Reasoning in Description Logics with Typicalities and Probabilities of Exceptions

Gian Luca Pozzato¹

¹Dipartimento di Informatica, Universitá degli Studi di Torino, Italy

ECSQARU 2017

Introduction Prototypical Reasoning

DLs with Typicality and Probabilities

- Introduction to Description Logics
- DLs of Typicality
- Extensions with Probabilities
- Conclusions

Introduction Prototypical Reasoning

DLs with Typicality and Probabilities

- Introduction to Description Logics
- DLs of Typicality
- Extensions with Probabilities
- Conclusions

Introduction Prototypical Reasoning

DLs with Typicality and Probabilities

- Introduction to Description Logics
- DLs of Typicality
- Extensions with Probabilities
- Conclusions

Introduction Prototypical Reasoning

DLs with Typicality and Probabilities

Outline

- Introduction to Description Logics
- DLs of Typicality
- Extensions with Probabilities

Conclusions

Introduction Prototypical Reasoning

DLs with Typicality and Probabilities

- Introduction to Description Logics
- DLs of Typicality
- Extensions with Probabilities
- Conclusions

Introduction Prototypical Reasoning

Description Logics

Description Logics

- Important formalisms of knowledge representation
- Two key advantages:
 - well-defined semantics based on first-order logic
 - good trade-off between expressivity and complexity
- at the base of languages for the semantic (e.g. OWL)

- Two components
 - TBox=inclusion relations among concepts
 - Allow—instances of concepts and roles..... properties and relations among individuals

Introduction Prototypical Reasoning

Description Logics

Description Logics

- Important formalisms of knowledge representation
- Two key advantages:
 - well-defined semantics based on first-order logic
 - good trade-off between expressivity and complexity
- at the base of languages for the semantic (e.g. OWL)

- Two components:
 - TBox=inclusion relations among concepts
 - 🕨 Platypus 🗔 Mamma.
 - ABox= instances of concepts and roles = properties and relations among individuals
 - Platypus(perry)

Introduction Prototypical Reasoning

Description Logics

Description Logics

- Important formalisms of knowledge representation
- Two key advantages:
 - well-defined semantics based on first-order logic
 - good trade-off between expressivity and complexity
- at the base of languages for the semantic (e.g. OWL)

- Two components:
 - TBox=inclusion relations among concepts
 - Platypus ⊑ Mammal
 - ABox= instances of concepts and roles = properties and relations among individuals
 - Platypus(perry)

Introduction Prototypical Reasoning

Description Logics

Description Logics

- Important formalisms of knowledge representation
- Two key advantages:
 - well-defined semantics based on first-order logic
 - good trade-off between expressivity and complexity
- at the base of languages for the semantic (e.g. OWL)

- Two components:
 - TBox=inclusion relations among concepts
 - Platypus ⊑ Mammal
 - ABox= instances of concepts and roles = properties and relations among individuals
 - Platypus(perry)

Introduction Prototypical Reasoning

Description Logics

Introduction

- TBox \Rightarrow taxonomy of concepts
- need of representing prototypical properties and of reasoning about defeasible inheritance
- to handle defeasible inheritance needs the integration of some kind of nonmonotonic reasoning mechanism
 - DLs + MKNF
 - DLs + circumscription
 - DLs + default
- However, all these methods present some difficulties ...

 $\label{eq:linear} \begin{array}{l} \mbox{Introduction} \\ \mbox{Monotonic semantics} & \mathcal{ALC} + T \\ \mbox{The nonmonotonic semantics} \end{array}$

Outline

DLs with typicality

- Non-monotonic extensions of Description Logics for reasoning about prototypical properties and inheritance with exceptions
 - Basic idea: to extend DLs with a typicality operator T
 - **T**(C) singles out the "most normal" instances of the concept C
 - semantics of T defined by a set of postulates that are a restatement of Lehmann-Magidor axioms of rational logic R

Basic notions

- A KB comprises assertions $T(C) \sqsubseteq D$
- T(Student) ⊑ FacebookUsers means "normally, students use Facebook"

• T is nonmonotonic

• $C \sqsubseteq D$ does not imply $\mathsf{T}(C) \sqsubseteq \mathsf{T}(D)$

 $\label{eq:linear} \begin{array}{l} \mbox{Introduction} \\ \mbox{Monotonic semantics} & \mathcal{ALC} + T \\ \mbox{The nonmonotonic semantics} \end{array}$

Outline

DLs with typicality

- Non-monotonic extensions of Description Logics for reasoning about prototypical properties and inheritance with exceptions
 - Basic idea: to extend DLs with a typicality operator T
 - **T**(C) singles out the "most normal" instances of the concept C
 - semantics of T defined by a set of postulates that are a restatement of Lehmann-Magidor axioms of rational logic R

Basic notions

- A KB comprises assertions $T(C) \sqsubseteq D$
- T(Student) ⊑ FacebookUsers means "normally, students use Facebook"
- T is nonmonotonic
 - $C \sqsubseteq D$ does not imply $\mathbf{T}(C) \sqsubseteq \mathbf{T}(D)$

 $\label{eq:linear} \begin{array}{l} \mbox{Introduction} \\ \mbox{Monotonic semantics} & \mathcal{ALC} + T \\ \mbox{The nonmonotonic semantics} \end{array}$

