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Motivation: similarity and attribute interactions (1)

Similarity measures

• Quantitative expression of

“what is in common between two objects”

• Usually take into account (at most) the significance value of
different features individually

Capacities and the Choquet integral

• Model and evaluate the measure of a specific “concept” (such
as utility, power, coalition effort)

• Take into account the significance value of different features
and their mutual (positive or negative) interactions
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Most known similarity measures for binary data
⇒ Most known similarity measures are based on cardinalities |A ∩ B|, |A \ B|,
|B \ A| and |Ac ∩ Bc |

Similarity Expression

T
yp

e
1 Jaccard |A∩B|

|A\B|+|B\A|+|A∩B|

Dice 2|A∩B|
|A\B|+|B\A|+2|A∩B|

Tversky |A∩B|
α|A\B|+β|B\A|+|A∩B| , α, β > 0

Ochiai |A∩B|√
|A\B|+|A∩B|

√
|B\A|+|A∩B|

Kulczynski 2 1
2

(
|A∩B|

|A\B|+|A∩B| +
|A∩B|

|B\A|+|A∩B|

)

T
yp

e
2 Sokal and Michener (Euclidean) |A∩B|+|Ac∩Bc |

|A\B|+|B\A|+|A∩B|+|Ac∩Bc |

Russel and Rao |A∩B|
|A\B|+|B\A|+|A∩B|+|Ac∩Bc |

De Baets α(|A\B|+|B\A|)+β|A∩B|+γ|Ac∩Bc |
α′(|A\B|+|B\A|)+β|A∩B|+γ|Ac∩Bc | , α, α

′, β, γ > 0

⇒ Only single features are taken into account and all are given

the same “importance”
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Motivation: similarity and attribute interactions (2)

GOAL

Propose similarity measures able to consider weights which can be
interpreted as the “significance” (positive or negative) of groups of
attributes

We define similarity measures based on a weight capacity and
the Choquet integral, generalising the Jaccard similarity
measure

• Crisp data: attributes can be only present or absent

• Fuzzy data: attributes are present with a degree
α ∈ [0, 1]



Preliminaries Similarity measures for crisp data Similarity measures for fuzzy data A paradigmatic example

Interactions among attributes: Cars comparison
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Significance assessment

Consider:

• N = {1, . . . , n}, a finite index set

• ℘(N), the powerset of N

Significance assessment

A function σ : ℘(N)→ R satisfying the following conditions:
(S1) σ(∅) = 0;
(S2)

∑
{i}⊆B⊆A σ(B) ≥ 0, for every A ∈ ℘(N) and every i ∈ A.

• σ(A) is a weight of “significance” of the set A ∈ ℘(N)

• σ({i}) ≥ 0 for every i ∈ N

• σ(A) can be positive or negative when |A| > 1
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Weight capacity

Weight capacity

Define µ : ℘(N)→ [0,+∞), for every A ∈ ℘(N), as:

µ(A) =
∑
B⊆A

σ(B).

The function µ satisfies the following properties:
(C1) µ(∅) = 0;
(C2) A ⊆ B =⇒ µ(A) ≤ µ(B), for every A,B ∈ ℘(N).

• σ is the Möbius inversion of µ

• If
∑

A∈℘(N) σ(A) = 1, then µ is normalized, that is µ(N) = 1

• If σ ≥ 0, the corresponding µ is totally monotone

• If σ(A) = 0 for every A ∈ ℘(N) such that |A| > 1, then the
corresponding µ is additive
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Choquet integral

Consider:

• µ, a weight capacity on ℘(N)

• X ∈ [0, 1]N

Choquet integral of X with respect to µ

Cµ(X ) =
∑n

i=1 [X (π(i))− X (π(i − 1))]µ({π(i), . . . , π(n)}),

where π is a permutation of N such that X (π(1)) ≤ . . . ≤ X (π(n))
and X (π(0)) := 0.

