Complexity of Model Checking for Cardinality-based Belief Revision Operators

Nadia Creignou¹ Raida Ktari² Odile Papini¹

¹ Aix-Marseille Université, CNRS, LIF, LSIS, Marseille, France

² University of Sfax, ISIMS, Sfax, Tunisia

Introduction

• Belief revision, principles:

- Success
- Consistency
- Minimality of change

• Two main approaches for belief revision:

- Semantic: models based.
- Syntactic: formulas based

Given *B* a belief base (finite set of formulas), μ new information (a formula),

 $B * \mu$ is the revised belief base.

based on maximal subbases *B* consistent with μ .

Main objectives

- Presentation of different syntactic revision operators within a unified framework
- Introduction of two new cardinality-based operators
- Comparative study of the complexity of model checking for these operators, in different fragments of propositional logic.

Overview

Syntactic Belief Revision operators

 $B * \mu$ stems from $\mathcal{W}(B, \mu)$ the set of maximal subbsases of *B* consistent with μ .

- Maximality criteria for consistent belief subbases:
 - set inclusion/ cardinality.
- Strategies for exploiting the maximal consistent belief subbases:
 - ► (G) : all maximal subbases are equally plausible,

$$B *_{G} \mu = \bigvee_{B' \in \mathcal{W}(B,\mu)} \bigwedge (B' \cup \{\mu\})$$

 (W) : "when in doubt, throw it out" (widtio), keep only beliefs that are not questioned

$$B *_W \mu = \bigwedge \bigcap_{B' \in \mathcal{W}(B,\mu)} (B' \cup \{\mu\})$$

Set-inclusion as maximality criterion

subbases of *B* consistent with μ maximal w.r.t. set inclusion $\mathcal{W}_{\subset}(B,\mu) = \{B_1 \subseteq B \mid \bigwedge B_1 \not\models \neg \mu \text{ and for all } B_2 \text{ such that } \}$ $B_1 \subset B_2 \subset B, \land B_2 \models \neg \mu$

Ginsberg operator $*_G$ and Widtio operator $*_{wid}$ $B *_{G} \mu = \bigvee \bigwedge (B' \cup \{\mu\})$ $B' \in \mathcal{W}_{\subset}(B,\mu)$

$$m{B}st_{ extsf{widtio}}\mu = igwedge_{m{B}'\in\mathcal{W}_{\sub}(m{B},\mu)}(m{B}'\cup\{\mu\})$$

Example

$$B = \{a \rightarrow \neg b, b, b \rightarrow c, c \rightarrow \neg a, b \rightarrow d, d \rightarrow \neg a, \neg d \rightarrow c\} \text{ and } \mu = a.$$

$$\mathcal{W}_{\subseteq}(B, \mu) = \{\{a \rightarrow \neg b, b \rightarrow c, c \rightarrow \neg a, b \rightarrow d, d \rightarrow \neg a\}, \{a \rightarrow \neg b, b \rightarrow c, c \rightarrow \neg a, b \rightarrow d, \neg d \rightarrow c\}, \{a \rightarrow \neg b, b \rightarrow c, b \rightarrow d, d \rightarrow \neg a, \neg d \rightarrow c\}, \{b, b \rightarrow c, b \rightarrow d, \neg d \rightarrow c\}, \{b, c \rightarrow \neg a, b \rightarrow d, \neg d \rightarrow c\}, \{b, b \rightarrow c, d \rightarrow \neg a, \neg d \rightarrow c\}, \{b, c \rightarrow \neg a, d \rightarrow \neg a\}\}$$

$$B *_{G} \mu = \bigvee_{B' \in \mathcal{W}_{\subseteq}(B,\mu)} \bigwedge (B' \cup \{\mu\}) \equiv a \land (b \to c)$$
$$B *_{\text{Widtio}} \mu = \bigwedge \bigcap_{B' \in \mathcal{W}_{\subseteq}(B,\mu)} (B' \cup \{\mu\}) \equiv a$$

