λ

Pari-Mutue Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

$$\mathcal{I} = \{ [l_i, u_i] \mid i = 1, \dots, n \}.$$
$$\mathcal{A}(\mathcal{I}) = \{ P \text{ prob.} \mid l_i \le P(\{x_i\}) \le u_i \}$$

l, u are the lower and upper envelopes of $\mathcal{M}(\mathcal{I})$.

Theorem

Let P_0 be a probability, $\delta > 0$ and $\underline{P}, \overline{P}$ the lower and upper probability induced by the PMM. Define the probability interval:

$$\mathcal{I} = \{ [\underline{P}(\{x_i\}), \overline{P}(\{x_i\})] \mid i = 1, \dots, n \}.$$

Then $\mathcal{M}(\mathcal{I}) = \mathcal{M}(P_0, \delta)$, or equivalently $\underline{P} = l$ and $\overline{P} = u$.

Pari-Mutue Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

Define $k = \min\{|A| : \underline{P}(A) > 0\}.$

Theorem

Let \underline{P} be the lower probability induced by a PMM (P_0, δ) . \underline{P} is a belief function if and only if one of the following conditions hold:

1. k = n.

Focal sets: X, m(X) = 1.

Pari-Mutue Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

Define $k = \min\{|A| : \underline{P}(A) > 0\}.$

Theorem

Let \underline{P} be the lower probability induced by a PMM (P_0, δ) . \underline{P} is a belief function if and only if one of the following conditions hold:

1.
$$k = n$$
.

2.
$$k = n - 1$$
 and $\sum_{i=1}^{n} \underline{P}(X \setminus \{x_i\}) \leq 1$.

Focal sets: $X, X \setminus \{x\} \ \forall x \in X.$

Pari-Mutue Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

Define $k = \min\{|A| : \underline{P}(A) > 0\}.$

Theorem

Let \underline{P} be the lower probability induced by a PMM (P_0, δ) . \underline{P} is a belief function if and only if one of the following conditions hold:

$$l. \ k = n.$$

2.
$$k = n - 1$$
 and $\sum_{i=1}^{n} \underline{P}(X \setminus \{x_i\}) \leq 1$.

3. k < n-1, $\exists !B$ with |B| = k and $\underline{P}(B) > 0$, and $\underline{P}(A) > 0$ if and only if $B \subseteq A$.

Focal sets: $B, B \cup \{x\}, \forall x \notin B$.

Pari-Mutue Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

Define $k = \min\{|A| : \underline{P}(A) > 0\}.$

Theorem

Let \underline{P} be the lower probability induced by a PMM (P_0, δ) . \underline{P} is a belief function if and only if one of the following conditions hold:

$$l. \ k = n.$$

2.
$$k = n - 1$$
 and $\sum_{i=1}^{n} \underline{P}(X \setminus \{x_i\}) \leq 1$.

3. k < n-1, $\exists !B$ with |B| = k and $\underline{P}(B) > 0$, and $\underline{P}(A) > 0$ if and only if $B \subseteq A$.

4. k < n - 1, $\exists ! B$ with |B| = k - 1 and $\delta = \frac{P_0(B)}{1 - P_0(B)}$, and $\underline{P}(A) > 0$ if and only if $B \subset A$.

Focal sets: $B \cup \{x\}$, $\forall x \notin B$.

Overview

Pari-Mutue Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

Pari-Mutuel Model

onnection between the PMM and other models Connection with probability intervals Connection with belief functions

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

Extreme points induced by a PMM

Since <u>P</u> is 2-monotone, all extreme points P_{σ} are generated by the permutations σ of $\{1, \ldots, n\}$:

$$P_{\sigma}(\{x_{\sigma(1)}\}) = \overline{P}(\{x_{\sigma(1)}\}).$$
$$P_{\sigma}(\{x_{\sigma(1)}, \dots, x_{\sigma(k)}\}) = \overline{P}(\{x_{\sigma(1)}, \dots, x_{\sigma(k)}\}).$$