The logic $ALC + T_{min}$

Example

 $T(Platypus) \sqsubseteq \neg \exists wears.Hat$ $T(Platypus \sqcap SecretAgent) \sqsubseteq \exists wears.Hat$

Reasoning

ABox:

Platypus(perty)

Expected conclusions:

 $\label{eq:linear} \begin{array}{l} \mbox{Introduction} \\ \mbox{Monotonic semantics} & \mathcal{ALC} + T \\ \mbox{The nonmonotonic semantics} \end{array}$

The logic $ALC + T_{min}$

Example

 $T(Platypus) \sqsubseteq \neg \exists wears.Hat$ $T(Platypus \sqcap SecretAgent) \sqsubseteq \exists wears.Hat$

 $\label{eq:linear} \begin{array}{l} \mbox{Introduction} \\ \mbox{Monotonic semantics} & \mathcal{ALC} + T \\ \mbox{The nonmonotonic semantics} \end{array}$

The logic $ALC + T_{min}$

Example

 $T(Platypus) \sqsubseteq \neg \exists wears.Hat$ $T(Platypus \sqcap SecretAgent) \sqsubseteq \exists wears.Hat$

Reasoning

- ABox:
 - Platypus(perry)
- Expected conclusions:
 - ¬∃wears.Hat(perry)

 $\label{eq:linear} \begin{array}{l} \mbox{Introduction} \\ \mbox{Monotonic semantics} & \mathcal{ALC} + T \\ \mbox{The nonmonotonic semantics} \end{array}$

The logic $ALC + T_{min}$

Example

 $T(Platypus) \sqsubseteq \neg \exists wears.Hat$ $T(Platypus \sqcap SecretAgent) \sqsubseteq \exists wears.Hat$

Reasoning

ABox:

• Platypus(perry), SecretAgent(perry)

• Expected conclusions:

■ ∃wears.Hat(perry)

 $\label{eq:linear} \begin{array}{l} \mbox{Introduction} \\ \mbox{Monotonic semantics} & \mathcal{ALC} + T \\ \mbox{The nonmonotonic semantics} \end{array}$

The logic $ALC + T_{min}$

Example

 $T(Platypus) \sqsubseteq \neg \exists wears.Hat$ $T(Platypus \sqcap SecretAgent) \sqsubseteq \exists wears.Hat$

Reasoning

ABox:

- Platypus(perry), SecretAgent(perry)
- Expected conclusions:
 - ∃wears.Hat(perry)

 $\begin{array}{l} \mbox{Introduction} \\ \mbox{Monotonic semantics } \mathcal{ALC} + \mathsf{T} \\ \mbox{The nonmonotonic semantics} \end{array}$

The logic ALC + T

Semantics

•
$$\mathcal{M} = \langle \Delta^{\mathcal{I}}, <, .^{\mathcal{I}} \rangle$$

- additional ingredient: preference relation among domain elements
- < is an irreflexive, transitive, modular and well-founded relation over $\Delta^{\mathcal{I}}:$
 - for all S ⊆ Δ^I, for all x ∈ S, either x ∈ Min_<(S) or ∃y ∈ Min_<(S) such that y < x
 - $Min_{\leq}(S) = \{u : u \in S \text{ and } \nexists z \in S \text{ s.t. } z < u\}$
- Semantics of the **T** operator: $(\mathbf{T}(C))^{\mathcal{I}} = Min_{<}(C^{\mathcal{I}})$

Introduction Monotonic semantics $\mathcal{ALC} + T$ The nonmonotonic semantics

Weakness of monotonic semantics

Logic $\mathcal{ALC} + T$

- The operator **T** is nonmonotonic, but...
- The logic is monotonic
 - If $KB \models F$, then $KB' \models F$ for all $KB' \supseteq KB$

Example

- in the KB of the previous slides:
 - if Platypus(perty) ∈ ABox, we are not able to:

 $\begin{array}{l} \mbox{Introduction} \\ \mbox{Monotonic semantics } \mathcal{ALC} + T \\ \mbox{The nonmonotonic semantics} \end{array}$

Weakness of monotonic semantics

Logic $\mathcal{ALC} + \mathbf{T}$

- The operator **T** is nonmonotonic, but...
- The logic is monotonic
 - If $KB \models F$, then $KB' \models F$ for all $KB' \supseteq KB$

Example

- in the KB of the previous slides:
 - if *Platypus*(*perry*) ∈ ABox, we are not able to:
 - assume that T(Platypus)(perry)
 - infer that $\neg \exists wears. Hat(perry)$

Introduction Monotonic semantics $\mathcal{ALC} + T$ The nonmonotonic semantics

Weakness of monotonic semantics

Logic $\mathcal{ALC} + \mathbf{T}$

- The operator **T** is nonmonotonic, but...
- The logic is monotonic
 - If $KB \models F$, then $KB' \models F$ for all $KB' \supseteq KB$

Example

- in the KB of the previous slides:
 - if *Platypus*(*perry*) ∈ ABox, we are not able to:
 - assume that **T**(*Platypus*)(*perry*)
 - infer that ¬∃wears.Hat(perry)

 $\begin{array}{l} \mbox{Introduction} \\ \mbox{Monotonic semantics } \mathcal{ALC} + T \\ \mbox{The nonmonotonic semantics} \end{array}$

