A first-order logic for reasoning about higher-order upper and lower probabilities

N. Savić¹ D. Doder² Z. Ognjanović³

¹Institute of Computer Science University of Bern

²Faculty of Mechanical Engineering University of Belgrade

³Mathematical Institute of SASA Belgrade

Lugano, July 2017

Previous work on this topic

- Halpern and Pucella's Paper
- Our previous work

2 The Logic \mathcal{L}_{lu}

- Syntax and Semantics
- Axiomatization and Strong Completeness

Previous work on this topic

• Halpern and Pucella's Paper

• Our previous work

The Logic \mathcal{L}_{ll}

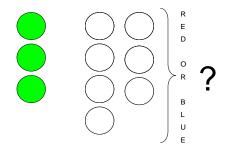
- Syntax and Semantics
- Axiomatization and Strong Completeness

Halpern, J. Y., Pucella, R.: A Logic for Reasoning about Upper Probabilities. Journal of Artificial Intelligence Research, 17: 5781 (2002)

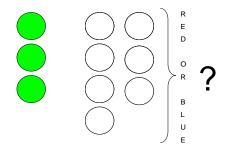


→

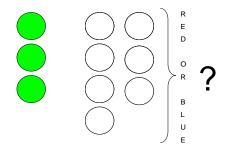
三日 のへで



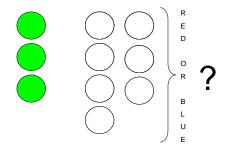
Set of probabilities $P = \{\mu_{\alpha} \mid \alpha \in [0, 0.7]\}$, where μ_{α} gives green-event probability 0.3, blue-event probability α , and red-event probability $0.7 - \alpha$.



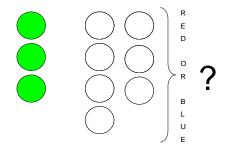
Set of probabilities $P = \{\mu_{\alpha} \mid \alpha \in [0, 0.7]\}$, where μ_{α} gives green-event probability 0.3, blue-event probability α , and red-event probability $0.7 - \alpha$. $P_{\star}(X) = \inf\{\mu(X) \mid \mu \in P\}$



Set of probabilities $P = \{\mu_{\alpha} \mid \alpha \in [0, 0.7]\}$, where μ_{α} gives green-event probability 0.3, blue-event probability α , and red-event probability $0.7 - \alpha$. $P_{\star}(X) = \inf\{\mu(X) \mid \mu \in P\}$ $P^{\star}(X) = \sup\{\mu(X) \mid \mu \in P\}$

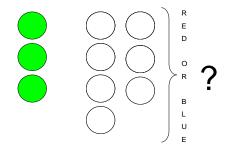


三日 のへで



 $P_{\star}(R)=0,$

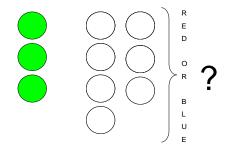
< E



$$P_{\star}(R) = 0$$
, $P^{\star}(R) = 0.7$,

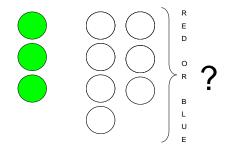
→ Ξ →

三日 のへで



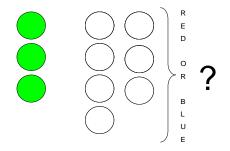
$$P_{\star}(R) = 0$$
, $P^{\star}(R) = 0.7$, $P_{\star}(B) = 0$,

三日 のへで



$$P_{\star}(R) = 0$$
, $P^{\star}(R) = 0.7$, $P_{\star}(B) = 0$, $P^{\star}(B) = 0.7$,

三日 のへで



$$P_{\star}(R) = 0, P^{\star}(R) = 0.7, P_{\star}(B) = 0, P^{\star}(B) = 0.7,$$

 $P_{\star}(G) = P^{\star}(G) = 0.3.$

三日 のへで

Those two functions are related by the formula $P_{\star}(X) = 1 - P^{\star}(X^c)$.

- ∢ /⊐ >

I= nan

Those two functions are related by the formula $P_{\star}(X) = 1 - P^{\star}(X^{c})$. A basic likelihood formulas:

$$\theta_1 l(\varphi_1) + \cdots + \theta_k l(\varphi_k) \geq c,$$

where $c, \theta_i \in \mathbb{R}$, φ_i are propositional formulas i = 1, ..., k. *I* is an upper probability operator

Theorem (Anger and Lembcke 1985)

Let W be a set, H an algebra of subsets of W, and f a function $f : H \longrightarrow [0, 1]$. There exists a set P of probability measures such that $f = P^*$ iff f satisfies the following three properties:

- (1) $f(\emptyset) = 0$,
- (2) f(W) = 1,
- (3) for all natural numbers m, n, k and all subsets A₁,..., A_m in H, if the multiset {{A₁,..., A_m}} is an (n, k)-cover of (A, W), then k + nf(A) ≤ ∑_{i=1}^m f(A_i).

5 1 SQC

Theorem (Anger and Lembcke 1985)

Let W be a set, H an algebra of subsets of W, and f a function $f : H \longrightarrow [0,1]$. There exists a set P of probability measures such that $f = P^*$ iff f satisfies the following three properties:

- (1) $f(\emptyset) = 0$,
- (2) f(W) = 1,
- (3) for all natural numbers m, n, k and all subsets A_1, \ldots, A_m in H, if the multiset $\{\{A_1, \ldots, A_m\}\}$ is an (n, k)-cover of (A, W), then $k + nf(A) \leq \sum_{i=1}^m f(A_i)$.