Proposition

Let $\underline{P}, \overline{P}$ be the lower and upper probability induced by a PMM (P_0, δ) . P_{σ} is given by:

$$P_{\sigma}(\{x_{\sigma(i)}\}) = \overline{P}(\{x_{\sigma(i)}\}) \quad \forall i = 1, \dots, j-1$$
$$P_{\sigma}(\{x_{\sigma(j)}\}) = \underline{P}(\{x_{\sigma(j)}, \dots, x_{\sigma(n)}\}),$$
$$P_{\sigma}(\{x_{\sigma(j+1)}\}) = \dots = P_{\sigma}(\{x_{\sigma(n)}\}) = 0,$$

where j satisfies

$$\overline{P}(\{x_{\sigma(1)},\ldots,x_{\sigma(j-1)}\}) < \overline{P}(\{x_{\sigma(1)},\ldots,x_{\sigma(j)}\}) = 1.$$

Maximal number of extreme points

Pari-Mutue Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

Theorem

Then maximal number of extreme points of $\mathcal{M}(P_0, \delta)$ is:

1.
$$\frac{n}{2}\binom{n}{2}$$
, if *n* is even.

2.
$$\frac{n+1}{2}\binom{n}{\frac{n+1}{2}}$$
, if n is odd.

- It coincides with the maximal number of extreme points induced by a probability interval.
- The upper bound can be attained for the uniform distribution.

Number of extreme points

Pari-Mutue Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

Given the PMM (P_0, δ) inducing $\underline{P}, \overline{P}$, define:

$$\mathcal{L} = \{ A \subseteq X \mid \overline{P}(A) = 1 \}.$$

Proposition

Given a PMM (P_0, δ) , the number of extreme points of $\mathcal{M}(P_0, \delta)$ is bounded above by:

$$\sum_{A \in \mathcal{L}} \left| \bigcap_{B \subseteq A, B \in \mathcal{L}} B \right|.$$

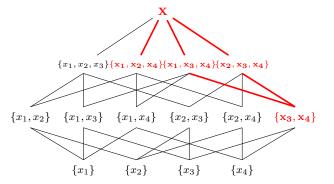
Furthermore, the upper bound is attained if and only if $P_0(A) > \frac{1}{1+\delta}$ for any $A \in \mathcal{L}$.

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions



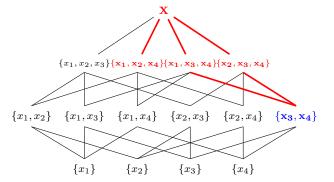
 $X = \{x_1, x_2, x_3, x_4\}, P_0 = (0.05, 0.15, 0.2, 0.6), \delta = 0.3:$

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions



 $X = \{x_1, x_2, x_3, x_4\}, P_0 = (0.05, 0.15, 0.2, 0.6), \delta = 0.3:$

$$\{x_3, x_4\} \longrightarrow \left| \bigcap_{B \subseteq \{x_3, x_4\}, B \in \mathcal{L}} B \right| = |\{x_3, x_4\}| = 2.$$

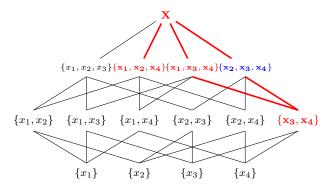
Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

$$X = \{x_1, x_2, x_3, x_4\}$$
, $P_0 = (0.05, 0.15, 0.2, 0.6)$, $\delta = 0.3$:



$$\{x_2, x_3, x_4\} \longrightarrow \left| \bigcap_{B \subseteq \{x_2, x_3, x_4\}, B \in \mathcal{L}} B \right| = |\{x_3, x_4\}| = 2.$$

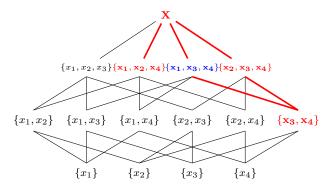
Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

$$X = \{x_1, x_2, x_3, x_4\}$$
, $P_0 = (0.05, 0.15, 0.2, 0.6)$, $\delta = 0.3$:



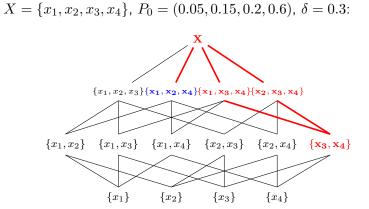
$$\{x_1, x_3, x_4\} \longrightarrow \left| \bigcap_{B \subseteq \{x_1, x_3, x_4\}, B \in \mathcal{L}} B \right| = |\{x_3, x_4\}| = 2.$$

