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Set of probabilities P = {µα | α ∈ [0, 0.7]}, where µα gives green-event
probability 0.3, blue-event probability α, and red-event probability 0.7− α.
P?(X ) = inf{µ(X ) | µ ∈ P}
P?(X ) = sup{µ(X ) | µ ∈ P}
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P?(R) = 0, P?(R) = 0.7, P?(B) = 0, P?(B) = 0.7,
P?(G ) = P?(G ) = 0.3.
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Those two functions are related by the formula P?(X ) = 1− P?(X c).

A basic likelihood formulas:

θ1l(ϕ1) + · · ·+ θk l(ϕk) ≥ c ,

where c, θi ∈ R, ϕi are propositional formulas i = 1, . . . , k .
l is an upper probability operator
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Theorem (Anger and Lembcke 1985)

Let W be a set, H an algebra of subsets of W , and f a function
f : H −→ [0, 1]. There exists a set P of probability measures such that
f = P? iff f satisfies the following three properties:

(1) f (∅) = 0,

(2) f (W ) = 1,

(3) for all natural numbers m, n, k and all subsets A1, . . . ,Am in H, if the
multiset {{A1, . . . ,Am}} is an (n, k)-cover of (A,W ), then
k + nf (A) ≤

∑m
i=1 f (Ai ).

Definition ((n, k)-cover)

A set A is said to be covered n times by a multiset {{A1, . . . ,Am}} of sets
if every element of A appears in at least n sets from A1, . . . ,Am, i.e., for
all x ∈ A, there exists i1, . . . , in in {1, . . . ,m} such that for all j ≤ n,
x ∈ Aij . An (n, k)-cover of (A,W ) is a multiset {{A1, . . . ,Am}} that
covers W k times and covers A n + k times.
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Our previous work

Savić, N., Doder, D., Ognjanović, Z.: A logic with Upper and Lower
Probability Operators. In Proceedings of the 9th International Symposium
on Imprecise Probability: Theories and Applications, 267–276, Pescara,
Italy (2015)

Instead of using linear combinations...

Classical propostional logic + operators L≥s and U≥s , s ∈ Q ∩ [0, 1].
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L=0R, L=0B; U=0.7R,U=0.7B

((U≤0.3G ∧ L≥0.3G ) ∧ U≤0.2R)⇒ L≥0.5B.

N. Savić, D. Doder, Z. Ognjanović A first-order logic for reasoning about higher-order upper and lower probabilitiesLugano, July 2017 11 / 28



Example

R 

E 

D 

 

O 

R 

 

B 

L 

U 

E 

? 

L=0R, L=0B;

U=0.7R,U=0.7B

((U≤0.3G ∧ L≥0.3G ) ∧ U≤0.2R)⇒ L≥0.5B.
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Semantics

Definition (LUPP-structure)

M = 〈W ,H,P, υ〉, where:

W is a nonempty set of worlds.

H is an algebra of subsets of W .

P is a set of finitely additive probability measures defined on H.

υ : W × L −→ {true, false} evaluations of the primitive propositions.

Definition (Satisfiability relation)

M |= α iff υ(w)(α) = true, for all w ∈W ,

M |= U≥sα iff P?([α]) ≥ s,

M |= L≥sα iff P?([α]) ≥ s.
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Axiom schemes

(1) all instances of the classical propositional tautologies

(2) U≤1α ∧ L≤1α

(3) U≤rα→ U<sα, s > r

(4) U<sα→ U≤sα

(5) (U≤r1α1 ∧ · · · ∧ U≤rmαm)→ U≤rα, if
α→

∨
J⊆{1,...,m},|J|=k+n

∧
j∈J αj and

∨
J⊆{1,...,m},|J|=k

∧
j∈J αj are

propositional tautologies, where r =
∑m

i=1 ri−k
n , n 6= 0

(6) ¬(U≤r1α1 ∧ · · · ∧ U≤rmαm), if
∨

J⊆{1,...,m},|J|=k

∧
j∈J αj is a

propositional tautology and
∑m

i=1 ri < k

(7) L=1(α→ β)→ (U≥sα→ U≥sβ)
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Inference Rules

