A Semantics for Conditionals with Default Negation

Macro Wilhelm, Christian Eichhorn, **Richard Niland**, Gabriele Kern-Isberner *TU Dortmund University*

July 13

ECSQARU 2017

Cars

Car icon by Freepik from www.flaticon.com Gasoline icon by Mitchell Geere from The Noun Project

• Cars typically have a gasoline engine.

Car icon by Freepik from www.flaticon.com

- Cars typically have a gasoline engine.
- *Electric* driven cars typically have an *electric* engine instead.

Car icon by Freepik from www.flaticon.com

- Cars typically have a gasoline engine.
- *Electric* driven cars typically have an *electric* engine instead.
- *Hybrid* cars may feature *both* engine types, but don't necessarily have to.

Car icon by Freepik from www.flaticon.com

- Cars typically have a gasoline engine.
- *Electric* driven cars typically have an *electric* engine instead.
- *Hybrid* cars may feature *both* engine types, but don't necessarily have to.
- Hybrid cars with a gasoline engine are more prominent than non-hybrid electric cars without one.

Car icon by Freepik from www.flaticon.com

- Cars typically have a gasoline engine.
- *Electric* driven cars typically have an *electric* engine instead.
- *Hybrid* cars may feature *both* engine types, but don't necessarily have to.
- Hybrid cars with a gasoline engine are more prominent than non-hybrid electric cars without one.

Car icon by Freepik from www.flaticon.com

Gasoline icon by Mitchell Geere from The Noun Project

 \Rightarrow Would you expect a hybrid car to have a gasoline engine or not?

- Cars typically have a gasoline engine.
- *Electric* driven cars typically have an *electric* engine instead.
- *Hybrid* cars may feature *both* engine types, but don't necessarily have to.
- Hybrid cars with a gasoline engine are more prominent than non-hybrid electric cars without one.

Car icon by Freepik from www.flaticon.com

Gasoline icon by Mitchell Geere from The Noun Project

 \Rightarrow Would you expect a hybrid car to have a gasoline engine or not?

Given the above information,

we'd like to have an epistemic state which is indifferent about this.

$A \Rightarrow B$	Material Implication	"If A holds, then B " (No exceptions)
$B \leftarrow A$, not C	Default Negation	"If A holds, and C is not provable, then B " (Explicit exceptions)
(B A)	Conditional	"If A holds, then usually B " (Implicit exceptions)

$A \Rightarrow B$	Material Implication	"If A holds, then B " (No exceptions)	
$B \leftarrow A$, not C	Default Negation	"If A holds, and C is not provable, then I (Explicit exceptions)	
(B A)	Conditional	"If A holds, then usually B " nal (Implicit exceptions)	
(<i>B</i> <i>A</i> , not <i>C</i>)	Conditional	"If A holds, and C is not provable, then usually B " (<mark>Both types</mark> of exceptions)	

LOGIC AND WORLDS

We use a standard propositional logic with

- A finite propositional alphabet $\Sigma = \{V_1, \dots, V_m\}$,
- The usual logical connectives $\wedge, \lor, \neg,$ and
- A language $\mathfrak L$ of literals from Σ closed under these connectives.

We represent the set of **possible worlds** Ω syntactically with complete conjunctions of literals of Σ .

LOGIC AND WORLDS

We use a standard propositional logic with

- A finite propositional alphabet $\Sigma = \{V_1, \dots, V_m\}$,
- $\cdot\,$ The usual logical connectives \wedge,\vee,\neg , and
- A language $\mathfrak L$ of literals from Σ closed under these connectives.

We represent the set of **possible worlds** Ω syntactically with complete conjunctions of literals of Σ .

Example (Possible Worlds)

Let $\Sigma = \{E, G, H\}$ be the alphabet of our running example of <u>e</u>lectric and <u>g</u>asoline engines and <u>h</u>ybrid cars.