Cardinality as maximality criterion

RSR stands for Removed Sets Revision

subbases of *B* consistent with μ maximal w.r.t. cardinality

 $\mathcal{W}_{card}(B,\mu) = \{B_1 \subseteq B \mid \bigwedge B_1 \not\models \neg \mu \text{ and for all } B_2 \subseteq B \text{ such that} \\ |B_1| < |B_2|, \bigwedge B_2 \models \neg \mu\}$

RSRG operator *RSRG and RSRW operator *RSRW

$$B *_{\text{RSRG}} \mu = \bigvee_{B' \in \mathcal{W}_{card}(B,\mu)} \bigwedge (B' \cup \{\mu\})$$
$$B *_{\text{RSRW}} \mu = \bigwedge \bigcap_{B' \in \mathcal{W}_{card}(B,\mu)} (B' \cup \{\mu\})$$

Example

$$B = \{a \rightarrow \neg b, b, b \rightarrow c, c \rightarrow \neg a, b \rightarrow d, d \rightarrow \neg a, \neg d \rightarrow c\}, \text{ and } \mu = a.$$

$$\begin{aligned} \mathcal{W}_{\textit{card}}(B,\mu) &= \{ \{ a \to \neg b, b \to c, c \to \neg a, b \to d, d \to \neg a \}, \\ \{ a \to \neg b, b \to c, c \to \neg a, b \to d, \neg d \to c \}, \\ \{ a \to \neg b, b \to c, b \to d, d \to \neg a, \neg d \to c \} \} \end{aligned}$$

$$B*_{RSRG}\mu = igvee_{B'\in\mathcal{W}_{card}(B,\mu)}igwee_{(B'\cup\{\mu\})}\equiv a\wedge
eg b\wedge (c
ightarrow
eg d)$$

$$B *_{\textit{RSRW}} \mu = \bigwedge \bigcap_{B' \in \mathcal{W}_{\textit{card}}(B,\mu)} (B' \cup \{\mu\}) \equiv a \land \neg b$$

Extension to stratified belief bases $B = (S_1, ..., S_n)$

$$X \subseteq B$$
, trace $(X, B) = (|X \cap S_1|, ..., |X \cap S_n|)$.

maximality w.r.t. lexicographic order \leq_{lex}

 $\mathcal{W}_{cardlex}(B,\mu) = \{B_1 \subseteq B \mid \bigwedge B_1 \not\models \neg \mu \text{ and for all } B_2 \subseteq B \text{ s. t.} \\ trace(B_1,B) <_{lex} trace(B_2,B), \bigwedge B_2 \models \neg \mu\}.$

PRSRG operator *_{RSRG} and PRSRW operator *_{RSRW}

$$B *_{\text{PRSRG}} \mu = \bigvee_{B' \in \mathcal{W}_{cardlex}(B,\mu)} \bigwedge (B' \cup \{\mu\})$$
$$B *_{\text{PRSRW}} \mu = \bigwedge \bigcap_{B' \in \mathcal{W}_{cardlex}(B,\mu)} (B' \cup \{\mu\}).$$

The operators we consider

Strategy	maximality criterion		
	set inclusion	cardinality	cardlex
G	Ginsberg (* _G)	RSRG (* _{RSRG})	PRSRG (* _{PRSRG})
W	Widtio (* _{Widtio})	RSRW (* _{RSRW})	PRSRW (* _{PRSRW})

The problem of Model Checking

Problem :	Model-Checking(*)
Instance :	B a belief base, μ a formula, m an interpretation
Question :	$m\models B*\mu$?

The complexity of inference studied by *Nebel (1991), Eiter and Gottlob (1992), Nebel (1998), Cayrol et al. (1998).*

The complexity of Model Checking initiated in *Liberatore and Schaerf* (2001), for operators based on a set-inclusion maximality criterion.

