Fuzzy Weighted Attribute Combinations Based Similarity Measures

Giulianella Coletti^a Davide Petturiti^b Barbara Vantaggi^c

^aDip. Matematica e Informatica, Università di Perugia ^bDip. Economia, Università di Perugia ^cDip. S.B.A.I., "La Sapienza" Università di Roma

ISIPTA '17 - ECSQARU 2017 Lugano, Switzerland – 10-14 July 2017

Motivation: similarity and attribute interactions (1)

Similarity measures

• Quantitative expression of

"what is in common between two objects"

• Usually take into account (at most) the significance value of different features individually

Capacities and the Choquet integral

- Model and evaluate the measure of a specific *"concept"* (such as utility, power, coalition effort)
- Take into account the significance value of different features and their mutual (positive or negative) interactions

Most known similarity measures for binary data

⇒ Most known similarity measures are based on cardinalities $|A \cap B|$, $|A \setminus B|$, $|B \setminus A|$ and $|A^c \cap B^c|$

	Similarity	Expression		
e 1	Jaccard	$\frac{ A \cap B }{ A \setminus B + B \setminus A + A \cap B }$		
Type	Dice	$\frac{2 A \cap B }{ A \setminus B + B \setminus A + 2 A \cap B }$		
	Tversky	$\frac{ A\cap B }{\alpha A\setminus B +\beta B\setminus A + A\cap B }$, $\alpha,\beta>0$		
	Ochiai	$\frac{ A \cap B }{\sqrt{ A \setminus B + A \cap B }\sqrt{ B \setminus A + A \cap B }}$		
	Kulczynski 2	$\frac{1}{2} \left(\frac{ A \cap B }{ A \setminus B + A \cap B } + \frac{ A \cap B }{ B \setminus A + A \cap B } \right)$		
Type 2	Sokal and Michener (Euclidean)	$\frac{ A \cap B + A^{c} \cap B^{c} }{ A \setminus B + B \setminus A + A \cap B + A^{c} \cap B^{c} }$		
Typ	Russel and Rao	$\frac{ A \cap B }{ A \setminus B + B \setminus A + A \cap B + A^c \cap B^c }$		
	De Baets	$\frac{\alpha(A \setminus B + B \setminus A) + \beta A \cap B + \gamma A^c \cap B^c }{\alpha'(A \setminus B + B \setminus A) + \beta A \cap B + \gamma A^c \cap B^c }, \ \alpha, \alpha', \beta, \gamma > 0$		

 \Rightarrow Only single features are taken into account and all are given the same "importance"

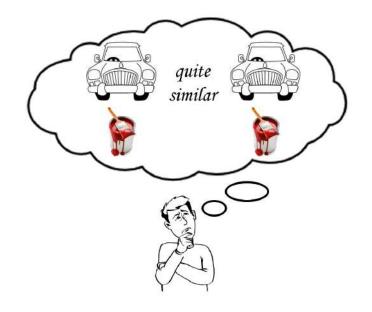
Motivation: similarity and attribute interactions (2)

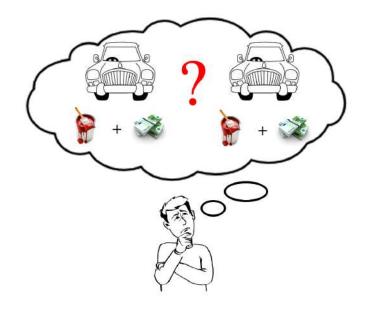
GOAL

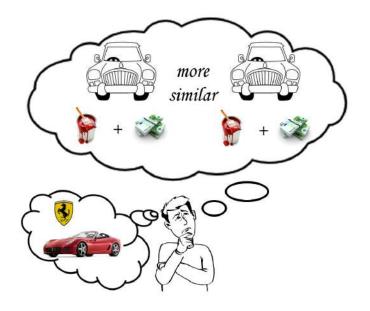
Propose similarity measures able to consider weights which can be interpreted as the "significance" (positive or negative) of groups of attributes