The nonmonotonic logic ALC + T_{min}

Rational closure

- Preference relation among models of a KB
 - $M_1 < M_2$ if M_1 contains less exceptional (not minimal) elements
 - ${\cal M}$ minimal model of KB if there is no ${\cal M}'$ model of KB such that ${\cal M}' < {\cal M}$
- Minimal entailment
 - KB $\models_{min} F$ if F holds in all *minimal* models of KB
- Nonmonotonic logic
 - KB $\models_{min} F$ does not imply KB' $\models_{min} F$ with KB' \supset KB
- Corresponds to a notion of rational closure of KB

 $\begin{array}{l} \mbox{Introduction} \\ \mbox{Monotonic semantics } \mathcal{ALC} + T \\ \mbox{The nonmonotonic semantics} \end{array}$

The nonmonotonic logic ALC + T_{min}

Rational closure

- Preference relation among models of a KB
 - $M_1 < M_2$ if M_1 contains less exceptional (not minimal) elements
 - ${\cal M}$ minimal model of KB if there is no ${\cal M}'$ model of KB such that ${\cal M}' < {\cal M}$
- Minimal entailment
 - KB $\models_{min} F$ if F holds in all minimal models of KB
- Nonmonotonic logic

• KB $\models_{min} F$ does not imply KB' $\models_{min} F$ with KB' \supset KB

Corresponds to a notion of rational closure of KB

Introduction Monotonic semantics $\mathcal{ALC} + T$ The nonmonotonic semantics

The nonmonotonic logic ALC + T_{min}

Rational closure

- Preference relation among models of a KB
 - $\mathcal{M}_1 < \mathcal{M}_2$ if \mathcal{M}_1 contains less exceptional (not minimal) elements
 - ${\mathcal M}$ minimal model of KB if there is no ${\mathcal M}'$ model of KB such that ${\mathcal M}' < {\mathcal M}$
- Minimal entailment
 - KB $\models_{min} F$ if F holds in all minimal models of KB
- Nonmonotonic logic
 - KB $\models_{min} F$ does not imply KB' $\models_{min} F$ with KB' \supset KB
- Corresponds to a notion of rational closure of KB

Typicalities and Probabilities

DLs + T and probabilities

Introduction

- $ALC + T^{P}$: extension of ALC by typicality inclusions equipped by probabilities of exceptionality
- $\mathbf{T}(C) \sqsubseteq_p D$, where $p \in (0,1)$
- intuitive meaning: typical Cs are also Ds with a probability p or normally, Cs are Ds and the probability of having exceptional Cs not being Ds is 1 p

Example

 $T(Student) \sqsubseteq_{0.3} SportLover$

 $T(Student) \sqsubseteq_{0.9} SocialNetworkUser$

- sport lovers and social network users are both typical properties of students
- probability of not having exceptions is 30% and 90%, respectively

Typicalities and Probabilities

DLs + **T** and probabilities

Probabilistic DLs

- $ALC + T^{P}$ different from DLs with DISPONTE semantics
- probabilistic axioms $p :: C \sqsubseteq D$ used to capture uncertainty
 - Cs are Ds with probability p
- in ALC + T^P typical properties to concepts and to reason about probabilities of exceptions to those typicalities

Typicalities and Probabilities

DLs + **T** and probabilities

Basic idea

- extensions of an ABox containing only some of the "plausible" typicality assertions of the rational closure of KB
 - each extension represents a scenario having a specific probability
 - probability distribution among scenarios
 - nonmonotonic entailment restricted to extensions whose probabilities belong to a given and fixed range
 - reason about scenarios that are not necessarily the most probable

Typicalities and Probabilities

DLs + **T** and probabilities

Extensions of ABox

- typicality assumptions T(C₁)(a₁), T(C₂)(a₂),..., T(C_n)(a_n) inferred from ALC + T_{min}
- extensions of ABox obtained by choosing some typicality assumptions
 - $\mathcal{A}_1 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \dots, \mathbf{T}(C_n)(a_n) \}$
 - $\mathcal{A}_2 = \{ \mathbf{T}(\mathcal{C}_1)(a_1), \mathbf{T}(\mathcal{C}_2)(a_2), \ldots, \mathbf{T}(\mathcal{C}_n)(a_n) \}$
 - $\mathcal{A}_3 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - $\mathcal{A}_4 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \dots, \mathbf{T}(C_n)(a_n) \}$

• . . .

Typicalities and Probabilities

DLs + T and probabilities

Extensions of ABox

- typicality assumptions T(C₁)(a₁), T(C₂)(a₂),..., T(C_n)(a_n) inferred from ALC + T_{min}
- extensions of ABox obtained by choosing *some* typicality assumptions
 - $\widetilde{\mathcal{A}_1} = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \dots, \mathbf{T}(C_n)(a_n) \}$
 - $\mathcal{A}_2 = \{ \mathbf{T}(\mathcal{C}_1)(\mathbf{a}_1), \mathbf{T}(\mathcal{C}_2)(\mathbf{a}_2), \dots, \mathbf{T}(\mathcal{C}_n)(\mathbf{a}_n) \}$
 - $\mathcal{A}_3 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - $\mathcal{A}_4 = \{ \mathbf{T}(\mathcal{C}_1)(a_1), \mathbf{T}(\mathcal{C}_2)(a_2), \dots, \mathbf{T}(\mathcal{C}_n)(a_n) \}$

• . . .

