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Set of probabilities P = {j | @ € [0,0.7]}, where 11, gives green-event
probability 0.3, blue-event probability «, and red-event probability 0.7 — a.
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Set of probabilities P = {j | @ € [0,0.7]}, where 11, gives green-event
probability 0.3, blue-event probability «, and red-event probability 0.7 — a.
P (X) = inf{u(X) | n € P}
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Set of probabilities P = {j | @ € [0,0.7]}, where 11, gives green-event
probability 0.3, blue-event probability «, and red-event probability 0.7 — a.
P (X) = inf{u(X) | p € P}

P(X) = sup{u(X) [ n € P}
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P.(R)=0, P*(R)=07, P.(B)=0,
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P.(R)=0, P*(R)=0.7, P,(B)=0, P*B)=07,
P.(G) = P*(G) = 0.3.
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Those two functions are related by the formula P,(X) =1 — P*(X°).
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Those two functions are related by the formula P,(X) =1 — P*(X°).
A basic likelihood formulas:

011(p1) + - + Okl (pk) > ¢,

where ¢, 0; € R, ¢; are propositional formulas i =1,... k.
I is an upper probability operator
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Theorem (Anger and Lembcke 1985)

Let W be a set, H an algebra of subsets of W, and f a function
f:H—[0,1]. There exists a set P of probability measures such that
f = P* iff f satisfies the following three properties:

(1) f(0) =0,

(2) f(W)=1,

(3) for all natural numbers m, n, k and all subsets As, ..., Am in H, if the
multiset {{A1,...,Am}} is an (n, k)-cover of (A, W), then
k + nf(A) <>, f(A).
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Let W be a set, H an algebra of subsets of W, and f a function
f:H—[0,1]. There exists a set P of probability measures such that
f = P* iff f satisfies the following three properties:

(1) f(0) =0,

(2) f(W)=1,

(3) for all natural numbers m, n, k and all subsets As, ..., Am in H, if the
multiset {{A1,...,Am}} is an (n, k)-cover of (A, W), then
k + nf(A) <>, f(A).

A,

Definition ((n, k)-cover)

A set A is said to be covered n times by a multiset {{A;1,...,An}} of sets
if every element of A appears in at least n sets from Ay,..., An, i.e., for
all x € A, there exists i1, ...,I, in {1,..., m} such that for all j < n,

x € Aj.. An (n, k)-cover of (A, W) is a multiset {{A1,...,An}} that
covers W k times and covers A n + k times.
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Our previous work

Savi¢, N., Doder, D., Ognjanovi¢, Z.: A logic with Upper and Lower
Probability Operators. In Proceedings of the 9th International Symposium

on Imprecise Probability: Theories and Applications, 267-276, Pescara,
Italy (2015)

Instead of using linear combinations...

Classical propostional logic + operators L>s and Uss, s € Q N[0, 1].
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((Ugo_3G AN L20.3G) AN USOQR) = L20_5B.
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Semantics

Definition (LUPP-structure)
M = (W, H, P,v), where:

@ W is a nonempty set of worlds.

@ H is an algebra of subsets of W.
@ P is a set of finitely additive probability measures defined on H.

e v: W x L — {true, false} evaluations of the primitive propositions.

v

12 /28
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Semantics

Definition (LUPP-structure)
M = (W, H, P,v), where:

@ W is a nonempty set of worlds.

@ H is an algebra of subsets of W.
@ P is a set of finitely additive probability measures defined on H.
e v: W x L — {true, false} evaluations of the primitive propositions.

v

Definition (Satisfiability relation)
o M= a iff u(w)(a) = true, for all w € W,
o M= Ussa iff P*([a]) > s,
o M= Lssaiff Pi([]) > s.