Complexity of MODEL-CHECKING(*) for the G-strategy

Problem	Propositional Logic	Horn
Model-Checking(* _G)	coNP-complete	Р
MODEL-CHECKING(* _{RSRG})	coNP-complete	coNP-complete
Model-Checking(* _{PRSRG})	coNP-complete	coNP-complete

Idea of proof: MAX-INDEPENDENT-SET reduces to the complementary of MODEL-CHECKING(*_{RSRG})

Complexity of MODEL-CHECKING(*) for the *W*-strategy

Problem	Propositional Logic	Horn
MODEL-CHECKING(* _{Widtio})	Σ ₂ <i>P</i> -complete	NP-complete
MODEL-CHECKING(* _{RSRW})	Θ ₂ <i>P</i> -complete	Θ ₂ <i>P</i> -complete
MODEL-CHECKING(* <i>PRSRW</i>)	in $\Delta_2 P$, $\Theta_2 P$ -hard	in $\Delta_2 P$, $\Theta_2 P$ -hard

MODEL-CHECKING(*_{Widtio}) is NP-complete in the Horn fragment

Membership: to prove that m ⊨ B *_{Widtio} μ, for every α ∈ B such that m ⊭ α, guess B'_α ⊆ B such that B'_α ∪ {μ} is consistent and B'_α ∪ {μ} ∪ {α} is inconsistent.

• Hardness:

Problem :	PQ-ABDUCTION
Instance :	a Horn formula φ , a set of variables $A = \{x_1,, x_n\}$ such that $A \subseteq Var(\varphi)$ and a variable
	$q \in Var(arphi) \setminus A.$
Question :	Does there exist a set $E \subseteq \text{Lit}(A)$ such that $\varphi \land \bigwedge E$

- is satisfiable and $\varphi \land \bigwedge E \land \neg q$ is unsatisfiable?
- ► PQ-ABDUCTION is NP-complete (Creignou and Zanuttini, 2006)
- ► PQ-ABDUCTION ≤ MODEL-CHECKING(*_{Widtio}) when restricted to Horn formulas

Complexity of MODEL-CHECKING(*) for the *W*-strategy

Problem	Propositional Logic	Horn
MODEL-CHECKING(* _{Widtio})	Σ ₂ <i>P</i> -complete	NP-complete
MODEL-CHECKING(* _{RSRW})	Θ ₂ <i>P</i> -complete	Θ ₂ <i>P</i> -complete
MODEL-CHECKING(* <i>PRSRW</i>)	in $\Delta_2 P$, $\Theta_2 P$ -hard	in $\Delta_2 P$, $\Theta_2 P$ -hard

MODEL-CHECKING($*_{RSRW}$) is Θ_2 P-complete

Idea of proof:

Membership

kmax: the maximal cardinality of subsets of *B* consistent with μ .

- Check that $m \models \mu$
 - ★ else, we have $m \not\models B *_{RSRW} \mu$.
- Compute kmax (logarithmic number of calls to an NP-oracle).
- For every α ∈ B such that m ⊭ α, does there exist B'_α ⊆ B \ {α} consistent with μ such that |B'_α| = kmax ?

★ if yes,
$$m \models B *_{RSRW} \mu$$
.

★ else, $m \not\models B *_{RSRW} \mu$.

• Hardness: CARDMINSAT <= MODEL-CHECKING(*_{RSRW}).

Summary of the results

Operator	Propositional logic	Horn
Ginsberg	coNP-complete	Р
Widtio	$\Sigma_2 P$ -complete	NP-complete
RSRG	coNP-complete	coNP-complete
RSRW	$\Theta_2 P$ -complete	$\Theta_2 P$ -complete
PRSRG	coNP-complete	coNP-complete
PRSRW	in $\Delta_2 P$, $\Theta_2 P$ -hard	in $\Delta_2 P$, $\Theta_2 P$ -hard

Contribution and future work

- Syntactic belief revision operators presented within a unified framework
- Introduction of new operators based on maximal cardinality, *RSRG, *RSRW, *PRSRG, *PRSRW .
- Comparative study of the complexity of Model Checking in PL, as well as in Horn.
- Extend this study to other belief base revision strategies.
- Study the complexity of the inference problem for *RSRG, *RSRW, *PRSRG, *PRSRW .

Contribution and future work

- Syntactic belief revision operators presented within a unified framework
- Introduction of new operators based on maximal cardinality, *RSRG, *RSRW, *PRSRG, *PRSRW .
- Comparative study of the complexity of Model Checking in PL, as well as in Horn.
- Extend this study to other belief base revision strategies.
- Study the complexity of the inference problem for *RSRG, *RSRW, *PRSRG, *PRSRW .

Thank you for your attention!