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Adaptive Testing

Selection of questions’ subsets.

Shorter test versions.

Individual sets of questions.

Improved precision and understanding of student’s skills.

Students are modeled by a student model. BN in our case.
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Adaptive Testing Procedure

Select a next question.

Ask the question.

Update the model.

Estimate student’s skills/answers.
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Expert Network Model
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Single Parent Monotonicity

With a natural ordering of states of a skill variable Sj

sj ,1 ≺ . . . ≺ sj ,mj
,

the monotonic effect on its child question variable Xi is

sj ,k � sj ,l ⇒ P(Xi = 1|Sj = sj ,k , s) ≤ P(Xi = 1|Sj = sj ,l , s) .
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Model Monotonicity

With multiple parents of a question Xi and their states configurations
(s i , r i ),
we create a partial ordering of these configurations based on their effect on
the child Xi

s
i �i r

i .

Then the monotonicity condition is

s
i �i r

i ⇒ P(Xi = 1|S i = s
i ) ≤ P(Xi = 1|S i = r

i ) .
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Reasons to Use Monotonicity

Sensible requirement in many applications.

Experts acceptance.

Additional information → easier/more precise learning.
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Learning Parameters under Monotonicity

Monotonicity:
van der Gaag, L., Bodlaender, H. L., and Feelders, A. J. (2004).
Monotonicity in Bayesian networks. UAI2004

Gradient learning method (motivation method):
Altendorf, E. E., Restificar, A. C., and Dietterich, T. G. (2005).
Learning from Sparse Data by Exploiting Monotonicity Constraints.
UAI2005

Isotonic regression EM (comparison method):
Masegosa, A. R., Feelders, A. J., and van der Gaag, L. (2016).
Learning from in- complete data in Bayesian networks with qualitative
influences. IJAR
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Learning Parameters under Monotonicity

Given the model parameters µ = (θ1, . . . ,θn,µ1, . . . ,µm),

θi ,s i = P(Xi = 0|S i = s
i ), θi = (θi ,s i )s i∈Val(S i ) ,

we use the model’s log likelihood

LL(µ) ,

which we penalize:

p(θi ,s i , θi ,r i ) = exp(c · (θi ,r i − θi ,s i ))

LL′(µ, c) = LL(µ)−
∑
i∈N

∑
s i�i r

i

p(θi ,s i , θi ,r i ) .
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Learning Parameters under Monotonicity

Penalized log likelihood

LL′(µ, c) = LL(µ)−
∑
i∈N

∑
s i�i r

i

p(θi ,s i , θi ,r i )

is optimized using gradient methods.
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Experiments

Experimental evaluation with

Empirical data set - Math test, expert model, 281 cases

Synthetic data set - 100 000 cases
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Results - Synthetic Model Log Likelihood
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Results - Synthetic Model Parameters
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Results - Empirical Model Log Likelihood
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Conclusions

Gradient method for monotonic parameters learning with hidden
variables.

Provides good results for small training sets.

Comparable results with other methods for larger training sets.

Generalization for less specific network structure is required.
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