The possible worlds for this alphabet are:

$$\Omega = \left\{ egh, eg\overline{h}, e\overline{g}h, e\overline{g}\overline{h}, \overline{e}gh, \overline{e}g\overline{h}, \overline{e}g\overline{h}, \overline{e}\overline{g}\overline{h}, \overline{e}\overline{g}\overline{h} \right\}.$$

CONDITIONALS

- Conditionals (*B*|*A*) encode defeasible rules "*If A then* usually *B*".
- Three-valued evaluation by worlds [Fin74]:

$$\llbracket (B|A) \rrbracket_{\omega} = \begin{cases} true & \text{iff } \omega \models AB \quad (\text{``Rule verified''}) \\ false & \text{iff } \omega \models A\overline{B} \quad (\text{``Rule violated''}) \\ undefined & \text{iff } \omega \models \overline{A} \quad (\text{``Rule not applicable''}) \end{cases}$$

CONDITIONALS

- Conditionals (**B**|**A**) encode defeasible rules "If A then usually B".
- Three-valued evaluation by worlds [Fin74]:

$$\llbracket (\mathbf{B}|\mathbf{A}) \rrbracket_{\omega} = \begin{cases} true & \text{iff } \omega \models \mathbf{AB} \quad (\text{``Rule verified''}) \\ false & \text{iff } \omega \models \mathbf{AB} \quad (\text{``Rule violated''}) \\ undefined & \text{iff } \omega \models \overline{\mathbf{A}} \quad (\text{``Rule not applicable''}) \end{cases}$$

Example (Formalizing the Introductory Example)

(e | h): "Hybrids usually have an electric engine." $(\mathbf{q}\mathbf{h} \mid \mathbf{e}(\mathbf{q}\mathbf{h} \lor \overline{\mathbf{q}}\overline{\mathbf{h}})$: "Hybrid cars with both an electric and a gasoline engine are more prominent than non-hybrids with only an electric engine."

Definition Let $A, B \in \mathfrak{L}$ be formulas, let $\mathcal{D} \subseteq \mathfrak{L}$ be a set of formulas. ($B \mid A, \text{not } \mathcal{D}$) is a *conditional with default negation*.

If $\mathcal{D} = \emptyset$, we write $(\mathbf{B} | \mathbf{A})$ instead of $(\mathbf{B} | \mathbf{A}, \text{not } \emptyset)$.

DefinitionLet $A, B \in \mathfrak{L}$ be formulas, let $\mathcal{D} \subseteq \mathfrak{L}$ be a set of formulas. $(B \mid A, \text{not } \mathcal{D})$ is a conditional with default negation.

If $\mathcal{D} = \emptyset$, we write (B | A) instead of $(B | A, \text{not } \emptyset)$.

Example (Formalizing the Introductory Example (contd.))

- (e | h): "Hybrids usually have an electric engine."
- $(gh | e(gh \lor \overline{g}\overline{h}):$ "Hybrid cars with both an electric and a gasoline engine are more prominent than non-hybrids with only an electric engine."
 - (**g** | **e**): "Electric cars typically don't have a gasoline engine."

Let $A, B \in \mathfrak{L}$ be formulas, let $\mathcal{D} \subseteq \mathfrak{L}$ be a set of formulas. ($B \mid A$, not \mathcal{D}) is a *conditional with default negation*.

If $\mathcal{D} = \varnothing$, we write (B | A) instead of $(B | A, \text{not } \varnothing)$.

Example (Formalizing the Introductory Example (contd.))

- (e | h): "Hybrids usually have an electric engine."
- $(gh | e(gh \lor \overline{g}\overline{h}):$ "Hybrid cars with both an electric and a gasoline engine are more prominent than non-hybrids with only an electric engine."

(g | e, not {h}): "Electric cars typically don't have a gasoline engine
 unless they are hybrids."

CONDITIONAL KNOWLEDGE BASES

Definition

A $\textit{knowlegde base} \ \mathcal{R}$ is comprised of

- \cdot a set of formulas $\mathcal{F}_{\mathcal{R}}\left(\textit{facts}\right)$ and
- a set of conditionals with default negation $\mathcal{B}_{\mathcal{R}}$ (*beliefs*).

A *knowlegde base* \mathcal{R} is comprised of

- \cdot a set of formulas $\mathcal{F}_{\mathcal{R}}\left(\textit{facts}\right)$ and
- \cdot a set of conditionals with default negation $\mathcal{B}_{\mathcal{R}}$ (beliefs).