Typicalities and Probabilities

DLs + T and probabilities

Extensions of ABox

- typicality assumptions T(C₁)(a₁), T(C₂)(a₂),..., T(C_n)(a_n) inferred from ALC + T_{min}
- extensions of ABox obtained by choosing *some* typicality assumptions
 - $\widetilde{\mathcal{A}}_1 = \{\mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n)\}$
 - $\overline{\mathcal{A}}_2 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \dots, \mathbf{T}(C_n)(a_n) \}$
 - $\mathcal{A}_3 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - $\mathcal{A}_4 = \{ \mathbf{T}(\mathcal{C}_1)(a_1), \mathbf{T}(\mathcal{C}_2)(a_2), \dots, \mathbf{T}(\mathcal{C}_n)(a_n) \}$

• . . .

Typicalities and Probabilities

DLs + T and probabilities

Extensions of ABox

- typicality assumptions T(C₁)(a₁), T(C₂)(a₂),..., T(C_n)(a_n) inferred from ALC + T_{min}
- extensions of ABox obtained by choosing some typicality assumptions
 - $\widetilde{\mathcal{A}}_1 = \{\mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \dots, \mathbf{T}(C_n)(a_n)\}$
 - $\widetilde{\mathcal{A}}_2 = \{ \operatorname{T}(\mathcal{C}_1)(a_1), \operatorname{T}(\mathcal{C}_2)(a_2), \ldots, \operatorname{T}(\mathcal{C}_n)(a_n) \}$
 - $\overline{\mathcal{A}}_3 = \{ \mathbf{T}(C_1)(a_1), \overline{\mathbf{T}(C_2)(a_2)}, \ldots, \mathbf{T}(C_n)(a_n) \}$
 - $\mathcal{A}_4 = \{ \mathbf{T}(\mathcal{C}_1)(a_1), \mathbf{T}(\mathcal{C}_2)(a_2), \dots, \mathbf{T}(\mathcal{C}_n)(a_n) \}$

• . . .

Typicalities and Probabilities

DLs + T and probabilities

Extensions of ABox

- typicality assumptions T(C₁)(a₁), T(C₂)(a₂),..., T(C_n)(a_n) inferred from ALC + T_{min}
- extensions of ABox obtained by choosing *some* typicality assumptions
 - $\widetilde{\mathcal{A}}_1 = \{\mathsf{T}(C_1)(a_1), \mathsf{T}(C_2)(a_2), \ldots, \mathsf{T}(C_n)(a_n)\}$
 - $\widetilde{\mathcal{A}}_2 = \{ \operatorname{T}(\mathcal{C}_1)(a_1), \operatorname{T}(\mathcal{C}_2)(a_2), \ldots, \operatorname{T}(\mathcal{C}_n)(a_n) \}$
 - $\mathcal{A}_3 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - $\overline{\mathcal{A}}_4 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - . . .

Typicalities and Probabilities

DLs + T and probabilities

Extensions of ABox

- typicality assumptions T(C₁)(a₁), T(C₂)(a₂),..., T(C_n)(a_n) inferred from ALC + T_{min}
- extensions of ABox obtained by choosing some typicality assumptions

•
$$\widetilde{\mathcal{A}}_1 = \{\mathsf{T}(C_1)(a_1), \mathsf{T}(C_2)(a_2), \dots, \mathsf{T}(C_n)(a_n)\}$$

•
$$\mathcal{A}_2 = \{ \frac{\mathbf{I}(\mathcal{L}_1)(a_1)}{(\mathcal{L}_1)(a_1)}, \mathbf{I}(\mathcal{L}_2)(a_2), \dots, \mathbf{I}(\mathcal{L}_n)(a_n) \}$$

•
$$\mathcal{A}_3 = \{\mathsf{T}(\mathcal{C}_1)(a_1), \frac{\mathsf{T}(\mathcal{C}_2)(a_2)}{\mathsf{T}(\mathcal{C}_2)(a_2)}, \dots, \mathsf{T}(\mathcal{C}_n)(a_n)\}$$

•
$$\mathcal{A}_4 = \{ \mathbf{T}(\mathcal{C}_1)(\mathbf{a}_1), \mathbf{T}(\mathcal{C}_2)(\mathbf{a}_2), \dots, \mathbf{T}(\mathcal{C}_n)(\mathbf{a}_n) \}$$

 $\mathbf{T}(F)(a)$

 $\mathbf{T}(C)(b)$

Typicalities and Probabilities

Extensions of ABox and probabilities

 $\mathbf{T}(C)(a)$

$\mathbf{T}(C)$	$\sqsubseteq_{0.3}$	D
$\mathbf{T}(C)$	$\sqsubseteq_{0.7}$	E
$\mathbf{T}(F)$	$\sqsubseteq_{0.8}$	G
$\mathbf{T}(C)$	$\sqsubseteq_{0.5}$	Η