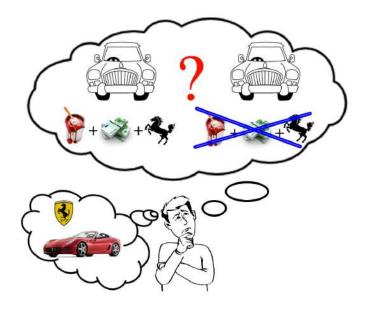
We define similarity measures based on a weight capacity and the Choquet integral, generalising the Jaccard similarity measure

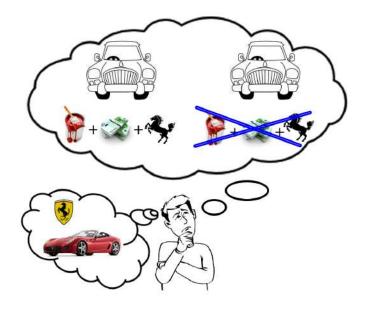
- Crisp data: attributes can be only present or absent
- Fuzzy data: attributes are present with a degree $\alpha \in [0, 1]$











Significance assessment

Consider:

- $N = \{1, \ldots, n\}$, a finite index set
- $\wp(N)$, the powerset of N

Significance assessment

A function $\sigma : \wp(N) \to \mathbb{R}$ satisfying the following conditions: (S1) $\sigma(\emptyset) = 0$; (S2) $\sum_{\{i\}\subseteq B\subseteq A} \sigma(B) \ge 0$, for every $A \in \wp(N)$ and every $i \in A$.

- $\sigma(A)$ is a weight of "significance" of the set $A \in \wp(N)$
- $\sigma(\{i\}) \ge 0$ for every $i \in N$
- $\sigma(A)$ can be positive or negative when |A| > 1

Weight capacity

Weight capacity

Define $\mu : \wp(N) \to [0, +\infty)$, for every $A \in \wp(N)$, as:

$$\mu(A) = \sum_{B \subseteq A} \sigma(B).$$

The function μ satisfies the following properties: (C1) $\mu(\emptyset) = 0$; (C2) $A \subseteq B \Longrightarrow \mu(A) \le \mu(B)$, for every $A, B \in \wp(N)$.

- σ is the Möbius inversion of μ
- If $\sum_{A\in\wp(N)}\sigma(A)=1$, then μ is normalized, that is $\mu(N)=1$
- If $\sigma \geq 0$, the corresponding μ is totally monotone
- If σ(A) = 0 for every A ∈ ℘(N) such that |A| > 1, then the corresponding μ is additive

Choquet integral

Consider:

- μ , a weight capacity on $\wp(N)$
- X ∈ [0, 1]^N

Choquet integral of X with respect to μ

$$\mathbf{C}_{\mu}(X) = \sum_{i=1}^{n} [X(\pi(i)) - X(\pi(i-1))] \, \mu(\{\pi(i), \dots, \pi(n)\}),$$

where π is a permutation of N such that $X(\pi(1)) \leq \ldots \leq X(\pi(n))$ and $X(\pi(0)) := 0$.

If X ∈ {0,1}^N then X can be identified with a subset of N (still denoted with X) and so C_μ(X) = μ(X).

Crisp data

Consider:

- $N = \{1, \ldots, n\}$, a finite set of crisp attribute indices
- Every attribute can be present or absent
- $C = \{0, 1\}^N$, set of all (crisp) object descriptions

Any object description is regarded as a (crisp) subset of N, which is identified with its **indicator function**, so, we simply denote it as a function $X : N \to \{0, 1\}$

Jaccard similarity measure

$$S_J(X,Y) = \frac{|X \cap Y|}{|X \setminus Y| + |Y \setminus X| + |X \cap Y|} = \frac{|X \cap Y|}{|X \Delta Y| + |X \cap Y|} = \frac{|X \cap Y|}{|X \cup Y|}$$