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions



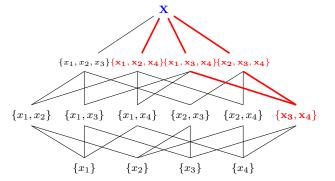
$$\{x_1, x_2, x_4\} \longrightarrow \left| \bigcap_{B \subseteq \{x_1, x_2, x_4\}, B \in \mathcal{L}} B \right| = |\{x_1, x_2, x_4\}| = 3.$$

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions



 $X = \{x_1, x_2, x_3, x_4\}, P_0 = (0.05, 0.15, 0.2, 0.6), \delta = 0.3:$

$$X \longrightarrow \left| \bigcap_{B \subseteq X, B \in \mathcal{L}} B \right| = |\{x_4\}| = 1.$$

Number of extreme points

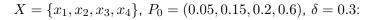
Pari-Mutuel Model

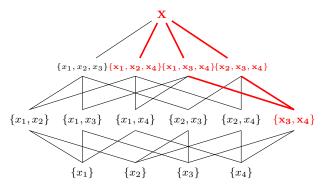
Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions





 $|ext(\mathcal{M}(P_0,\delta))| \le 2+2+2+3+1.$

Number of extreme points

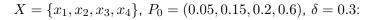
Pari-Mutuel Model

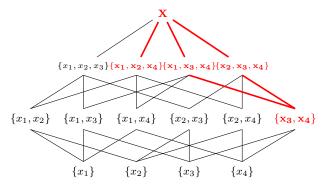
Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions





$$|ext(\mathcal{M}(P_0,\delta))| = 2 + 2 + 2 + 3 + 1.$$

Overview

Pari-Mutue Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

Pari-Mutuel Model

onnection between the PMM and other models Connection with probability intervals Connection with belief functions

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

Combining multiple PMMs

Pari-Mutue Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

Given two PMMs $(P_0^1, \delta_1), (P_0^2, \delta_2)$, we study: • Conjunction: $\mathcal{M}(P_0^1, \delta_1) \cap \mathcal{M}(P_0^2, \delta_2)$.

- Disjunction: $\mathcal{M}(P_0^1, \delta_1) \cup \mathcal{M}(P_0^2, \delta_2).$
- Mixture: $\varepsilon \mathcal{M}(P_0^1, \delta_1) + (1 \varepsilon) \mathcal{M}(P_0^2, \delta_2).$

Conjunction

Pari-Mutue Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

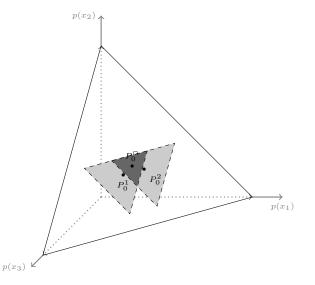
Proposition $\mathcal{M}(P_0^1, \delta_1) \cap \mathcal{M}(P_0^2, \delta_2)$ is non-empty if and only if:

$$\sum_{x \in X} \min\left\{ (1+\delta_1) P_0^1(\{x\}), (1+\delta_2) P_0^1(\{x\}), 1 \right\} \ge 1.$$

Then, it is induced by a PMM $(P_0^{\cap}, \delta^{\cap})$ given by:

$$\delta^{\cap} = \left(\sum_{x \in X} \min\left\{(1+\delta_1)P_0^1(\{x\}), (1+\delta_2)P_0^1(\{x\}), 1\right\}\right) - 1.$$
$$P_0^{\cap} = \frac{\min\left\{(1+\delta_1)P_0^1(\{x\}), (1+\delta_2)P_0^1(\{x\})\right\}}{1+\delta^{\cap}}.$$

Conjunction



 $\mathcal{M}(P_0^1,\delta_1)\cap\mathcal{M}(P_0^2,\delta_2)$

Proposition

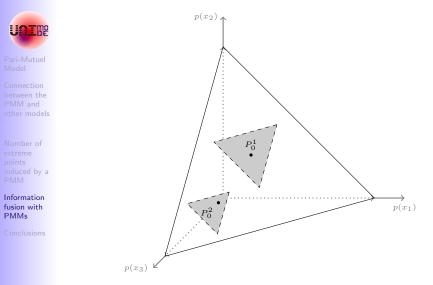
Information fusion with **PMMs**

- Neither $\mathcal{M}(P_0^1, \delta_1) \cup \mathcal{M}(P_0^2, \delta_2)$ nor its convex hull are induced by a PMM.
- However, they can be outer-approximated by a PMM:

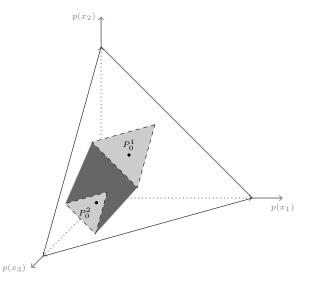
 $conv\left(\mathcal{M}(P_0^1,\delta_1)\cup\mathcal{M}(P_0^2,\delta_2)\right)\subseteq\mathcal{M}(P_0^\cup,\delta^\cup),$

given by:

$$\begin{split} \delta^{\cup} &= \left(\sum_{x \in X} \max\left\{ (1+\delta_1) P_0^1(\{x\}), (1+\delta_2) P_0^2(\{x\}) \right\} \right) - 1. \\ P_0^{\cup} &= \frac{\max\left\{ (1+\delta_1) P_0^1(\{x\}), (1+\delta_2) P_0^2(\{x\}) \right\}}{1+\delta^{\cup}}. \end{split}$$



 $\mathcal{M}(P_0^1, \delta_1) \cup \mathcal{M}(P_0^2, \delta_2)$



 $conv(\mathcal{M}(P_0^1,\delta_1)\cup\mathcal{M}(P_0^2,\delta_2))$

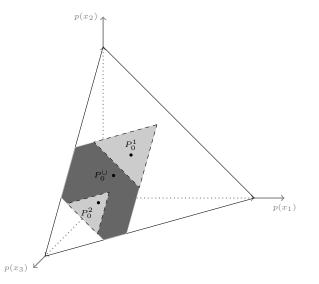
Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions



 $\mathcal{M}(P_0^\cup,\delta^\cup)$

Mixture

Pari-Mutue Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

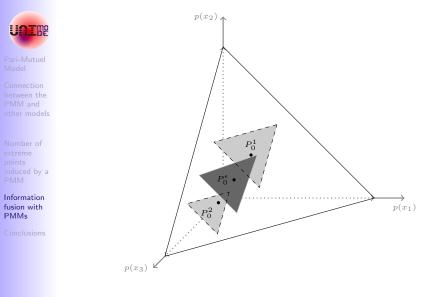
Proposition

 $\varepsilon \mathcal{M}(P_0^1, \delta_1) + (1 - \varepsilon) \mathcal{M}(P_0^2, \delta_2)$ is induced by a PMM $(P_0^{\varepsilon}, \delta^{\varepsilon})$ given by:

$$\delta^{\varepsilon} = \varepsilon (1+\delta_1) + (1-\varepsilon)(1+\delta_2) - 1.$$

$$P_0^{\varepsilon} = \frac{\varepsilon (1+\delta_1) P_0^1(\{x\}) + (1-\varepsilon)(1+\delta_2) P_0^2(\{x\})}{1+\delta^{\varepsilon}}.$$

Mixture



 $\epsilon \mathcal{M}(P_0^1, \delta_1) + (1 - \epsilon) \mathcal{M}(P_0^2, \delta_2)$

Overview

Pari-Mutue Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

Pari-Mutuel Model

onnection between the PMM and other models Connection with probability intervals Connection with belief functions

Number of extreme points induced by a PMM

nformation fusion with PMMs

Conclusions

Conclusions

Pari-Mutuel Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

The PMM as an imprecise probability model:

- Extension to gambles (*Pelessoni et al., Walley*).
- The PMM and risk measures (*Pelessoni et al.*).
- Conditioning a PMM (*Pelessoni et al.*).
- PMM with a uniform distribution (Utkin).

Conclusions

Pari-Mutuel Model

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

The PMM as an imprecise probability model:

- Extension to gambles (*Pelessoni et al., Walley*).
- The PMM and risk measures (*Pelessoni et al.*).
- Conditioning a PMM (*Pelessoni et al.*).
- PMM with a uniform distribution (*Utkin*).
- Connection with other models of the IP Theory.
- Extreme points of $\mathcal{M}(P_0, \delta)$.
- Merging information given in terms of PMMs.

Connection between the PMM and other models

Number of extreme points induced by a PMM

Information fusion with PMMs

Conclusions

A study of the Pari-Mutuel Model from the point of view of Imprecise Probabilities

I. Montes, E. Miranda and S. Destercke

UNIVERSIDAD OVIEDO University of Oviedo, Spain Technologic University of Compiègne, France

ISIPTA 2017