Example (Formalizing the Introductory Example (contd.))

Facts:	$h \Rightarrow e$	Hybrids are cars with an electric engine.
Beliefs:	$(\overline{g} e, not \{h\})$	Electric cars typically don't have a gasoline engine — unless they are hybrids.
	$(gh e(gh \lor \overline{g}\overline{h}))$	Cars with electric engines are more likely
		to be hybrids with a gasoline engine than
		non-hybrids without.

A *knowlegde base* \mathcal{R} is comprised of

- \cdot a set of formulas $\mathcal{F}_{\mathcal{R}}\left(\textit{facts}\right)$ and
- \cdot a set of conditionals with default negation $\mathcal{B}_{\mathcal{R}}$ (beliefs).

Example (Formalizing the Introductory Example (contd.))

Facts: $h \Rightarrow e$ Hybrids are cars with an electric engine.Beliefs: $(\overline{g} \mid e, \text{not } \{h\})$ Electric cars typically don't have a gasoline
engine — unless they are hybrids.
($g \mid e(g \mid v \mid \overline{g} \mid \overline{h})$)Cars with electric engines are more likely
to be hybrids with a gasoline engine than
non-hybrids without.

$$\mathcal{R} = \left\{ \underbrace{\{h \Rightarrow e\}}_{\mathcal{F}}, \underbrace{\{(\overline{g} \mid e, \operatorname{not} \{h\}), (g \mid e(g \mid h \lor \overline{g} \mid \overline{h}))\}}_{\mathcal{B}} \right\}$$
10/20

REDUCT

Definition

The *reduct* $\mathcal{R}^{S} = (\mathcal{F}_{\mathcal{R}}, \mathcal{B}_{\mathcal{R}}^{S})$ of \mathcal{R} by some formula $S \in \mathfrak{L}$ is the knowledge base \mathcal{R} with its set of beliefs $\mathcal{B}_{\mathcal{R}}$ being replaced by

 $\mathcal{B}^{\mathsf{S}}_{\mathcal{R}} = \big\{ (\mathsf{B} \,|\, \mathsf{A}) \mid (\mathsf{B} \,|\, \mathsf{A}, \mathsf{not} \ \mathcal{D}) \in \mathcal{B}_{\mathcal{R}} \quad \mathsf{and} \quad \forall \ \mathsf{D} \in \mathcal{D} : \{\mathsf{S}\} \cup \mathcal{F}_{\mathcal{R}} \not\models \mathsf{D} \big\}.$

REDUCT

Definition

The *reduct* $\mathcal{R}^{S} = (\mathcal{F}_{\mathcal{R}}, \mathcal{B}_{\mathcal{R}}^{S})$ of \mathcal{R} by some formula $S \in \mathfrak{L}$ is the knowledge base \mathcal{R} with its set of beliefs $\mathcal{B}_{\mathcal{R}}$ being replaced by

 $\mathcal{B}^{S}_{\mathcal{R}} = \big\{ (B \,|\, A) \mid (B \,|\, A, \text{not} \ \mathcal{D}) \in \mathcal{B}_{\mathcal{R}} \quad \text{and} \quad \forall \ D \in \mathcal{D} : \{S\} \cup \mathcal{F}_{\mathcal{R}} \not\models D \big\}.$

Example (Reducts in the Car Example) For the knowledge base $\mathcal{R} = \left\{ \{h \Rightarrow e\}, \{(\overline{g} \mid e, \text{not } \{h\}), (g \mid e(g \mid h \lor \overline{g} \mid \overline{h}))\} \right\}$

we have the reducts

$$\mathcal{B}^{S} = \left\{ \begin{array}{c} (\overline{g} \mid e, \operatorname{not} \{h\}) \\ (gh \mid e(gh \lor \overline{g} \overline{h})) \end{array} \right\} \quad \text{and} \quad \mathcal{B}^{S'} = \left\{ \begin{array}{c} (\overline{g} \mid e, \operatorname{not} \{h\}), \\ (gh \mid e(gh \lor \overline{g} \overline{h})) \end{array} \right\}$$

for any formulas S with $S \models h$ and S' with $S' \not\models h$.