Towards a generalization

1) cardinality \rightsquigarrow weighted mean (\equiv additive capacity $\mu)$

The weighted mean

- differentiates the importance of single attributes
- does not care of interactions among attributes

2) weighted mean \rightsquigarrow Choquet integral (\equiv capacity μ)

The Choquet integral

- differentiates the importance of single attributes
- cares of interactions among attributes
- σ distinguishes between positive and negative interactions
- Three possible generalized Jaccard similarity measures
- In any case the maximality condition holds

An example (1)

Apartments in New York described by the following crisp attributes indexed by $N = \{1, 2, 3, 4\}$:

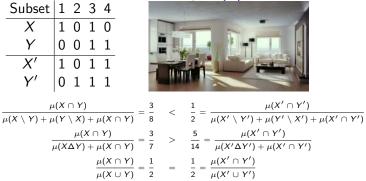
- 1: the apartment is located in a skyscraper;
- 2: the apartment has a terrace;
- 3: the apartment has a panoramic view;
- 4: the apartment is equipped with a lift;

							14								
σ	0.3	0.2	0.3	0.2	0.4	-0.1	-0.1	-0.1	0	0	-0.1	0	0	0	0
μ	0.3	0.2	0.3	0.2	0.9	0.5	0.4	0.4	0.4	0.5	0.9	1	0.6	0.6	1

Negative significance assessment

Some combinations of attributes are penalized with a negative σ since their common presence is not discriminative for the similarity of two objects

An example (2)



Depending on the particular functional form chosen for generalizing the Jaccard similarity measure, we reach completely different similarity orderings between the pairs (X, Y) and (X', Y')

Fuzzy data

Consider:

- $N = \{1, \ldots, n\}$, a finite set of fuzzy attribute indices
- Every attribute can be present with a degree $\alpha \in [0,1]$
- $\mathcal{F} = [0, 1]^N$, set of all fuzzy object descriptions
- $C = \{0, 1\}^N$, set of all crisp object descriptions

Any object description is regarded as a fuzzy subset of N, which is identified with its **membership function**, so, we simply denote it as a function $X : N \rightarrow [0, 1]$

Fuzzy set-theoretic operations

- $(\cdot)^c = 1 (\cdot)$, fuzzy complement
- T, S, pair of dual t-norm and t-conorm such as

$$\begin{array}{ll} T_M(x,y) = \min\{x,y\}, & S_M(x,y) = \max\{x,y\}, \\ T_P(x,y) = x \cdot y, & S_P(x,y) = x + y - x \cdot y, \\ T_L(x,y) = \max\{x+y-1,0\}, & S_L(x,y) = \min\{x+y,1\}. \end{array}$$

Fuzzy set-theoretic operations

For every $X, Y \in \mathcal{F}$, define pointwise on N:

• $X \cap Y = T(X, Y)$

•
$$X \setminus Y = T(X, Y^c)$$

•
$$Y \setminus X = T(Y, X^c)$$

•
$$X \Delta Y = S(X \setminus Y, Y \setminus X)$$

• $X \cup Y = S(X, Y)$

Similarity measures for fuzzy data

Consider:

- μ , a weight capacity
- σ, corresponding significance assessment

Fuzzy Weighted Attribute Combinations Based Similarities For every $X, Y \in \mathcal{F}$:

$$S_{1}^{\mu}(X,Y) = \frac{\mathbf{C}_{\mu}(X \cap Y)}{\mathbf{C}_{\mu}(X \setminus Y) + \mathbf{C}_{\mu}(Y \setminus X) + \mathbf{C}_{\mu}(X \cap Y)}$$

$$S_{2}^{\mu}(X,Y) = \frac{\mathbf{C}_{\mu}(X \cap Y)}{\mathbf{C}_{\mu}(X \Delta Y) + \mathbf{C}_{\mu}(X \cap Y)}$$

$$S_{3}^{\mu}(X,Y) = \frac{\mathbf{C}_{\mu}(X \cap Y)}{\mathbf{C}_{\mu}(X \cup Y)}$$

