
E�cient Computation of Belief Theoretic
Conditionals

Lalintha G. Polpitiya, Kamal Premaratne, Manohar N. Murthi and Dilip Sarkar

University of Miami
Coral Gables, Florida (USA)

10th International Symposium on Imprecise Probability: Theories and Applications (ISIPTA ’17)
Lugano, Switzerland, 10-14 July 2017

Acknowledgement: This work is based on research supported by the U.S. O�ce of Naval Research (ONR)
via grant #N00014-10-1-0140, and the U.S. National Science Foundation (NSF) via grant #1343430.

12 July 2017

1



Outline

1 Challenges and Contributions

2 Theoretical Foundation

3 DS-Conditional-One Computational Model

4 Computation of Conditionals

5 Experiments and Concluding Remarks

2



Motivation and Challenges

Dempster-Shafer (DS) theory o↵ers greater expressiveness and flexibility in
evidential reasoning.

Conditional operation: plays a pivotal role in DST strategies for evidence
updating and fusion.

Implementations: restricted to smaller frames of discernment (FoDs)
because of the prohibitive computational burden that larger FoDs impose on
existing methods.

Several approximation methods: compromise the quality of the generated
results for computational e�ciency.

Exact computation of conditionals is of paramount importance: quality
of results generated from DS theoretic (DST) strategies depend directly on
the precision of the conditional.
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Contributions
to fill the void between what DS theory can o↵er and its practical implementation

The main contribution: a generalized computational model
(DS-Conditional-One) for computing DST conditionals.

This model can be employed to compute both the Fagin-Halpern (FH) and
Dempster’s conditional beliefs of an arbitrary proposition.

This is exactly the challenge that Shafer refers to in [Shafer, 1990, p.348],
viz., “It remains to be seen how useful the fast Möbius transform will
be in practice. It is clear, however, that it is not enough to make
arbitrary belief function computations feasible.”
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Contributions
to fill the void between what DS theory can o↵er and its practical implementation

This new model can also be utilized as a visualization tool for conditional
computations and in analyzing characteristics of conditioning operations.

An outcome of this research is a conditional computation library which is
available online.
(https:
//profuselab.github.io/Conditional-Computation-Library/)
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Basic notions of belief theory

Symbol Meaning

⇥ Frame of discernment (FoD), i.e., the set of all possible
mutually exclusive and exhaustive propositions.

✓i Singletons, i.e., the lowest level of discernible information,
i.e., ⇥ = {✓0, . . . , ✓n�1}, here n = |⇥|. For computational
ease, we start the indexing from 0.

A Complement of the proposition A ✓ ⇥, i.e., those singletons
that are not in A.

m(·) Basic belief assignment (BBA) or mass assignment m :
2⇥ 7! [0, 1] where

P
A✓⇥ m(A) = 1 and m(;) = 0.

Focal element Singleton or composite (i.e., non-singleton) proposition that
receives a non-zero mass.

F Core, the set of focal elements.

E Body of evidence (BoE) represented via the triplet
{⇥, F, m}.

Subset propositions of A Subsets of A and A itself, here m = |A|
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Straddling masses

The following notation is useful for our work:

Straddling masses

S(A;B) =
X

;6=C✓A;
;6=D✓B

m(C [ D).

S(A;B) denotes the sum of all masses of propositions that ‘straddle’ both A ✓ ⇥
and B ✓ ⇥.
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The following result is of critical importance for our work:

Proposition 1

Consider the body of evidence (BoE) E = {⇥,F,m(·)} and A ✓ ⇥. For B ✓ ⇥,
consider the mappings �A : 2⇥ 7! [0, 1] and ⇧A : 2⇥ 7! [0, 1], where

�A(B) =
X

;6=X✓A

m((A \ B) [ X ); ⇧A(B) =
X

Y✓(A\B)

�A(Y ).

Then the following are true:
(i) �A(A \ B) = �A(B) and ⇧A(A \ B) = ⇧A(B). So, w.l.o.g., we assume that
B ✓ A.
(ii) �A(;) = Bl(A).
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Fagin-Halpern (FH) conditional

Most natural generalization of the probabilistic conditional notion - close
connection with the inner and outer conditional probability measures.

