
RankPL: A Qualitative Probabilistic Programming
Language

Tjitze Rienstra

University of Luxembourg
Esch-sur-Alzette, Luxembourg

tjitze@gmail.com

July 13, 2017

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 1 / 28

Overview

1 Background
Probabilistic Programming
Ranking Theory

2 RankPL
Syntax
Ranked Choice
Observation
An example

3 Iterated Revision in RankPL

4 Conclusion

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 2 / 28

Probabilistic Programming

“Probabilistic programs are usual functional or imperative programming
languages with two added constructs:

1 the ability to draw values at random from distributions, and

2 the ability to condition values of variables in a program via
observations.”1

Probabilistic programming ...

provides a universal modelling language for Bayesian inference.

untangles the modelling task (writing the program) and inference task
(executing the program).

simplifies Bayesian inference from a knowledge engineering
perspective.

1Andrew D. Gordon et al. “Probabilistic programming”. In: Proceedings of FOSE
2014. 2014, pp. 167–181.

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 3 / 28

Probabilistic Programming

Instead of a deterministic outcome, a probabilistic program generates a
probability distribution over outcomes. The observe statement is used to
express conditional inference.

Example

Program:

1: bool c1, c2;
2: c1 = Bernoulli(0.5);
3: c2 = Bernoulli(0.5);
4: observe(c1 || c2);
5: return(c1, c2);

Output:

(true,false) (0.33)
(false,true) (0.33)
(true,true) (0.33)

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 4 / 28

Alternatives to the Bayesian approach

Although the Bayesian approach seems to be the most successful approach
to modelling uncertainty, there are many alternatives.

Dempster Shafer

Imprecise Probability

Possibility Theory

Ranking Theory

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 5 / 28

Ranking Theory

A ranking function measures the degree of surprise that some event
occurs. Formally, a ranking function K is defined as

κ : Ω→ N ∪ {∞},

such that κ(w) = 0 for at least one w ∈ Ω.

Extended to propositions:

for all A ⊆ Ω, κ(A) = min({κ(w) | w ∈ A}).

A is believed with firmness x (for x > 0) iff κ(A) = x .

Conditioning: the rank of A conditional on B (if B 6= ∅) is defined as

κ(A | B) = κ(A ∩ B)− κ(B).

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 6 / 28

Ranking Theory vs. Probability Theory

Ranking Theory . . .

models everyday, categorical notion of belief:

Bel(κ) = {w ∈ Ω | κ(w) = 0}.

permits reasoning about events that “normally” or “surprisingly” (to
some degree) occur, without having to specify probabilities.

still supports many powerful features of the Bayesian approach (such
as revision through conditioning).

is computationally easier to handle than probability theory.

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 7 / 28

Ranked Programming?

Questions:

Can we develop a ranked programming language?

What should such a language look like?

What can we do with it?

Goals:

Design a simple imperative programming language (variable
assignment, if-else, while-do) with statements for ranked choice and
ranking-theoretic observation.

Formally specify the language with a denotational semantics (see
paper).

Develop an efficient implementation faithful to the semantics (see
github.com/tjitze/RankPL).

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 8 / 28

Overview

1 Background
Probabilistic Programming
Ranking Theory

2 RankPL
Syntax
Ranked Choice
Observation
An example

3 Iterated Revision in RankPL

4 Conclusion

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 9 / 28

Syntax

Definition

e: (numerical expressions)
n | x | e1 + e2 | e1 - e2 | e1 * e2 | e1 / e2;

b: (boolean expressions)
!b | b1 or b2 | b1 and b2 | e1 = e2 | e1 < e2;

s: (statements)
{s1; s1} |
x := e |
if b s1 else s2 |
while b do s |
skip |
normally (e) s1 exceptionally s2 |
observe b;

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 10 / 28

Syntax

Definition

e: (numerical expressions)
n | x | e1 + e2 | e1 - e2 | e1 * e2 | e1 / e2;

b: (boolean expressions)
!b | b1 or b2 | b1 and b2 | e1 = e2 | e1 < e2;

s: (statements)
{s1; s1} |
x := e |
if b s1 else s2 |
while b do s |
skip |
normally (e) s1 exceptionally s2 |
observe b;

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 11 / 28

Ranked Choice

Expresses a choice between alternatives. Basic form is as follows.

normally (e) A exceptionally B;

This statement states that:

Normally, A is executed.

If A is not executed (surprising to degree e) then B is executed.

Syntactic shortcuts:

normally (e) A = normally (e) A exceptionally skip

exceptionally (e) A = normally (e) skip exceptionally A

either A or B = normally (0) A exceptionally B

x := a <<e>> b = normally (e) x := a exceptionally x := b

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 12 / 28

Ranked Choice

Combining ranked choice statements:

normally (1) A exceptionally B;
normally (1) C exceptionally D;

Four alternative program flows:

A-C (ranked 0)

A-D (ranked 1)

B-C (ranked 1)

B-D (ranked 2)

Always executed least-surprising-first!