A\

12 /28
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Axiom schemes

(1) all instances of the classical propositional tautologies

(2) U<ia N Lo

(3) U<ra — Ucsar, s> r

(4) Ucsa — U<sar

(5) (U<noa A+ AN U<, am) — U<,a, if

@ — \/Jg{l,...,m},|J|:k+n /\jeJ @j and VJg{l,...,m},|J|=k /\jeJ Qj are

propositional tautologies, where r = % n#0

(6) ~(Usnar A AUs<ram), iV jcqr - mysj=k Njes @ s a
propositional tautology and >~ r; < k

(7) Lei(a = B) = (Ussa — Ussp)
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Inference Rules

(1) From p and p — o infer o
(2) From « infer L>1cx

(3) From the set of premises
1
{65 Usy salk= )

infer ¢ = Ussa
(4) From the set of premises

1
0= Lo ralk=7)

infer ¢ — L>sou.
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Comparison of these two logics

Halpern and Pucella’s Logic for Our Logic with Upper and Lower
Reasoning about Upper Probability Operators
Probabilities

@ Uncountable Language o Countable Language

o Finitary axiomatization @ Infinitary axiomatization

e (Weak) completeness @ Strong completeness
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Construct the logic that will have the language powerful enough to express:

e U2, Rain(C)
—10

N. Savi¢, D. Doder, Z. Ognjanovié¢ A first-order logic for reasoning about higher- Lugano, July 2017 17 / 28



The ldea

Construct the logic that will have the language powerful enough to express:
e U2, Rain(C)
<15
° L%o.lUéo.gRain(C)
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The ldea

Construct the logic that will have the language powerful enough to express:
° U;%Rain(C)
° L%o.lUéo.gRain(C)
° L‘; (Vx)Rain(x)

1
3
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The ldea

Construct the logic that will have the language powerful enough to express:
° U;%Rain(C)
° L%o.lUéo.gRain(C)
° L‘;%(VX)Rain(x)

o (Ix)U2,Rain(x).
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Let S=QnN[0,1], Var = {x,y,z,...} be a denumerable set of variables
and let ¥ = {a, b,...} be a finite, non-empty set of agents. The language
of the logic L, consists of:

o

the elements of set Var,

classical propositional connectives — and A,

universal quantifier V,

for every integer k > 0, denumerably many function symbols
Fé‘, Flk, ... of arity k,

for every integer k > 0, denumerably many relation symbols
P&, PY, ... of arity k,

the list of upper probability operators UZ, for every s € S,
the list of lower probability operators L%, for every s € S,

comma, parentheses.
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Definition (Formula)

The set Forg,, of formulas is the smallest set containing atomic formulas
and that is closed under following formation rules: if a, 8 are formulas,
then L2 o, UL,a, mcr, a A B, (Vx)a are formulas as well. The formulas
from FBr/;,u will be denoted by «, 3, . ..

We use the following abbreviations to introduce other types of inequalities:
o UVlais~US.a, Ul avis L2, —a, UZ,avis U2.a N UL, a, UL ais
—|Ua a B B B B
o LEiais nLia Liavis Uy o, LL,ais L2 aNLia Lais
_'L<s -
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Definition (L,,-structure)
An L,-structure is a tuple M = (W, D, [, LUP), where:
@ W is a nonempty set of worlds,

@ D associates a non-empty domain D(w) with every world w € W,

@ | associates an interpretation /(w) with every world w € W such
that:
- I(w)(FF) : D(w)k — D(w), for all i and k,
- I(w)(P¥) C D(w)k, for all i and k,
o LUP assigns, to every w € W and every agent a € X, a space, such
that LUP(a, w) = (W(a,w), H(a, w), P(a, w)), where:
o )£ W(a,w) C W,
e H(a, w) is an algebra of subsets of W(a, w), i.e. a set of subsets of
W(a, w) such that:
- W(a, w) € H(a, w),
-if A,B € H(a,w), then W(a,w)\ A € H(a,w) and AU B € H(a, w),
o P(a,w) is a set of finitely additive probability measures defined on
H(a, w)
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The truth value of a formula « in a world w € W:

o if = P(ty,...,tm), then I(w)(a), = true if
(H(w)(t1)v, .-, (W) (tm)w) € I(w)(P/"), otherwise I(w)(«), = false,

o if « = —f, then I(w)(«a), = true if I(w)(B), = false, otherwise
I(w)(a), = false,