Definition 2 (Fagin-Halpern (FH) conditional)
[Fagin and Halpern, 1990]

Consider the BoE E = {⇥,F,m(·)} and A 2 bF. The conditional belief Bl(B |A) of
B given the conditioning event A is

Bl(B |A) = Bl(A \ B)

Bl(A \ B) + Pl(A \ B)
.

Proposition 3

Consider the BoE E = {⇥,F,m(·)} and A 2 bF. Then, we may express Bl(B |A) as

Bl(B |A) = Bl(A \ B)

1� Bl(A)� S(A;A \ B)
, B ✓ ⇥.

9



Dempster’s conditional

Perhaps the most widely employed DST conditional notion.

Definition 4 (Dempster’s conditional) [Shafer, 1976]

Consider the BoE E = {⇥,F,m(·)} and A ✓ ⇥ s.t. Bl(A) 6= 1, or equivalently,
Pl(A) 6= 0. The conditional belief Bl(BkA) of B given the conditioning event A is

Bl(BkA) = Bl(A [ B)� Bl(A)

1� Bl(A)
.

Proposition 5

Consider the BoE E = {⇥,F,m(·)} and A ✓ ⇥ s.t. Bl(A) 6= 1. Then, Bl(BkA)
can be expressed as

Bl(BkA) = Bl(A \ B) + S(A;A \ B)

1� Bl(A)
, B ✓ ⇥.
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REcursive Generation of and Access to Propositions
REGAP: Starting with {;} element [Polpitiya et al., 2016]

Figure: REGAP: REcursive Generation of and Access to Propositions, Start with ;

Consider the FoD ⇥ = {✓0, ✓1, . . . , ✓n�1}.
Suppose we desire to determine the belief potential associated with
A = {✓k1 , ✓k2 , . . . , ✓k`} ✓ ⇥.

The REGAP property allows us to recursively generate the propositions that
are relevant for this computation: Start with {;}.
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REcursive Generation of and Access to Propositions
REGAP: Inserting singleton {✓k3}

Figure: REGAP: REcursive Generation of and Access to Propositions, inserting {✓k3}

Inserting another singleton {✓k3} 2 A brings the new propositions
{;} [ {✓k3} = {✓k3}, {✓k1} [ {✓k3} = {✓k1 , ✓k3}, {✓k2} [ {✓k3} = {✓k2 , ✓k3},
and {✓k1 , ✓k2} [ {✓k3} = {✓k1 , ✓k2 , ✓k3}.
In essence, when a new singleton is added, new propositions associated with
it can be recursively generated by adding the new singleton to each existing
proposition.
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REcursive Generation of and Access to Propositions
REGAP: Generalized representation

Figure: REGAP: REcursive Generation of and Access to Propositions

REGAP, stands for REcursive Generation of and Access to Propositions.

All propositions of interest within the FoD ⇥ can be generated when A = ⇥.

These recursively generated propositions can be formulated as a vector, a
matrix or a tree, and utilized to represent a dynamic BoE.
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DS-Conditional-One computational model

DS-Conditional-One is a computational model that enables one to compute
the FH and Dempster’s conditional beliefs of an arbitrary proposition.

We denote the conditioning proposition A, its complement A, and the
conditioned proposition B as {a0, a1, . . . , a|A|�1}, {↵0,↵1, . . . ,↵|A|�1}, and
{b0, b1, . . . , b|B|�1}, respectively. Here, ⇥ = {✓0, ✓1, . . . , ✓n�1} denotes the
FoD and ai ,↵j , bk 2 ⇥.

We represent singletons of the conditioning event A = {a0, a1, . . . , a|A|�1} as
column singletons and singletons of the complement of conditioning event
A = {↵0,↵1, . . . , ↵|A|�1} as row singletons in a DS-Matrix.
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DS-Conditional-One computational model
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REGAP (A)⇥REGAP (A \B) ! S(A;A \B)

REGAP (A \B) ! Bl(A \B)

REGAP (A)

REGAP (A) ! Bl(A)

Figure: DS-Conditional-One model. Quantities related to Bl(B|A) computation when
A = {a0, a1, . . . , a|A|�1} and A = {↵0,↵1, . . . ,↵|A|�1}, and B = {a0, a2} ✓ A.
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DS-Conditional-One computational model

The proposed DS-Conditional-One computational model allows direct
identification of REGAP(A), REGAP(A), REGAP(A \ B),
(REGAP(A)⇥REGAP(A \ B)), (REGAP(A)⇥REGAP(A)), and
�A(C ), 8C ✓ B .