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 13 / 28

Ranked Choice

Combining ranked choice statements:

normally (1) {
A;

} exceptionally {
normally (1) {

B;
} exceptionally {

C;
}

}

This statement states that:

Normally, A executed.

If A is not executed (surprising to degree 1) then, normally, B is
executed.

If neither A nor B is executed (surprising to degree 2) then C is
executed.

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 14 / 28

An example: coin tossing

Alice is tossing an extremely biased coin. It normally lands heads, and only
surprisingly (to degree 1) lands tails. She tosses the coin three times. How
many times will she throw tails?

1 flip1 := 0 <<1>> 1;
2 flip2 := 0 <<1>> 1;
3 flip3 := 0 <<1>> 1;
4 return flip1 + flip2 + flip3;

Result:

Rank Outcome
0 0
1 1
2 2
3 3

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 15 / 28

Observation

The statement

observe b

revises the ranking over alternatives due to observing or learning that the
condition b is true. It does two things:

Block execution of alternatives not satisfying ‘b‘.

Uniformly shift down the ranks of the remaining alternatives to zero.

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 16 / 28

An example

Suppose we observe that Alice throws tails at least once. How often does
Alice throw tails?

1 flip1 := 0 <<1>> 1;
2 flip2 := 0 <<1>> 1;
3 flip3 := 0 <<1>> 1;
4 observe flip1 + flip2 + flip3 >= 1;
5 return flip1 + flip2 + flip3;

Result:

Rank Outcome
0 1
1 2
2 3

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 17 / 28

Circuit Diagnosis

Program:

Output:

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 18 / 28

Ranking Networks

Program:

Output:

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 19 / 28

Overview

1 Background
Probabilistic Programming
Ranking Theory

2 RankPL
Syntax
Ranked Choice
Observation
An example

3 Iterated Revision in RankPL

4 Conclusion

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 20 / 28

Iterated Revision in RankPL

Normal conditioning (and thus the observe statement) leads to
irreversible belief with absolute certainty. L-conditioning (also called
evidence-oriented conditioning) generalizes normal conditioning.

Definition

Let A ⊆ Ω and let x ∈ N. The L-conditioning of κ on A with parameter x
is denoted by κA↑x and is defined as

κA↑x(w) =

{
κ(w)− y if w ∈ A, or
κ(w) + x − y if w 6∈ A

where y = min(κ(A), x).

In RankPL implemented by the observe-l (x) b statement.

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 21 / 28

Iterated Revision in RankPL

We receive evidence that Alice threw tails at least once. This evidence
strengthens our belief in this fact by five units of rank.

1 flip1 := 0 <<1>> 1;
2 flip2 := 0 <<1>> 1;
3 flip3 := 0 <<1>> 1;
4 observe-l (5) flip1 + flip2 + flip3 >= 1;
5 return flip1 + flip2 + flip3;

Result:

Rank Outcome
0 1
1 2
2 3
4 0

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 22 / 28

Iterated Revision in RankPL

We receive two (independent) pieces of information strengthening our
belief that Alice threw tails at least once:

1 flip1 := 0 <<1>> 1;
2 flip2 := 0 <<1>> 1;
3 flip3 := 0 <<1>> 1;
4 observe-l (5) flip1 + flip2 + flip3 >= 1;
5 observe-l (5) flip1 + flip2 + flip3 >= 1;
6 return flip1 + flip2 + flip3;

Result:

Rank Outcome
0 1
1 2
2 3
9 0

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 23 / 28

Iterated Revision in RankPL

The second observation reverses the effect of the first one:

1 flip1 := 0 <<1>> 1;
2 flip2 := 0 <<1>> 1;
3 flip3 := 0 <<1>> 1;
4 observe-l (5) flip1 + flip2 + flip3 >= 1;
5 observe-l (5) flip1 + flip2 + flip3 < 1;
6 return flip1 + flip2 + flip3;

Result:

Rank Outcome
0 0
1 1
2 2
3 3

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 24 / 28

An example: spelling correction

Rank words in a dictionary according to how close they are to the
input.

Interpret each input character ci (at index i = 1, 2, ...) as evidence
that strengthens our belief that the character at i is actually ci .

Use L-observation for this:

observe-l (1) input_word[i] == potential_match[k];

If mismatch: consider three possibilities (missing, superfluous,
incorrect).

This algorithm only takes about 20 lines of code.

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 25 / 28

Overview

1 Background
Probabilistic Programming
Ranking Theory

2 RankPL
Syntax
Ranked Choice
Observation
An example

3 Iterated Revision in RankPL

4 Conclusion

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 26 / 28

Open issues:

More applications (e.g. planning for minimal risk, game strategies,
agent models...).

Can we capture default rules that have ranking-based semantics
(System Z)?

More information:

See the paper for the denotational semantics of RankPL.

Download RankPL at github.com/tjitze/RankPL.

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 27 / 28

Thanks for your attention

Tjitze Rienstra (uni.lu) RankPL: Ranked Programming July 13, 2017 28 / 28

	Background
	Probabilistic Programming
	Ranking Theory

	RankPL
	Syntax
	Ranked Choice
	Observation
	An example

	Iterated Revision in RankPL
	Conclusion