If the denominator of S_i^{μ} vanishes, we set $S_i^{\mu}(X, Y) := 0$

Some immediate properties

- Under an additive μ [Scozzafava, Vantaggi 2008], the similarity measures S_1^{μ} , S_2^{μ} and S_3^{μ} coincide on C^2 , but are generally different on $\mathcal{F}^2 \setminus C^2$
- Even if μ is additive, the maximality condition $S_i^{\mu}(X, X) \ge S_i^{\mu}(X, Y)$, for i = 1, 2, may fail
- In general, there is no dominance relation between S_1^{μ} , S_2^{μ} and S_3^{μ} if we consider the whole \mathcal{F}^2 and an arbitrary weight capacity μ
- In general, T'-transitivity (possibly $T' \neq T$), i.e., for every $X, Y, Z \in \mathcal{F}, S_i^{\mu}(X, Z) \geq T'(S_i^{\mu}(X, Y), S_i^{\mu}(Y, Z))$, for i = 1, 2, may fail

Proposition

If the weight capacity $\mu : \wp(N) \to [0, +\infty)$ is additive, then the similarity measure S_3^{μ} is T_L -transitive.

General failure of dominance

Consider:

- $N = \{1, 2, 3\}$
- T, S, any pair of dual t-norm and t-conorm
- μ_1 , μ_2 , the weight capacities on $\wp(N)$ below

							$\{2,3\}$	
μ_1	0	0.1	0.1	0.1	0.2	0.2	0.2	1
μ_2	0	0.25	0.25	0.5	0.5	0.5	0.2 0.5	1

Fuzzy subset 1 2 3 X 0 1 1 Y 1 1 0	
$< 0.3333 = S_1^{\mu_1}(X, Y) = S_2^{\mu_1}(X, Y)$ $(X, Y) = 0.25 < 0.3333 = S_2^{\mu_2}(X, Y)$	

Superadditive and subadditive capacities

Restricting S_1^{μ} , S_2^{μ} and S_3^{μ} on C^2 :

• If μ is superadditive, i.e., for every $A, B \in \wp(N)$ with $A \cap B = \emptyset$ it holds

$$\mu(A\cup B)\geq \mu(A)+\mu(B),$$

then $S_1^\mu(X,Y) \geq S_2^\mu(X,Y) \geq S_3^\mu(X,Y)$ for every $X,Y \in \mathcal{C}$

• If μ is subadditive, i.e., for every $A, B \in \wp(N)$ with $A \cap B = \emptyset$ it holds

$$\mu(A\cup B)\leq \mu(A)+\mu(B),$$

then $S_1^\mu(X,Y) \leq S_2^\mu(X,Y) \leq S_3^\mu(X,Y)$ for every $X,Y \in \mathcal{C}$

Failure of dominance under super/subadditivity Consider:

•
$$N = \{1, 2, 3\}$$

• μ_1 , μ_2 , the super/subadditive capacities on $\wp(N)$ below

_β (N)	Ø	$\{1\}$	{2}	{3}	$\{1,2\}$	$\{1,3\}$	$\{2, 3\}$	Ν
μ_1	0	0	0	0	0	0	0	1
μ_2	0	1	1	1	1	0 1	1	1

Fuzzy subset		2	3
X	0.2 0.9	0.4	0.3
Y	0.9	0.7	0.8

For $T = T_M$, $S = S_M$

• $S_1^{\mu_1}(X,Y) = 0.2222 < S_3^{\mu_1}(X,Y) = 0.2857 < S_2^{\mu_1}(X,Y) = 0.6666$

• $S_1^{\mu_2}(X,Y) = 0.2666 < S_3^{\mu_2}(X,Y) = 0.4444 < S_2^{\mu_2}(X,Y) = 0.5714$

For $T = T_L$, $S = S_L$

• $S_3^{\mu_1}(X,Y) = 0.1 < S_1^{\mu_1}(X,Y) = 0.25 < S_2^{\mu_1}(X,Y) = 1$

• $S_3^{\mu_2}(X,Y) = 0.1 < S_1^{\mu_2}(X,Y) = 0.125 < S_2^{\mu_2}(X,Y) = 1$

Failure of T'-transitivity

Consider:

•
$$N = \{1, 2, 3\}$$

•
$$T = T_M$$
 and $S = S_M$

• μ_1 , the superadditive capacity on $\wp(N)$ below

Fuzzy subset	1	2	3	
X	0.47	0.87	0.95	
Y	0.46	0.99	0.56	
Z	0.98	0.23	0.21	
$\begin{array}{ll} S_{1}^{\mu_{1}}(X,Z)=0.75, & S_{2}^{\mu_{1}}(X,\\ S_{1}^{\mu_{1}}(X,Y)=0.884615, & S_{2}^{\mu_{1}}(X,\\ S_{1}^{\mu_{1}}(Y,Z)=0.875, & S_{2}^{\mu_{1}}(Y, \end{array}$	Y') = 0).9787	23,	$S_{3}^{\mu_{1}}(X,Z) = 0.241379, \ S_{3}^{\mu_{1}}(X,Y) = 0.978723, \ S_{3}^{\mu_{1}}(Y,Z) = 0.375,$
$S_i^{\mu_1}(X,Z) < T_L(S_i^{\mu_1}(X,Y),S_i^{\mu_1})$	(Y,Z)	$) \leq T$	$M(S_i^{\mu_1})$	$(X,Y),S^{\mu_1}_i(Y,Z))$

A paradigmatic example (1)

We consider 3 students x, y, z evaluated with respect to 3 subjects [Grabisch 1995]: mathematics (1), physics (2) and literature (3), whose final marks are given on a scale from 0 to 20:

Student	1	2	3		Fuzzy subset	1	2	3
X	18	16	10	\sim	X	0.9	0.8	0.5
у	10	12	18	• /	Y	0.5	0.8 0.6 0.75	0.9
Ζ	14	15	15		Ζ	0.7	0.75	0.75

A paradigmatic example (2)

It is common knowledge that "usually" students good at mathematics are also good at physics, and vice versa.

Take the capacity $\mu : \wp(N) \to [0,1]$ given below:

$\wp(N)$	Ø	$\{1\}$	{2}	{3}	$\{1, 2\}$	$\{1,3\}$	$\{2, 3\}$	Ν
σ	0	0.45	0.45	0.3	-0.4	0.15	0.15	-0.1
μ	0	0.45	0.45	0.3	0.5	0.9	0.9	1

• μ is neither superadditive nor subadditive

A paradigmatic example (3) Taking $T = T_M$ and $S = S_M$:

		Х	Y	Ζ
c^{μ} .	X	0.5538	0.4866	0.5298
J ₁ .	Y	0.4866	0.5354	0.5281
	Ζ	0.5298	0.5281	0.5775

		Х	Y	Ζ
S_{2}^{μ} :	Х	0.7680	0.5266	0.6368 0.6318
3 ₂ .				
	Ζ	0.6368	0.6318	0.7322

		Х	Y	Ζ	
S^{μ}_3 :	X	1	0.6124	0.7591	
	Y	0.6124	1	0.8034	
	Ζ	0.7591	0.8034	1	

Denote with \leq_i the weak order induced by the similarity measure S_i^{μ} on $\{X, Y, Z\}^2$, for i = 1, 2, 3:

Conclusions and future perspectives

- The use of the Choquet integral and a weight capacity μ (\equiv a significant assessment σ) increases the expressive power of the studied similarity measures: we can incorporate positive or negative interactions among the attributes
- We have an exponential (with respect to |N|) number of parameters to specify
- The most "natural" procedure to obtain μ (or $\sigma)$ is through the elicitation by a field expert
- A learning procedure can be envisaged [Baioletti, Coletti, Petturiti 2012] analogous to metric function learning for learning a Mahalanobis distance

Preliminaries

Similarity measures for crisp data

Similarity measures for fuzzy data

A paradigmatic example

THANK YOU FOR YOUR ATTENTION