An Ordinal Conditional Function (OCF) or ranking function κ is a function that assigns a *degree of disbelief* to each world $\omega \in \Omega$.

Definition (OCF [Spo88])

$$\begin{split} \kappa &:= \Omega \to \mathbb{N}_0^\infty \text{ such that:} \\ \kappa^{-1}(0) \neq \varnothing \\ \kappa(\mathbf{A}) &= \min\{\kappa(\omega) \mid \omega \models \mathbf{A}\} \\ \kappa(\mathbf{B} \mid \mathbf{A}) &= \kappa(\mathbf{A} \cdot \mathbf{B}) - \kappa(\mathbf{A}) \\ \kappa &\models (\mathbf{B} \mid \mathbf{A}) \text{ iff } \kappa(\mathbf{A} \cdot \mathbf{B}) < \kappa(\mathbf{A} \cdot \overline{\mathbf{B}}) \end{split}$$

An Ordinal Conditional Function (OCF) or *ranking function* κ is a function that assigns a *degree of disbelief* to each world $\omega \in \Omega$.

Definition (OCF [Spo88])

$$\begin{split} \kappa &:= \Omega \to \mathbb{N}_0^\infty \text{ such that:} \\ \kappa^{-1}(0) \neq \varnothing \\ \kappa(\mathbf{A}) &= \min\{\kappa(\omega) \mid \omega \models \mathbf{A}\} \\ \kappa(\mathbf{B} \mid \mathbf{A}) &= \kappa(\mathbf{A} \mid \mathbf{B}) - \kappa(\mathbf{A}) \\ \kappa &\models (\mathbf{B} \mid \mathbf{A}) \text{ iff } \kappa(\mathbf{A} \mid \mathbf{B}) < \kappa(\mathbf{A} \mid \overline{\mathbf{B}}) \end{split}$$

Example (Car Ranking)

$$\label{eq:constraint} \begin{array}{|c|c|c|} \hline \overline{e}\,g\,h\,,\,\overline{e}\,\overline{g}\,h & \\ \hline e\,\overline{g}\,\overline{h} & \\ \hline e\,\overline{g}\,\overline{h} & \\ \hline e\,g\,h\,,e\,g\,\overline{h} & \\ \hline e\,\overline{g}\,h\,,\overline{e}\,g\,\overline{h},\overline{e}\,\overline{g}\,\overline{h} & \\ \hline \kappa(\omega) = 1 & \\ \hline \kappa(\omega) = 0 & \\ \hline \end{array}$$

A infers B in the context of a knowledge base \mathcal{R} with conditionals with default negation iff A infers B in the epistemic state of the reduct \mathcal{R}^A : $A \models B$ iff $A \models_{\kappa_{\mathcal{R}^A}} B$.

(B | A) is inferable from \mathcal{R} iff (B | A) is accepted in \mathcal{R}^A .

A infers B in the context of a knowledge base \mathcal{R} with conditionals with default negation iff A infers B in the epistemic state of the reduct \mathcal{R}^A : $A \models B$ iff $A \models_{\kappa_{\mathcal{R}^A}} B$.

(B | A) is inferable from \mathcal{R} iff (B | A) is accepted in \mathcal{R}^A .

Example (Inference in the Car Example) $\mathcal{R} = \left\{ \{h \Rightarrow e\}, \{(\overline{g} \mid e, \text{not} \{h\}), (gh \mid e(gh \lor \overline{g} \overline{h}))\} \right\}$

A infers B in the context of a knowledge base \mathcal{R} with conditionals with default negation iff A infers B in the epistemic state of the reduct \mathcal{R}^A : $A \models B$ iff $A \models_{\kappa_{\mathcal{R}^A}} B$.

(B | A) is inferable from \mathcal{R} iff (B | A) is accepted in \mathcal{R}^A .