We use a lookup table named power to enhance the computational e�ciency.
It contains 2 to the power of singleton indexes in increasing order.

index [] is a dynamic array which keeps the indexes of subset propositions of
A \ B .
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Compute Bl(A \ B) (with time complexity O(2|A\B |))

Figure: DS-Conditional-One model. Quantities related to Bl(B|A) computation when
A = {a0, a1, . . . , a|A|�1} and A = {↵0,↵1, . . . ,↵|A|�1}, and B = {a0, a2} ✓ A.
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Compute Bl(A \ B): Algorithm 1

1: procedure BlB(Singletons A, Singletons B , DS-Matrix BBA)
2: belief  0
3: count  0
4: for each ai in A \ B do
5: index [count] power [i ]
6: temp  count

7: count  count + 1
8: for j  0, temp � 1 do
9: index [count] index [j ] + power [i ]

10: count  count + 1
11: end for
12: end for
13: for i  0, power [|A \ B |]� 2 do
14: belief  belief + BBA[0][index [i ]]
15: end for
16: Return belief

17: end procedure
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Compute Bl(A) (with time complexity O(2|A|))

Figure: DS-Conditional-One model. Quantities related to Bl(B|A) computation when
A = {a0, a1, . . . , a|A|�1} and A = {↵0,↵1, . . . ,↵|A|�1}, and B = {a0, a2} ✓ A.
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Compute Bl(A): Algorithm 2

1: procedure BlComp(Singletons A, DS-Matrix BBA)
2: belief  0
3: for i  1, power [|A|]� 1 do
4: belief  belief + BBA[i ][0]
5: end for
6: Return belief

7: end procedure
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Compute S(A;A\B) (with time complexity O(2|A|+|A\B |))

Figure: DS-Conditional-One model. Quantities related to Bl(B|A) computation when
A = {a0, a1, . . . , a|A|�1} and A = {↵0,↵1, . . . ,↵|A|�1}, and B = {a0, a2} ✓ A.
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Compute S(A;A \ B): Algorithm 3
1: procedure Strad(Singletons A, Singletons A, Singletons B , DS-Matrix

BBA)
2: belief  0
3: count  0
4: for each ai in A \ B do
5: index [count] power [i ]
6: temp  count

7: count  count + 1
8: for j  0, temp � 1 do
9: index [count] index [j ] + power [i ]

10: count  count + 1
11: end for
12: end for
13: for i  1, power [|A|]� 1 do
14: for j  0, power [|A \ B |]� 2 do
15: belief  belief + BBA[i ][index [j ]]
16: end for
17: end for
18: Return belief

19: end procedure 22



FH conditional belief of an arbitrary proposition

Use the expression in Proposition 3, where Bl(A \ B), Bl(A) and S(A;A \ B) are
obtained via Algorithms 1, 2, and 3, respectively.

Proposition 3

Consider the BoE E = {⇥,F,m(·)} and A 2 bF. Then, we may express Bl(B |A) as

Bl(B |A) = Bl(A \ B)

1� Bl(A)� S(A;A \ B)
, B ✓ ⇥.

The computational complexity is O(2|A|+|A\B|).

Bl(B |A) when B = {a0, a2}
Bl(B |A) = Bl(A \ B)

1� �A({;})� �A({a0})� �A({a2})� �A({a0, a2}) .
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Dempster’s conditional belief of an arbitrary proposition

Use the expression in Proposition 5, where Bl(A \ B), Bl(A) and S(A;A \ B) are
obtained via Algorithms 1, 2, and 3, respectively.