• If X ∈ {0, 1}N then X can be identified with a subset of N
(still denoted with X ) and so Cµ(X ) = µ(X ).
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Crisp data

Consider:

• N = {1, . . . , n}, a finite set of crisp attribute indices

• Every attribute can be present or absent

• C = {0, 1}N , set of all (crisp) object descriptions

Any object description is regarded as a (crisp) subset of N,
which is identified with its indicator function, so, we simply
denote it as a function X : N → {0, 1}

Jaccard similarity measure

SJ(X ,Y ) = |X∩Y |
|X\Y |+|Y \X |+|X∩Y | = |X∩Y |

|X∆Y |+|X∩Y | = |X∩Y |
|X∪Y | .



Preliminaries Similarity measures for crisp data Similarity measures for fuzzy data A paradigmatic example

Towards a generalization

1) cardinality  weighted mean (≡ additive capacity µ)

The weighted mean

• differentiates the importance of single attributes

• does not care of interactions among attributes

2) weighted mean  Choquet integral (≡ capacity µ)

The Choquet integral

• differentiates the importance of single attributes

• cares of interactions among attributes

• σ distinguishes between positive and negative interactions

• Three possible generalized Jaccard similarity measures

• In any case the maximality condition holds
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An example (1)

Apartments in New York described by the following crisp attributes
indexed by N = {1, 2, 3, 4}:

1: the apartment is located in a skyscraper;

2: the apartment has a terrace;

3: the apartment has a panoramic view;

4: the apartment is equipped with a lift;

℘(N) 1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234
σ 0.3 0.2 0.3 0.2 0.4 −0.1 −0.1 −0.1 0 0 −0.1 0 0 0 0
µ 0.3 0.2 0.3 0.2 0.9 0.5 0.4 0.4 0.4 0.5 0.9 1 0.6 0.6 1

Negative significance assessment

Some combinations of attributes are penalized with a negative σ
since their common presence is not discriminative for the similarity
of two objects
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An example (2)
Subset 1 2 3 4

X 1 0 1 0
Y 0 0 1 1

X ′ 1 0 1 1
Y ′ 0 1 1 1

µ(X ∩ Y )

µ(X \ Y ) + µ(Y \ X ) + µ(X ∩ Y )
=

3

8
<

1

2
=

µ(X ′ ∩ Y ′)

µ(X ′ \ Y ′) + µ(Y ′ \ X ′) + µ(X ′ ∩ Y ′)

µ(X ∩ Y )

µ(X∆Y ) + µ(X ∩ Y )
=

3

7
>

5

14
=

µ(X ′ ∩ Y ′)

µ(X ′∆Y ′) + µ(X ′ ∩ Y ′)

µ(X ∩ Y )

µ(X ∪ Y )
=

1

2
=

1

2
=
µ(X ′ ∩ Y ′)

µ(X ′ ∪ Y ′)

Depending on the particular functional form chosen for
generalizing the Jaccard similarity measure, we reach
completely different similarity orderings between the pairs
(X ,Y ) and (X ′,Y ′)
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Fuzzy data

Consider:

• N = {1, . . . , n}, a finite set of fuzzy attribute indices

• Every attribute can be present with a degree α ∈ [0, 1]

• F = [0, 1]N , set of all fuzzy object descriptions

• C = {0, 1}N , set of all crisp object descriptions

Any object description is regarded as a fuzzy subset of N,
which is identified with its membership function, so, we
simply denote it as a function X : N → [0, 1]
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Fuzzy set-theoretic operations

• (·)c = 1− (·), fuzzy complement

• T , S , pair of dual t-norm and t-conorm such as

TM(x , y) = min{x , y},
TP(x , y) = x · y ,
TL(x , y) = max{x + y − 1, 0},

SM(x , y) = max{x , y},
SP(x , y) = x + y − x · y ,
SL(x , y) = min{x + y , 1}.