o if a = A, then I(w)(a), = true if I(w)(5), = true and
I(w)(7y)y = true,

o if = U3, then I(w)(a), = true if
P*(w,a){u € W(w,a) | I(u)(8), = true} > s, otherwise
I(w)(a), = false,

o if « =L2_3, then I(w)(«), = true if
P.(w,a){u € W(w,a) | I(u)(B), = true} > s, otherwise
I(w)(«), = false,

o if a = (Vx)B, then I(w)(«), = true if for every d € D(w),
I(W)(B)uv,[d/x] = true, otherwise I(w)(«a), = false.
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We will consider a class of £, models that satisfy:

@ all the worlds from a model have the same domain, i.e., for all
v,w e W, D(v) = D(w),
o for every sentence «, for every agent a € ¥ and every world w from a

model M, the set {uv € W(w,a) | I(u)(«), = true} of all worlds
from W/(w, a) that satisfy « is measurable,

@ the terms are rigid, i.e., for every model their meanings are the same
in all the worlds.
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Axiom schemes
(1) all instances of the classical propositional tautologies

(2) (Vx)(a — B) — (a — (¥x)B), where the variable x does not occur
free in «

(3) (Vx)a(x) — aft), where a(t) is obtained by substitution of all free
occurrences of x in the first-order formula a(x) by the term t which is
free for x in a(x)

(4) U2,an L2

(5) UZ,a— Uisa,s>r

(6) U2, — Ui

(7) (U, a1 n---NUZ, am)— UZ,q,if

o — \/Jg{l,...,m},|J|:k+n /\jeJ «j and \/Jg{l,...,m},|J|:k /\jeJ Qyj are

tautologies, where r = w n+#0

(8) ~(UZ o1 A--- ANUZ, am), iV jcq1,  myuj=k /\jes @ is a tautology
and Y27 i < k

9) L2y(a— B)— (Ugsa — Ugsﬁ)
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Inference Rules
(1) From a and o« — 3 infer

(2) From « infer (¥Vx)a
(3) From «vinfer L3,
(4) From the set of premises

1

infer & — US,f

(5) From the set of premises
2 1

infer « — L f3.
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Definition (Canonical model)

A canonical model M¢,, = (W, D, I, LUP) is a tuple such that:
@ W is the set of all saturated sets of formulas,

@ D is the set of all variable-free terms,
o for every w € W, I(w) is an interpretation such that:

o for every function symbol F", I(w)(F/™) : D™ — D such that for all
variable-free terms tq, ..., tm,
H(w)(F™) : (b, .o tm) = F7(t1, ..., tm),

o for every relation symbol P/,
I(w)(P™) = {(t1,...,tm) | PM(t1,...,tm) € w}, for all variable-free
terms ty,..., th,

o for every a € ¥ and every w € W,
LUP(w, a) = (W(w, a), H(w, a), P(w, a)) is defined:

- W(w,a)=W,

- Hw,a)={{u|uve W(w,a),a € u}|ac Forg,}.

- P(w, a) is any set of probability measures such that
Pr(w,a)({u| ue W(w,a),a € u}) =sup{s | U2, a € w}.
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Definition

Set of formulas T is saturated if it is maximally consistent and satisfies:
if 7(Vx)a(x) € T, then for some term t, ~a(t) € T.

N. Savi¢, D. Doder, Z. Ognjanovié¢ A first-order logic for reasoning about higher- Lugano, July 2017 27 / 28



Definition

Set of formulas T is saturated if it is maximally consistent and satisfies:
if 7(Vx)a(x) € T, then for some term t, ~a(t) € T.

Theorem (Lindenbaum'’s theorem)

Every consistent set of formulas can be extended to a saturated set.
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Definition

Set of formulas T is saturated if it is maximally consistent and satisfies:
if 7(Vx)a(x) € T, then for some term t, ~a(t) € T.

Theorem (Lindenbaum'’s theorem)

Every consistent set of formulas can be extended to a saturated set.

Theorem (Strong completeness)

Every consistent set of formulas T is satisfiable.
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