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2 / 15



Our team and aim

Aziz Omar

“Towards a Cautious
Modelling of Missing Data
in Small Area Estimation”

Thomas Augustin
Julia Plass

Existing approaches for dealing with nonresponse in SAE are
based on strong assumptions on the missingness process

Such assumptions are usually not testable,
and wrongly imposing them may lead to
biased results.
(Manski, 2003, Partial Identification of Probability

Distributions, Jaeger, 2006, ECML,. . .)

2 / 15



Our team and aim

Aziz Omar

“Towards a Cautious
Modelling of Missing Data
in Small Area Estimation”

Thomas Augustin
Julia Plass

Existing approaches for dealing with nonresponse in SAE are
based on strong assumptions on the missingness process

Such assumptions are usually not testable,
and wrongly imposing them may lead to
biased results.
(Manski, 2003, Partial Identification of Probability

Distributions, Jaeger, 2006, ECML,. . .)

2 / 15



Our team and aim

Aziz Omar

“Towards a Cautious
Modelling of Missing Data
in Small Area Estimation”

Thomas Augustin
Julia Plass

Existing approaches for dealing with nonresponse in SAE are
based on strong assumptions on the missingness process

Such assumptions are usually not testable,
and wrongly imposing them may lead to
biased results.
(Manski, 2003, Partial Identification of Probability

Distributions, Jaeger, 2006, ECML,. . .)

2 / 15



What’s the problem? ⇒ 1. Small Area Estimation (SAE)

Population with N individuals

M areas, each contains Ni

individuals, i = 1, . . . ,M

Problem:
For each area, only small sample
si is available

Of interest:
Area-specific mean Ȳi

⇒ Using auxiliary variables
(covariates) X1, . . . ,Xk

⇒ “borrowing strength”
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What’s the problem? ⇒ 1. Small Area Estimation (SAE)

Binary variable of interest
⇒ probability that Yi is equal to 1
:= πi (poverty rate)

1/wij is the probability that
individual j in area i is selected in si

Sample values yij known for j ∈ si

Sample data from German General
Social Survey (GESIS Leibniz
Institute for the Social Sciences,
2016), yij = 1: ‘poor’, yij = 0: ’rich’
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What’s the problem? ⇒ 1. Small Area Estimation (SAE)

Binary covariates (Abitur, sex)

Cross classifications of the covariates
⇒ subgroup g , g = 1, . . . , v

Known absolute frequencies N
[g ]
i

Federal Statistical Office’s data report:

Abitur
no yes

sex
male N

[1]
i N

[2]
i

female N
[3]
i N

[4]
i

Joint information about xij and yij

⇒ We know yij for j ∈ s
[g ]
i
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What’s the problem? ⇒ 2. Missing data

some sample values yij are missing

s
[g ]
i is partitioned into s

[g ]
i,obs and s

[g ]
i,mis
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Cautious Approach for Dealing with Nonresponse
(ISIPTA ’15, Plass, Augustin, Cattaneo, Schollmeyer)

An observation model is determined by the missingness

parameters q
[g ]
na|y (:= probability to refuse the answer (“na”),

given subgroup g and the true value y)

Maximizing the log-likelihood

`(π[g ], q
[g ]
na|0, q

[g ]
na|1) = n

[g ]
1

(
ln(π[g ]) + ln(1− q

[g ]
na|1)

)
+ n

[g ]
0

(
ln(1− π[g ]) + ln(1− q

[g ]
na|0)

)
+ n

[g ]
na

(
ln(π[g ]q

[g ]
na|1 + (1− π[g ])q

[g ]
na|0)

)
gives set-valued estimator.

Resulting bounds of π̂[g ] under no assumptions about q
[g ]
na|y :

π̂[g ] =
n

[g ]
1

n
[g ]
na + n

[g ]
1 + n

[g ]
0

and π̂
[g ]

=
n

[g ]
1 + n

[g ]
na

n
[g ]
na + n

[g ]
1 + n

[g ]
0

.
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Cautious Approach for Dealing with Nonresponse
(ISIPTA ’15, Plass, Augustin, Cattaneo, Schollmeyer)

Incorporate assumptions by missingness ratio (Nordheim,
1984)

R = q
[g ]
na|1/q

[g ]
na|0 , with R ∈ R ⊆ R+

0

Specific values of R point-identify π[g ]

Partial assumptions, expressed by R = [R,R], refine the result
without any missingness assumptions (R ∈ [0, 1])

⇒ Bounds for π̂[g ],R, q̂
[g ],R
na|0 and q̂

[g ],R
na|1 obtained under R and R
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The synthetic estimator (without nonresponse)

Horvitz-Thompson (HT) estimator
(Horvitz and Thompson, 1952, JASA)

π̂HT ,i =
1

Ni

∑
j∈si

wijyij

The synthetic estimator (González, 1973, JASA)

π̂SYN ≡ π̂SYN,i =
1

N

M∑
i=1

∑
j∈si

wijyij =
1

N

M∑
i=1

Ni · π̂HT ,i
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Cautious synthetic estimator

No assumptions:

π̂SYN =
1

N

M∑
i=1

( ∑
j∈si,obs

wijyij +
∑

j∈si,mis

wij · yij
)

π̂SYN = . . .
(
. . .+

∑
j∈si,mis

wij · 0
)
, π̂SYN = . . .