Fuzzy set-theoretic operations

For every X ,Y ∈ F , define pointwise on N:

• X ∩ Y = T (X ,Y )

• X \ Y = T (X ,Y c)

• Y \ X = T (Y ,X c)

• X∆Y = S(X \ Y ,Y \ X )

• X ∪ Y = S(X ,Y )
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Similarity measures for fuzzy data

Consider:

• µ, a weight capacity

• σ, corresponding significance assessment

Fuzzy Weighted Attribute Combinations Based Similarities

For every X ,Y ∈ F :

Sµ1 (X ,Y ) =
Cµ(X ∩ Y )

Cµ(X \ Y ) + Cµ(Y \ X ) + Cµ(X ∩ Y )

Sµ2 (X ,Y ) =
Cµ(X ∩ Y )

Cµ(X∆Y ) + Cµ(X ∩ Y )

Sµ3 (X ,Y ) =
Cµ(X ∩ Y )

Cµ(X ∪ Y )

If the denominator of Sµi vanishes, we set Sµi (X ,Y ) := 0
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Some immediate properties

• Under an additive µ [Scozzafava, Vantaggi 2008], the
similarity measures Sµ1 , Sµ2 and Sµ3 coincide on C2, but are
generally different on F2 \ C2

• Even if µ is additive, the maximality condition
Sµi (X ,X ) ≥ Sµi (X ,Y ), for i = 1, 2, may fail

• In general, there is no dominance relation between Sµ1 , Sµ2 and
Sµ3 if we consider the whole F2 and an arbitrary weight
capacity µ

• In general, T ′-transitivity (possibly T ′ 6= T ), i.e., for every
X ,Y ,Z ∈ F , Sµi (X ,Z ) ≥ T ′(Sµi (X ,Y ), Sµi (Y ,Z )), for
i = 1, 2, may fail

Proposition

If the weight capacity µ : ℘(N)→ [0,+∞) is additive, then the
similarity measure Sµ3 is TL-transitive.
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General failure of dominance
Consider:

• N = {1, 2, 3}
• T , S , any pair of dual t-norm and t-conorm

• µ1, µ2, the weight capacities on ℘(N) below

℘(N) ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} N
µ1 0 0.1 0.1 0.1 0.2 0.2 0.2 1
µ2 0 0.25 0.25 0.5 0.5 0.5 0.5 1

Fuzzy subset 1 2 3
X 0 1 1
Y 1 1 0

• Sµ1
3 (X ,Y ) = 0.1 < 0.3333 = Sµ1

1 (X ,Y ) = Sµ1
2 (X ,Y )

• Sµ2
1 (X ,Y ) = Sµ2

3 (X ,Y ) = 0.25 < 0.3333 = Sµ2
2 (X ,Y )
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Superadditive and subadditive capacities

Restricting Sµ1 , Sµ2 and Sµ3 on C2:

• If µ is superadditive, i.e., for every A,B ∈ ℘(N) with
A ∩ B = ∅ it holds

µ(A ∪ B) ≥ µ(A) + µ(B),

then Sµ1 (X ,Y ) ≥ Sµ2 (X ,Y ) ≥ Sµ3 (X ,Y ) for every X ,Y ∈ C
• If µ is subadditive, i.e., for every A,B ∈ ℘(N) with
A ∩ B = ∅ it holds

µ(A ∪ B) ≤ µ(A) + µ(B),

then Sµ1 (X ,Y ) ≤ Sµ2 (X ,Y ) ≤ Sµ3 (X ,Y ) for every X ,Y ∈ C
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Failure of dominance under super/subadditivity
Consider:

• N = {1, 2, 3}
• µ1, µ2, the super/subadditive capacities on ℘(N) below

℘(N) ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} N
µ1 0 0 0 0 0 0 0 1
µ2 0 1 1 1 1 1 1 1

Fuzzy subset 1 2 3
X 0.2 0.4 0.3
Y 0.9 0.7 0.8

For T = TM , S = SM

• Sµ1
1 (X ,Y ) = 0.2222 < Sµ1

3 (X ,Y ) = 0.2857 < Sµ1
2 (X ,Y ) = 0.6666

• Sµ2
1 (X ,Y ) = 0.2666 < Sµ2

3 (X ,Y ) = 0.4444 < Sµ2
2 (X ,Y ) = 0.5714

For T = TL, S = SL

• Sµ1
3 (X ,Y ) = 0.1 < Sµ1

1 (X ,Y ) = 0.25 < Sµ1
2 (X ,Y ) = 1

• Sµ2
3 (X ,Y ) = 0.1 < Sµ2

1 (X ,Y ) = 0.125 < Sµ2
2 (X ,Y ) = 1
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Failure of T ′-transitivity
Consider:

• N = {1, 2, 3}
• T = TM and S = SM
• µ1, the superadditive capacity on ℘(N) below

℘(N) ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} N
µ1 0 0 0 0 0 0 0 1

Fuzzy subset 1 2 3
X 0.47 0.87 0.95
Y 0.46 0.99 0.56
Z 0.98 0.23 0.21

Sµ1
1 (X ,Z) = 0.75,

Sµ1
1 (X ,Y ) = 0.884615,

Sµ1
1 (Y ,Z) = 0.875,

Sµ1
2 (X ,Z) = 0.913043,

Sµ1
2 (X ,Y ) = 0.978723,

Sµ1
2 (Y ,Z) = 0.954545,

Sµ1
3 (X ,Z) = 0.241379,

Sµ1
3 (X ,Y ) = 0.978723,

Sµ1
3 (Y ,Z) = 0.375,

Sµ1
i (X ,Z) < TL(Sµ1

i (X ,Y ),Sµ1
i (Y ,Z)) ≤ TM(Sµ1

i (X ,Y ), Sµ1
i (Y ,Z))
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A paradigmatic example (1)

We consider 3 students x , y , z evaluated with respect to 3 subjects
[Grabisch 1995]: mathematics (1), physics (2) and literature (3),
whose final marks are given on a scale from 0 to 20:

Student 1 2 3

x 18 16 10
y 10 12 18
z 14 15 15

 
Fuzzy subset 1 2 3

X 0.9 0.8 0.5
Y 0.5 0.6 0.9
Z 0.7 0.75 0.75
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A paradigmatic example (2)

It is common knowledge that “usually” students good at
mathematics are also good at physics, and vice versa.

Take the capacity µ : ℘(N)→ [0, 1] given below:

℘(N) ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} N

σ 0 0.45 0.45 0.3 −0.4 0.15 0.15 −0.1

µ 0 0.45 0.45 0.3 0.5 0.9 0.9 1

• µ is neither superadditive nor subadditive
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A paradigmatic example (3)
Taking T = TM and S = SM :

S
µ
1 :

X Y Z
X 0.5538 0.4866 0.5298
Y 0.4866 0.5354 0.5281
Z 0.5298 0.5281 0.5775

S
µ
2 :

X Y Z
X 0.7680 0.5266 0.6368
Y 0.5266 0.6974 0.6318
Z 0.6368 0.6318 0.7322

S
µ
3 :

X Y Z
X 1 0.6124 0.7591
Y 0.6124 1 0.8034
Z 0.7591 0.8034 1

Denote with -i the weak order induced by the similarity measure
Sµi on {X ,Y ,Z}2, for i = 1, 2, 3:

(X ,Y )
(Y ,X )

≺1
(Y ,Z)
(Z ,Y )

≺1
(X ,Z)
(Z ,X )

≺1 (Y ,Y ) ≺1 (X ,X ) ≺1 (Z ,Z)

(X ,Y )
(Y ,X )

≺2
(Y ,Z)
(Z ,Y )

≺2
(X ,Z)
(Z ,X )

≺2 (Y ,Y ) ≺2 (Z ,Z) ≺2 (X ,X )

(X ,Y )
(Y ,X )

≺3
(X ,Z)
(Z ,X )

≺3
(Y ,Z)
(Z ,Y )

≺3

(X ,X )
(Y ,Y )
(Z ,Z)
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Conclusions and future perspectives

• The use of the Choquet integral and a weight capacity µ (≡ a
significant assessment σ) increases the expressive power of the
studied similarity measures: we can incorporate positive or
negative interactions among the attributes

• We have an exponential (with respect to |N|) number of
parameters to specify

• The most “natural” procedure to obtain µ (or σ) is through
the elicitation by a field expert

• A learning procedure can be envisaged [Baioletti, Coletti,
Petturiti 2012] analogous to metric function learning for
learning a Mahalanobis distance
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