Typicalities and Probabilities

Typicalities and Probabilities

$\mathbf{T}(C) \sqsubseteq_{0.3} D$	$\mathbf{T}(C)(a)$	$\mathbf{T}(\mathbf{F})(\mathbf{a})$	$\mathbf{T}(C)(b)$
$\mathbf{T}(C) \sqsubseteq_{0.7} E$	$\mathbf{I}(\mathbb{C})(u)$	$\mathbf{I}(T)(u)$	$\mathbf{I}(\mathbf{C})(0)$
$\mathbf{T}(F) \sqsubseteq_{0.8} G$	0.105	0.8	0.105
$\mathbf{T}(C) \sqsubseteq_{0.5} H$	$0.3\times0.7\times0.5$		

Typicalities and Probabilities

Extensions of ABox and probabilities

$\mathbf{T}(C) \sqsubseteq_{0.3} D$	$\mathbf{T}(C)(a)$	$\mathbf{T}(F)(a)$	$\mathbf{T}(C)(b)$	
$T(C) \sqsubseteq_{0.7} E$	$\mathbf{I}(\mathbf{C})(u)$	I (1 [*])(<i>u</i>)	I (C)(0)	
$\mathbf{T}(F) \sqsubseteq_{0.8} G$	0.105	0.8	0.105	
$\mathbf{T}(C) \sqsubseteq_{0.5} H$	$0.3\times0.7\times0.5$			

 $[0.105, 0.8, 0.105] \qquad \qquad \widetilde{\mathcal{A}}_1 \qquad {\bf T}(C)(a) \qquad {\bf T}(F)(a) \qquad {\bf T}(C)(b)$

Typicalities and Probabilities

$\mathbf{T}(C) \sqsubseteq_{0.3} D$ $\mathbf{T}(C) \sqsubseteq_{0.7} E$ $\mathbf{T}(F) \sqsubseteq_{0.8} G$ $\mathbf{T}(C) \sqsubseteq_{0.5} H$	$\mathbf{T}(C)(a)$ 0.105 $0.3 \times 0.7 \times 0.$	T(F)(a) 0.8	${f T}(C)(b)$ 0.105	
[0.105, 0.8, 0.105]	$\widetilde{\mathcal{A}_1}$	$\mathbf{T}(C)(a)$	$\mathbf{T}(F)(a)$	$\mathbf{T}(C)(b)$
[0.105, 0, 0]	$\widetilde{\mathcal{A}_2}$	$\mathbf{T}(C)(a)$	$\mathbf{T}(F)(a)$	$\mathbf{T}(C)(b)$

Typicalities and Probabilities

$\mathbf{T}(C) \sqsubseteq_{0.3} D$ $\mathbf{T}(C) \sqsubset_{0.7} E$	$\mathbf{T}(C)(a)$	$\mathbf{T}(F)(a)$	$\mathbf{T}(C)(b)$	
$\mathbf{T}(F) \sqsubseteq_{0.8} G$	0.105	0.8	0.105	
$\mathbf{T}(C) \sqsubseteq_{0.5} H$	$0.3 \times 0.7 \times 0.$	5		
	~			
$\left[0.105, 0.8, 0.105\right]$	\mathcal{A}_1	$\mathbf{T}(C)(a)$	$\mathbf{T}(F)(a)$	$\mathbf{T}(C)(b)$
[0.105, 0, 0]	$\widetilde{\mathcal{A}}_2$	$\mathbf{T}(C)(a)$	$\mathbf{T}(F)(a)$	$\mathbb{T}(C)(b)$
[0, 0.8, 0.105]	$\widetilde{\mathcal{A}_3}$	$\mathbf{T}(C)(a)$	$\mathbf{T}(F)(a)$	$\mathbf{T}(C)(b)$

Typicalities and Probabilities

$\mathbf{T}(C) \sqsubseteq_{0.3} D$ $\mathbf{T}(C) \sqsubset_{0.7} E$	$\mathbf{T}(C)(a)$	$\mathbf{T}(F)(a)$	$\mathbf{T}(C)(b)$	
$\mathbf{T}(F) \sqsubseteq_{0.8} G$	0.105	0.8	0.105	
$\mathbf{T}(C) \sqsubseteq_{0.5} H$	0.3 imes 0.7 imes 0.5	5		
$\begin{matrix} [0.105, 0.8, 0.105] \\ [0.105, 0, 0] \\ [0, 0.8, 0.105] \end{matrix}$	$\widetilde{\mathcal{A}}_1 \ \widetilde{\mathcal{A}}_2 \ \widetilde{\mathcal{A}}_3 \ dots$	$\mathbf{T}(C)(a)$ $\mathbf{T}(C)(a)$ $\mathbb{T}(C)(a)$	$\mathbf{T}(F)(a)$ $\mathbf{T}(F)(a)$ $\mathbf{T}(F)(a)$	$\begin{aligned} \mathbf{T}(C)(b) \\ \mathbf{T}(C)(b) \\ \mathbf{T}(C)(b) \end{aligned}$
$\left[0,0,0 ight]$	$\widetilde{\mathcal{A}_8}$	$\mathbf{T}(C)(a)$	$\mathbf{T}(F)(a)$	${\rm T}(C)(b)$