Example (Inference in the Car Example) $\mathcal{R}^{h} = \left\{ \{h \Rightarrow e\}, \{ (\overline{g} \mid e, \text{not } \{h\}), (g \mid h \mid e(g \mid h \lor \overline{g} \mid \overline{h})) \} \right\}$

$$\begin{array}{c|c} \kappa(\omega) \\ \hline \infty & \overline{e}gh, \overline{e}\overline{g}h \\ 1 & e\overline{g}\overline{h} \\ 0 & egh, eg\overline{h}, \\ e\overline{g}h, \overline{e}g\overline{h}, \overline{e}\overline{g}\overline{h} \end{array}$$

A infers B in the context of a knowledge base \mathcal{R} with conditionals with default negation iff A infers B in the epistemic state of the reduct \mathcal{R}^A : $A \models B$ iff $A \models_{\kappa_{\mathcal{R}^A}} B$.

(B | A) is inferable from \mathcal{R} iff (B | A) is accepted in \mathcal{R}^A .

Example (Inference in the Car Example)
$$\mathcal{R}^{h} = \left\{ \{h \Rightarrow e\}, \{ (\overline{g} \mid e, \text{not } \{h\}), (g \mid h \mid e(g \mid h \lor \overline{g} \mid \overline{h})) \} \right\}$$

$$\begin{array}{c} \kappa(\omega) \\ \infty \\ \hline e g h, \overline{e} \overline{g} h \\ 1 \\ e \overline{g} \overline{h} \\ 0 \\ e \overline{g} h, \overline{e} g \overline{h}, \overline{e} \overline{g} \overline{h} \end{array}$$

⇒ Hybrid cars *may or may not* have a gasoline engine; they are *indifferent* towards a property of their superclass! $h \not\bowtie g$ and $h \not\bowtie \overline{g}$

The inference relation \models satisfies the following formal properties:

(LLE)
$$A \equiv B$$
 and $A \models C$ imply $B \models C$ (RW) $B \models C$ and $A \models B$ imply $A \models C$ (AND) $A \models B$ and $A \models C$ imply $A \models BC$ (MPC) $A \models B$ and $A \models B \Rightarrow C$ imply $A \models C$

The inference relation \geq satisfies the following formal properties:

(LLE) $A \equiv B$ and $A \models C$ imply $B \models C$ (RW) $B \models C$ and $A \models B$ imply $A \models C$ (AND) $A \models B$ and $A \models C$ imply $A \models BC$ (MPC) $A \models B$ and $A \models B \Rightarrow C$ imply $A \models C$

However, the relation neither satisfies (CUT) nor (CM) in general.

The inference relation \geq satisfies the following formal properties:

(LLE)	$A \equiv B$	and	$A \models C$	imply	$B \approx C$
(RW)	$B \models C$	and	$A \models B$	imply	$A \models C$
(AND)	$A \models B$	and	$A \succcurlyeq C$	imply	$\textit{A} \models \textit{BC}$
(MPC)	$A \approx B$	and	$A \models B \Rightarrow C$	imply	$A \approx C$

However, the relation neither satisfies (CUT) nor (CM) in general. These can be satisfied under certain restrictions, however:

(CM)	$A \models B$ and $A \models C$	imply $AB \succcurlyeq C$	divon $\mathcal{D}^{A} - \mathcal{D}^{AB}$
(CUT)	$A \models B$ and $AB \models C$	imply $oldsymbol{A} toprox oldsymbol{C}$	given $\mathcal{K} = \mathcal{K}$

CONCLUSION

We...

- ... introduced *default negation* (known from answer set programming) into *conditionals*.
 - \rightarrow Proper expansion of the conditional language
- ... defined a novel *inference relation* on top of these conditionals \rightarrow Formal properties in the paper.
- ... are now capable of modeling exceptions such as subclass indifference (e.g., hybrid cars).

THE WHOLE PAPER ON ONE SLIDE

LITERATURE

Bruno de Finetti.

Theory of Probability, volume 1,2.

John Wiley and Sons, New York, NY, USA, 1974.

📔 Wolfgang Spohn.

Ordinal Conditional Functions: A Dynamic Theory of Epistemic States.

In Causation in Decision, Belief Change and Statistics: Proceedings of the Irvine Conference on Probability and Causation, volume 42 of The Western Ontario Series in Philosophy of Science, pages 105–134, Dordrecht, NL, 1988. Springer Science+Business Media.