Proposition 5

Consider the BoE E = {⇥,F,m(·)} and A ✓ ⇥ s.t. Bl(A) 6= 1. Then, Bl(BkA)
can be expressed as

Bl(BkA) = Bl(A \ B) + S(A;A \ B)

1� Bl(A)
, B ✓ ⇥.

The computational complexity is O(2|A|+|A\B|).

Bl(BkA) when B = {a0, a2}
Bl(BkA) = Bl(A \ B) + �A({a0}) + �A({a2}) + �A({a0, a2})

1� �A({;}) .
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Dempster’s conditional mass using specialization matrix
[Smets, 2002]

It employs a 2|⇥| ⇥ 2|⇥|-sized stochastic matrix SA (with each entry ‘0’ or
‘1’) referred to as the conditioning specialization matrix and a
2|⇥| ⇥ 1-sized vector m(·) containing the focal elements.

The computational and space complexity of the specialization matrix
multiplication is O(2|⇥| ⇥ 2|⇥|), a prohibitive burden even for modest FoD
sizes.
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Size of the DS-Conditional-One matrix vs Specialization
matrix
When FoD size is 4

Figure: Size of the DS-Conditional-One matrix vs Specialization matrix: When FoD size
is 4
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Size of the DS-Conditional-One matrix vs Specialization
matrix
When FoD size is 10

Figure: Size of the DS-Conditional-One matrix vs Specialization matrix: When FoD size
is 10
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Experiments

For a given FoD size, we selected a random set of focal elements, with
randomly selected mass values, and conducted 10,000 conditional
computations for randomly chosen propositions A and B ✓ A.

With the DS-Conditional-One model (which applies to both FH and
Dempster’s conditionals), we use a ‘brute force’ approach to compute all the
conditional beliefs. We then use the fast Möbius transform (FMT)
[Thoma, 1989] to get the conditional masses for all the propositions.

All conditional computations for an arbitrary proposition were done on an
iMac running Mac OS X 10.12.3 (with 2.9GHz Intel Core i5 processor and
8GB of 1600MHz DDR3 RAM). Conditional computations for all
propositions were done on the same iMac for smaller FoDs and on a
supercomputer (https://ccs.miami.edu/pegasus) for larger FoDs
(underlined in Table 1).
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Experiments

Method ! DS-Conditional-One Model Specializa.
Conditional ! FH or Dempster’s Dempster’s

Bl(B|A) Bl(B|A) m(B|A)
FoD or Bl(BkA) or Bl(BkA) or m(BkA) m(BkA)

|⇥| Max. |F| (Arbitrary) (All) (All) (All)
2 3 0.0005 0.0011 0.0016 0.0011
4 15 0.0005 0.0038 0.0050 0.0063
6 63 0.0006 0.0128 0.0170 0.0696
8 255 0.0009 0.0517 0.0679 1.0154

10 1,023 0.0017 0.2428 0.3090 93.1590
12 4,095 0.0040 1.3528 1.6186 1,485.6300
14 16,383 0.0120 18.4885 22.4995 25,051.8200
16 65,535 0.0405 146.1480 151.9600 ***
18 262,143 0.1516 1,087.2800 1,113.5300 ***
20 1,048,575 0.6011 8,485.4500 8,862.9800 ***

Table: DS-Conditional-One model versus specialization matrix based method. Average
computational times (ms). (*** denotes computations not completed within a feasible
time).
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Concluding Remarks

The significant speed advantage o↵ered by the proposed computational model
over the specialization matrix based approach is evident from experiments.

For larger FoDs, the computational burden associated with the specialization
matrix based approach becomes prohibitive because of its space complexity of
O(2|⇥| ⇥ 2|⇥|). For example, an FoD of size 20 would need 128
(= 220 ⇥ 220/8) GB of memory to represent the specialization matrix, if each
matrix entry occupies only 1 bit.

Our experiment results demonstrate that the average computational time
taken to compute the conditional belief of an arbitrary proposition by the
proposed approach is less than 2 (µs) for a FoD of size 10 and 0.7 (ms)
for a FoD of size 20 (⇠1 million focal elements).

It also appears possible to further enhance the algorithms that we have
developed via parallel computing optimizations because of the underlying
matrix structure.
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