(
. . .+

∑
j∈si,mis

wij · 1
)

Partial assumptions:

π̂RSYN =
1

N

M∑
i=1

( ∑
j∈si,obs

wijyij + q̂R
na|1i · π̂

R
i ·
∑
j∈si

wij︸ ︷︷ ︸
)

smallest est. weighted number of nonrespondents

with yij = 1, under the assumption in focus.

Analogously, π̂
R
SYN is achieved by using q̂

R
na|1i and π̂

R
i .
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The LGREG estimator (without nonresponse)...
(Lehtonen and Veijanen, 1998, Surv. Methodol.)

... in its representation how we need it:

π̂LGREG ,i =
v∑

g=1

( HT-part︷ ︸︸ ︷∑
j∈s [g ]

i

wijyij +

correction term︷ ︸︸ ︷
π̂[g ] (N

[g ]
i −

∑
j∈s [g ]

i

wij)
)
/Ni

with π̂[g ] =
M∑
i=1

∑
j∈s [g ]

i

yij
n[g ]

The correction term accounts for under/overrepresentation of
certain constellations of covariates in the sample

In most cases: wij = wi , ∀j = 1, . . . , ni , i = 1, . . . ,M.
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No assumptions: Cautious LGREG estimator

Breaking the summation over all areas into a term for area i∗ of
interest and areas i 6= i∗ leads to

v∑
g=1

(( 1

n[g ]

M∑
i=1
i 6=i∗

( ∑
j∈s

[g ]
i,obs

yij +
∑

j∈s
[g ]
i,mis

yij
))(

N
[g ]
i∗ − n

[g ]
i∗ wi∗

)

+
1

n[g ]

( ∑
j∈s

[g ]

i∗,obs

yi∗j +
∑

j∈s
[g ]

i∗,mis

yi∗j
)(

N
[g ]
i∗ − wi∗(n

[g ]
i∗ + n[g ])

))
/Ni∗

To determine π̂LGREG ,i∗ :

N
[g ]
i∗ ≥ wi∗ (n

[g ]
i∗ + n[g ]) N

[g ]
i∗ < wi∗ (n

[g ]
i∗ + n[g ])

N
[g ]
i∗ ≥ n

[g ]
i∗ wi∗ yij = 0, ∀j ∈ si,mis yij =

{
0 ∀j ∈ si,mis , i 6= i∗

1 ∀j ∈ si,mis , i = i∗

N
[g ]
i∗ < n

[g ]
i∗ wi∗ yij =

{
1 ∀j ∈ si,mis , i 6= i∗

0 ∀j ∈ si,mis , i = i∗
yij = 1, ∀j ∈ si,mis
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Partial assumptions: Cautious LGREG estimator

1.) Regard π̂LGREG ,i∗ as a combination of two estimators:
⇒ a global one that borrows strength and
⇒ a specific one associated to area i∗.

2.) Maximize the two log-likelihoods under R and R:

`(π[g ],R, q
[g ],R
na|0 , q

[g ],R
na|1 ) and

`(π
[g ],R
i∗ , q

[g ],R
na|0i∗ , q

[g ],R
na|1i∗)

3.) Include the estimators that minimize

v∑
g=1

( HT-part︷ ︸︸ ︷∑
j∈s

[g ]

i∗,obs

wi∗yi∗j + q̂
[g ],R
na|1i∗ π̂

[g ],R
i∗

∑
j∈s

[g ]

i∗

wi∗j +

correction term︷ ︸︸ ︷
π̂[g ],R(N

[g ]
i∗ − n

[g ]
i∗ wi∗)

)
/Ni∗

⇒ Since π[g ] and π
[g ]
i∗ are estimated distinctively, interrelation

between them should be considered.
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Some results (example)

Intervals for the synthetic estimator

no assumption R = [0, 1]

[0.167, 0.300] [0.167, 0.193]

Intervals for the LGREG estimator

Federal state no assumption R = [0, 1]

BW [0.129, 0.366] [0.129, 0.210]
BY [0.088, 0.233] [0.088, 0.133]
HB [0.077, 0.405] [0.115, 0.193]
. . . . . . . . .

14 / 15



Further work

Optimization of one overall likelihood, instead of two, to
obtain the cautious LGREG-estimator

Comparison of the magnitude of both principally differing
kinds of uncertainty induced by the two problems in focus
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