Typicalities and Probabilities

$\mathbf{T}(C) \sqsubseteq_{0.3} D$ $\mathbf{T}(C) \sqsubseteq_{0.7} E$ $\mathbf{T}(F) \sqsubseteq_{0.8} G$ $\mathbf{T}(C) \sqsubseteq_{0.5} H$	T(C)(a) 0.105 0.3 × 0.7 × 0.5	$\mathbf{T}(F)(a)$ 0.8	$\mathbf{T}(C)(b)$ 0.105		
$\begin{matrix} [0.105, 0.8, 0.105] \\ [0.105, 0, 0] \\ [0, 0.8, 0.105] \end{matrix}$	$\widetilde{\mathcal{A}}_1$ $\widetilde{\mathcal{A}}_2$ $\widetilde{\mathcal{A}}_3$	$\mathbf{T}(C)(a)$ $\mathbf{T}(C)(a)$ $\mathbb{T}(C)(a)$	$\mathbf{T}(F)(a)$ $\mathbf{T}(F)(a)$ $\mathbf{T}(F)(a)$	$\mathbf{T}(C)(b)$ $\mathbf{T}(C)(b)$ $\mathbf{T}(C)(b)$	$\begin{split} \mathbb{P}_{\widetilde{\mathcal{A}}_{1}} &= 0.105 \times 0.8 \times 0.105 \\ \mathbb{P}_{\widetilde{\mathcal{A}}_{2}} &= 0.105 \times (1 - 0.8) \times (1 - 0.105) \\ \mathbb{P}_{\widetilde{\mathcal{A}}_{3}} &= (1 - 0.105) \times 0.8 \times 0.105 \end{split}$
[0, 0, 0]	\vdots $\widetilde{\mathcal{A}_8}$	$\mathbf{T}(C)(a)$	$\mathbf{T}(F)(a)$	$\mathbb{T}(C)(b)$	$\mathbb{P}_{\widetilde{\mathcal{A}_8}} = (1 - 0.105) \times (1 - 0.8) \times (1 - 0.105)$

Typicalities and Probabilities

DLs + **T** and probabilities

Entailment

- Given KB= $(\mathcal{T}, \mathcal{A})$ and $p, q \in (0, 1]$
- $\mathcal{E} = \{\widetilde{A_1}, \widetilde{A_2}, \dots, \widetilde{A_k}\}$ set of extensions of \mathcal{A} whose probabilities are $p \leq \mathbb{P}_1 \leq q, p \leq \mathbb{P}_2 \leq q, \dots, p \leq \mathbb{P}_k \leq q$
- $\mathcal{T}' = \{\mathbf{T}(C) \sqsubseteq D \mid \mathbf{T}(C) \sqsubseteq_r D \in \mathcal{T}\} \cup \{C \sqsubseteq D \in \mathcal{T}\}$

• KB
$$\models_{ACC+TP}^{\langle p,q \rangle} F$$

• If F is C \subseteq D or T(C) \subseteq D, if $(T', A) \models_{ACC+T_{max}} F$
• If F is C(a), if $(T', A \cup \widetilde{A}_i) \models_{ACC+T} F$ for all $A_i \in S$
k

• probability of
$$F: \mathbb{P}(F) = \sum_{i=1}^{n} \mathbb{P}_{i}$$

Typicalities and Probabilities

DLs + **T** and probabilities

Entailment

- Given KB= $(\mathcal{T}, \mathcal{A})$ and $p, q \in (0, 1]$
- $\mathcal{E} = \{\widetilde{A_1}, \widetilde{A_2}, \dots, \widetilde{A_k}\}$ set of extensions of \mathcal{A} whose probabilities are $p \leq \mathbb{P}_1 \leq q, p \leq \mathbb{P}_2 \leq q, \dots, p \leq \mathbb{P}_k \leq q$
- $\mathcal{T}' = \{\mathbf{T}(C) \sqsubseteq D \mid \mathbf{T}(C) \sqsubseteq_r D \in \mathcal{T}\} \cup \{C \sqsubseteq D \in \mathcal{T}\}$

• KB
$$\models_{\mathcal{ALC}+\mathbf{T}^{\mathsf{P}}}^{\langle p,q\rangle} F$$

• if F is $C \sqsubseteq D$ or $T(C) \sqsubseteq D$, if $(\mathcal{T}', \mathcal{A}) \models_{\mathcal{ALC}+T_{min}} F$ • if F is C(a), if $(\mathcal{T}', \mathcal{A} \cup \widetilde{\mathcal{A}}_i) \models_{\mathcal{ALC}+T} F$ for all $\widetilde{\mathcal{A}}_i \in \mathcal{E}$

• probability of
$$F: \mathbb{P}(F) = \sum_{i=1}^{\kappa} \mathbb{P}_i$$

Typicalities and Probabilities

DLs + **T** and probabilities

Entailment

- Given KB= $(\mathcal{T}, \mathcal{A})$ and $p, q \in (0, 1]$
- $\mathcal{E} = \{\widetilde{A_1}, \widetilde{A_2}, \dots, \widetilde{A_k}\}$ set of extensions of \mathcal{A} whose probabilities are $p \leq \mathbb{P}_1 \leq q, p \leq \mathbb{P}_2 \leq q, \dots, p \leq \mathbb{P}_k \leq q$
- $\mathcal{T}' = \{\mathbf{T}(C) \sqsubseteq D \mid \mathbf{T}(C) \sqsubseteq_r D \in \mathcal{T}\} \cup \{C \sqsubseteq D \in \mathcal{T}\}$