(1) From ρ and ρ→ σ infer σ

(2) From α infer L≥1α

(3) From the set of premises

{φ→ U≥s− 1
k
α | k ≥ 1

s
}

infer φ→ U≥sα

(4) From the set of premises

{φ→ L≥s− 1
k
α | k ≥ 1

s
}

infer φ→ L≥sα.
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Comparison of these two logics

Halpern and Pucella’s Logic for
Reasoning about Upper
Probabilities

Uncountable Language

Finitary axiomatization

(Weak) completeness

Our Logic with Upper and Lower
Probability Operators

Countable Language

Infinitary axiomatization

Strong completeness
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The Idea

Construct the logic that will have the language powerful enough to express:

Ua
≤ 9

10

Rain(C )

La≥0.1U
b
≤0.9Rain(C )

La≥ 1
3

(∀x)Rain(x)

(∃x)Ua
=0Rain(x).
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Let S = Q ∩ [0, 1], Var = {x , y , z , . . . } be a denumerable set of variables
and let Σ = {a, b, . . . } be a finite, non-empty set of agents. The language
of the logic Llu consists of:

the elements of set Var ,

classical propositional connectives ¬ and ∧,

universal quantifier ∀,

for every integer k ≥ 0, denumerably many function symbols
F k

0 ,F
k
1 , . . . of arity k ,

for every integer k ≥ 0, denumerably many relation symbols
Pk

0 ,P
k
1 , . . . of arity k ,

the list of upper probability operators Ua
≥s , for every s ∈ S ,

the list of lower probability operators La≥s , for every s ∈ S ,

comma, parentheses.
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Definition (Formula)

The set ForLlu of formulas is the smallest set containing atomic formulas
and that is closed under following formation rules: if α, β are formulas,
then La≥sα, Ua

≥sα, ¬α, α ∧ β, (∀x)α are formulas as well. The formulas
from ForLlu will be denoted by α, β, . . .

We use the following abbreviations to introduce other types of inequalities:

Ua
<sα is ¬Ua

≥sα, Ua
≤sα is La≥1−s¬α, Ua

=sα is Ua
≤sα ∧ Ua

≥sα, Ua
>sα is

¬Ua
≤sα,

La<sα is ¬La≥sα, La≤sα is Ua
≥1−s¬α, La=sα is La≤sα ∧ La≥sα, La>sα is

¬La≤sα.
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Definition (Llu-structure)

An Llu-structure is a tuple M = 〈W ,D, I , LUP〉, where:

W is a nonempty set of worlds,

D associates a non-empty domain D(w) with every world w ∈W ,

I associates an interpretation I (w) with every world w ∈W such
that:

- I (w)(F k
i ) : D(w)k → D(w), for all i and k ,

- I (w)(Pk
i ) ⊆ D(w)k , for all i and k ,

LUP assigns, to every w ∈W and every agent a ∈ Σ, a space, such
that LUP(a,w) = 〈W (a,w),H(a,w),P(a,w)〉, where:

∅ 6= W (a,w) ⊆W ,
H(a,w) is an algebra of subsets of W (a,w), i.e. a set of subsets of
W (a,w) such that:
- W (a,w) ∈ H(a,w),
- if A,B ∈ H(a,w), then W (a,w) \ A ∈ H(a,w) and A ∪ B ∈ H(a,w),
P(a,w) is a set of finitely additive probability measures defined on
H(a,w)
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Definition

The truth value of a formula α in a world w ∈W :

if α = Pm
i (t1, . . . , tm), then I (w)(α)υ = true if

〈I (w)(t1)υ, . . . , I (w)(tm)υ〉 ∈ I (w)(Pm
i ), otherwise I (w)(α)υ = false,

if α = ¬β, then I (w)(α)υ = true if I (w)(β)υ = false, otherwise
I (w)(α)υ = false,

if α = β ∧ γ, then I (w)(α)υ = true if I (w)(β)υ = true and
I (w)(γ)υ = true,

if α = Ua
≥sβ, then I (w)(α)υ = true if

P?(w , a){u ∈W (w , a) | I (u)(β)υ = true} ≥ s, otherwise
I (w)(α)υ = false,

if α = La≥sβ, then I (w)(α)υ = true if
P?(w , a){u ∈W (w , a) | I (u)(β)υ = true} ≥ s, otherwise
I (w)(α)υ = false,

if α = (∀x)β, then I (w)(α)υ = true if for every d ∈ D(w),
I (w)(β)υw [d/x] = true, otherwise I (w)(α)υ = false.
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Constraints

We will consider a class of Llu models that satisfy:

all the worlds from a model have the same domain, i.e., for all
v ,w ∈W , D(v) = D(w),

for every sentence α, for every agent a ∈ Σ and every world w from a
model M, the set {u ∈W (w , a) | I (u)(α)υ = true} of all worlds
from W (w , a) that satisfy α is measurable,

the terms are rigid, i.e., for every model their meanings are the same
in all the worlds.
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Axiom schemes

(1) all instances of the classical propositional tautologies

(2) (∀x)(α→ β)→ (α→ (∀x)β), where the variable x does not occur
free in α

(3) (∀x)α(x)→ α(t), where α(t) is obtained by substitution of all free
occurrences of x in the first-order formula α(x) by the term t which is
free for x in α(x)

(4) Ua
≤1α ∧ La≤1α

(5) Ua
≤rα→ Ua

<sα, s > r

(6) Ua
<sα→ Ua

≤sα

(7) (Ua
≤r1
α1 ∧ · · · ∧ Ua

≤rmαm)→ Ua
≤rα, if

α→
∨

J⊆{1,...,m},|J|=k+n

∧
j∈J αj and

∨
J⊆{1,...,m},|J|=k

∧
j∈J αj are

tautologies, where r =
∑m

i=1 ri−k
n , n 6= 0

(8) ¬(Ua
≤r1
α1 ∧ · · · ∧ Ua

≤rmαm), if
∨

J⊆{1,...,m},|J|=k

∧
j∈J αj is a tautology

and
∑m

i=1 ri < k

(9) La=1(α→ β)→ (Ua
≥sα→ Ua

≥sβ)
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Inference Rules

(1) From α and α→ β infer β

(2) From α infer (∀x)α

(3) From α infer La≥1α

(4) From the set of premises

{α→ Ua
≥s− 1

k
β | k ≥ 1

s
}

infer α→ Ua
≥sβ

(5) From the set of premises

{α→ La≥s− 1
k
β | k ≥ 1

s
}

infer α→ La≥sβ.
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Definition (Canonical model)

A canonical model MCan = 〈W ,D, I , LUP〉 is a tuple such that:

W is the set of all saturated sets of formulas,

D is the set of all variable-free terms,

for every w ∈W , I (w) is an interpretation such that:

for every function symbol Fm
i , I (w)(Fm

i ) : Dm → D such that for all
variable-free terms t1, . . . , tm,
I (w)(Fm

i ) : 〈t1, . . . , tm〉 7→ Fm
i (t1, . . . , tm),

for every relation symbol Pm
i ,

I (w)(Pm
i ) = {〈t1, . . . , tm〉 | Pm

i (t1, . . . , tm) ∈ w}, for all variable-free
terms t1, . . . , tm,

for every a ∈ Σ and every w ∈W ,
LUP(w , a) = 〈W (w , a),H(w , a),P(w , a)〉 is defined:

- W (w , a) = W ,
- H(w , a) = {{u | u ∈W (w , a), α ∈ u} | α ∈ ForLlu

},
- P(w , a) is any set of probability measures such that
P?(w , a)({u | u ∈W (w , a), α ∈ u}) = sup{s | Ua

≥sα ∈ w}.
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Definition

Set of formulas T is saturated if it is maximally consistent and satisfies:
if ¬(∀x)α(x) ∈ T , then for some term t, ¬α(t) ∈ T .

Theorem (Lindenbaum’s theorem)

Every consistent set of formulas can be extended to a saturated set.

Theorem (Strong completeness)

Every consistent set of formulas T is satisfiable.

N. Savić, D. Doder, Z. Ognjanović A first-order logic for reasoning about higher-order upper and lower probabilitiesLugano, July 2017 27 / 28



Definition

Set of formulas T is saturated if it is maximally consistent and satisfies:
if ¬(∀x)α(x) ∈ T , then for some term t, ¬α(t) ∈ T .

Theorem (Lindenbaum’s theorem)

Every consistent set of formulas can be extended to a saturated set.

Theorem (Strong completeness)

Every consistent set of formulas T is satisfiable.
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