• KB
$$\models_{\mathcal{ALC}+\mathbf{T}^{\mathsf{P}}}^{\langle p,q\rangle} F$$

• if *F* is $C \sqsubseteq D$ or $\mathbf{T}(C) \sqsubseteq D$, if $(\mathcal{T}', \mathcal{A}) \models_{\mathcal{ACC}+\mathbf{T}_{min}} F$ • if *F* is *C*(a), if $(\mathcal{T}', \mathcal{A} \cup \widehat{\mathcal{A}}) \models_{\mathcal{ACC}+\mathbf{T}} F$ for all $\mathcal{A} \in \mathcal{C}$

• probability of $F: \mathbb{P}(F) = \sum_{i=1}^{n} \mathbb{P}_{i}$

Typicalities and Probabilities

DLs + **T** and probabilities

Entailment

- Given KB= $(\mathcal{T}, \mathcal{A})$ and $p, q \in (0, 1]$
- $\mathcal{E} = \{\widetilde{A_1}, \widetilde{A_2}, \dots, \widetilde{A_k}\}$ set of extensions of \mathcal{A} whose probabilities are $p \leq \mathbb{P}_1 \leq q, p \leq \mathbb{P}_2 \leq q, \dots, p \leq \mathbb{P}_k \leq q$
- $\mathcal{T}' = \{\mathbf{T}(C) \sqsubseteq D \mid \mathbf{T}(C) \sqsubseteq_r D \in \mathcal{T}\} \cup \{C \sqsubseteq D \in \mathcal{T}\}$

• KB
$$\models_{\mathcal{ALC}+\mathbf{TP}}^{\langle p,q \rangle}$$
 F

- if F is $C \sqsubseteq D$ or $\mathbf{T}(C) \sqsubseteq D$, if $(\mathcal{T}', \mathcal{A}) \models_{\mathcal{ALC} + \mathbf{T}_{min}} F$
- if F is C(a), if $(\mathcal{T}', \mathcal{A} \cup \overline{\mathcal{A}}_i) \models_{\mathcal{ALC}+\mathsf{T}} F$ for all $\overline{\mathcal{A}}_i \in \mathcal{E}$

• probability of $F: \mathbb{P}(F) = \sum \mathbb{P}_i$

Typicalities and Probabilities

DLs + **T** and probabilities

Entailment

- Given KB= $(\mathcal{T}, \mathcal{A})$ and $p, q \in (0, 1]$
- $\mathcal{E} = \{\widetilde{A_1}, \widetilde{A_2}, \dots, \widetilde{A_k}\}$ set of extensions of \mathcal{A} whose probabilities are $p \leq \mathbb{P}_1 \leq q, p \leq \mathbb{P}_2 \leq q, \dots, p \leq \mathbb{P}_k \leq q$
- $\mathcal{T}' = \{\mathbf{T}(C) \sqsubseteq D \mid \mathbf{T}(C) \sqsubseteq_r D \in \mathcal{T}\} \cup \{C \sqsubseteq D \in \mathcal{T}\}$

• KB
$$\models_{\mathcal{ALC}+\mathsf{TP}}^{\langle p,q \rangle} F$$

• if F is $C \sqsubseteq D$ or $\mathsf{T}(C) \sqsubseteq D$, if $(\mathcal{T}',\mathcal{A}) \models_{\mathcal{ALC}+\mathsf{T}_{min}} F$
• if F is $C(a)$, if $(\mathcal{T}',\mathcal{A} \cup \widetilde{\mathcal{A}_i}) \models_{\mathcal{ALC}+\mathsf{T}} F$ for all $\widetilde{\mathcal{A}_i} \in \mathcal{E}$

• probability of
$$F: \mathbb{P}(F) = \sum_{i=1}^{n} \mathbb{P}_i$$

Typicalities and Probabilities

DLs + **T** and probabilities

TBox

 $AtypicalDepressed \sqsubseteq Depressed$

 $T(Depressed) \sqsubseteq_{0.85} \neg \exists Symptom. MoodReactivity$

 $T(AtypicalDepressed) \sqsubseteq_{0.6} \exists Symptom.MoodReactivity$

 $T(ProstateCancerPatient) \sqsubseteq_{0.5} \exists Symptom.MoodReactivity$

T(*ProstateCancerPatient*) _{□0.8} ∃*Symptom*.*Nocturia*

Inferences

- $T(Depressed \sqcap Tall) \sqsubseteq \neg \exists Symptom. MoodReactivity is entailed in <math>ALC + T^{F}$
- if $A = \{ProstateCancerPatient(jim), AtypicalDepressed(jim)\}:$
 - ∃Symptom.MoodReactivity(jim) has probability 76%

Typicalities and Probabilities

DLs + **T** and probabilities

TBox

AtypicalDepressed
Depressed

 $T(Depressed) \sqsubseteq_{0.85} \neg \exists Symptom. MoodReactivity$

 $T(AtypicalDepressed) \sqsubseteq_{0.6} \exists Symptom.MoodReactivity$

 $T(ProstateCancerPatient) \sqsubseteq_{0.5} \exists Symptom. MoodReactivity$

T(*ProstateCancerPatient*) _{□0.8} ∃*Symptom*.*Nocturia*

Inferences

- $T(Depressed \sqcap Tall) \sqsubseteq \neg \exists Symptom. MoodReactivity is entailed in <math>ALC + T^P$
- if A = {ProstateCancerPatient(jim), AtypicalDepressed(jim)}:

∃Symptom.MoodReactivity(jim) has probability 76%

Typicalities and Probabilities

Reasoning Procedure

1: procedure ENTAILMENT($(\mathcal{T}, \mathcal{A}), \mathcal{T}', F, \mathfrak{Tip}, p, q$) > build the set S of possible assumptions 2: Tip A + Ø 3. for each $C \in \mathfrak{Tip}$ do \triangleright Reasoning in ALC + T^{RaCl} 4: for each individual $a \in A$ do 5. $\textit{if} \ (\mathcal{T}',\mathcal{A}) \models_{\mathcal{ALC} + \mathbf{T}_{\mathbf{C}}^{\textit{RaCl}}} \mathbf{T}(C)(a) \textit{ then } \mathfrak{Tip}_{\mathcal{A}} \leftarrow \mathfrak{Tip}_{\mathcal{A}} \ \cup \ \{\mathbf{T}(C)(a)\}$ 6: $\mathcal{P}_A \leftarrow \emptyset$ \triangleright compute the probabilities of Definition 2 given T and \mathfrak{Tip}_{A} 7: for each $C \in \mathfrak{Tip}$ do 8: $\Pi c \leftarrow 1$ 9. for each $\mathbf{T}(C) \sqsubset_n D \in \mathcal{T}$ do $\Pi_C \leftarrow \Pi_C \times p$ 10: $\mathcal{P}_A \leftarrow \mathcal{P}_A \cup \Pi_C$ $\mathbb{S} \leftarrow$ build strings of possible assumptions as in Definition 3 given \mathfrak{Tip}_A and \mathcal{P}_A 11: 12. $\mathcal{E} \leftarrow \emptyset$ > build extensions of A 13: for each $s_i \in \mathbb{S}$ do build the extension $\widetilde{\mathcal{A}}_i$ corresponding to s_i and compute $\mathbb{P}_{\overline{\mathcal{A}}_i}$ as in Definition 4 14: if $p \leq \mathbb{P}_{\widetilde{A_i}} \leq q$ then $\mathcal{E} \leftarrow \mathcal{E} \cup \widetilde{A_i} \implies$ select extensions with probability in $\langle p, q \rangle$ 15: $\begin{array}{c} \flat \text{ query entailment in } \mathcal{ALC} + \mathbf{T_R} \\ \textbf{if} (\mathcal{T}', \mathcal{A} \cup \widetilde{\mathcal{A}}_i) \not\models_{\mathcal{ACC} + \mathbf{T_R}} F \text{ then return } KB \not\models^{(p,q)} \sim F \end{array}$ for each $\widetilde{A}_i \in \mathcal{E}$ do 16. 17: return KB $\models_{ACC+TP}^{(p,q)} F$ 18: ▷ F is entailed in all extensions

Typicalities and Probabilities

DLs + **T** and probabilities

Results

- entailment restricted to extensions with a fixed probability / range of probabilities
- essentially inexpensive
 - $\bullet\,$ entailment in in $\mathrm{ExpTIME}$ as in the underlying \mathcal{ALC}

Future works

Beyond $\mathcal{ALC} + T^P$

Future works

- Combination of DLs with DISPONTE semantics with probability of exceptions
- Reasoning in real domains:
 - which range of probabilities?
- Implementation
- Extension to other DLs

Future works

References

- F. Baader and B. Hollunder (1995), Embedding defaults into terminological knowledge representation formalisms. JAR, 14(1):149–180.
- P. A. Bonatti, C. Lutz, and F. Wolter (2006). DLs with Circumscription. In Proc. of KR, pages 400-410.
- D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati (2007). Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family. Journal of Automated Reasoning, 39(3):385–429.
- F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt, and A. Schaerf (1998). An epistemic operator for description logics. Artificial Intelligence, 100(1-2):225–274.
- F. M. Donini, D. Nardi, and R. Rosati (2002). Description logics of minimal knowledge and negation as failure. ACM Transactions on Computational Logics (ToCL), 3(2):177–225.
- T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits (2004), Combining Answer Set Programming with Description Logics for the Semantic Web. In Proc. of KR 2004, pages 141–151.
- L. Giordano, V. Gliozzi, N. Olivetti, and G.L. Pozzato (2013), A NonMonotonic Description Logic for Reasoning About Typicality. Artificial Intelligence, 195:165 – 202.
- L. Giordano, V. Gliozzi, N. Olivetti, and G.L. Pozzato (2015), Semantic characterization of Rational Closure: from Propositional Logic to Description Logics. Artificial Intelligence, 226:1–33.
- F. Riguzzi, E. Bellodi, E. Lamma, and R. Zese (2015), Probabilistic description logics under the distribution semantics. Semantic Web, 6(5): 477–501.
- U. Straccia (1993), Default inheritance reasoning in hybrid kl-one-style logics. In Proc. of IJCAI'93, pages 676-681.

Future works

Any question?

Perry The Platypus Agent P (aka Agent P) (aka Perry The Platypus)