Definition ((n, k)-cover)

A set A is said to be covered n times by a multiset $\{\{A_1, \ldots, A_m\}\}$ of sets if every element of A appears in at least n sets from A_1, \ldots, A_m , i.e., for all $x \in A$, there exists i_1, \ldots, i_n in $\{1, \ldots, m\}$ such that for all $j \leq n$, $x \in A_{i_j}$. An (n, k)-cover of (A, W) is a multiset $\{\{A_1, \ldots, A_m\}\}$ that covers W k times and covers A n + k times.

Previous work on this topic Halpern and Pucella's Paper

• Our previous work

The Logic \mathcal{L}_{lu}

- Syntax and Semantics
- Axiomatization and Strong Completeness

Savić, N., Doder, D., Ognjanović, Z.: A logic with Upper and Lower Probability Operators. In Proceedings of the 9th International Symposium on Imprecise Probability: Theories and Applications, 267–276, Pescara, Italy (2015)

1 = nar

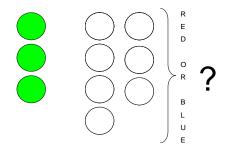
Savić, N., Doder, D., Ognjanović, Z.: A logic with Upper and Lower Probability Operators. In Proceedings of the 9th International Symposium on Imprecise Probability: Theories and Applications, 267–276, Pescara, Italy (2015)

Instead of using linear combinations...

Savić, N., Doder, D., Ognjanović, Z.: A logic with Upper and Lower Probability Operators. In Proceedings of the 9th International Symposium on Imprecise Probability: Theories and Applications, 267–276, Pescara, Italy (2015)

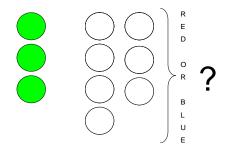
Instead of using linear combinations...

Classical propostional logic + operators $L_{\geq s}$ and $U_{\geq s}$, $s \in \mathbb{Q} \cap [0, 1]$.



三日 のへで

→ < Ξ →</p>

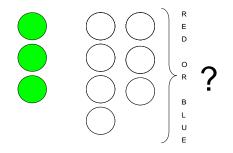


 $L_{=0}R, L_{=0}B;$

Lugano, July 2017 11 / 28

3

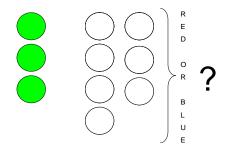
Image: A matrix



 $L_{=0}R, L_{=0}B; \qquad U_{=0.7}R, U_{=0.7}B$

Lugano, July 2017 11 / 2

< 一型



 $L_{=0}R, L_{=0}B; \qquad U_{=0.7}R, U_{=0.7}B$

$$((U_{\leq 0.3}G \land L_{\geq 0.3}G) \land U_{\leq 0.2}R) \Rightarrow L_{\geq 0.5}B.$$

< 一型

Semantics

N. Savić, D. Doder, Z. Ognjanović A first-order logic for reasoning about higher-

(B) (A) (B) (A)

Image: A matrix and a matrix

Semantics

Definition (*LUPP*-structure)

 $M = \langle W, H, P, v \rangle$, where:

- W is a nonempty set of worlds.
- *H* is an algebra of subsets of *W*.
- P is a set of finitely additive probability measures defined on H.
- $v: W \times \mathcal{L} \longrightarrow \{ true, false \}$ evaluations of the primitive propositions.

Semantics

Definition (*LUPP*-structure)

 $M = \langle W, H, P, v \rangle$, where:

- W is a nonempty set of worlds.
- H is an algebra of subsets of W.
- P is a set of finitely additive probability measures defined on H.
- $v: W \times \mathcal{L} \longrightarrow \{true, false\}$ evaluations of the primitive propositions.

Definition (Satisfiability relation)

- $M \models \alpha$ iff $v(w)(\alpha) = true$, for all $w \in W$,
- $M \models U_{\geq s} \alpha$ iff $P^{\star}([\alpha]) \geq s$,
- $M \models L_{\geq s} \alpha$ iff $P_{\star}([\alpha]) \geq s$.

EL OQA

(1) all instances of the classical propositional tautologies

ъ.

Inference Rules

- (1) From ρ and $\rho \rightarrow \sigma$ infer σ
- (2) From α infer $L_{\geq 1}\alpha$
- (3) From the set of premises

$$\{\phi \to U_{\geq s-\frac{1}{k}} \alpha \mid k \geq \frac{1}{s}\}$$

 $\mathsf{infer}\;\phi\to \mathit{U}_{\geq \mathit{s}}\alpha$

(4) From the set of premises

$$\{\phi \to L_{\geq s - \frac{1}{k}} \alpha \mid k \geq \frac{1}{s}\}$$

 $\text{infer }\phi\rightarrow \textit{L}_{\geq\textit{s}}\alpha.$

= 900

N. Savić, D. Doder, Z. Ognjanović A first-order logic for reasoning about higher-

= nar

Halpern and Pucella's Logic for Reasoning about Upper Probabilities

- Uncountable Language
- Finitary axiomatization
- (Weak) completeness

Our Logic with Upper and Lower Probability Operators

- Countable Language
- Infinitary axiomatization
- Strong completeness

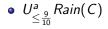
Previous work on this topic

- Halpern and Pucella's Paper
- Our previous work

2 The Logic \mathcal{L}_{lu}

- Syntax and Semantics
- Axiomatization and Strong Completeness

Construct the logic that will have the language powerful enough to express:



= 900

Construct the logic that will have the language powerful enough to express:

- $U^{a}_{\leq \frac{9}{10}} Rain(C)$
- $L^{a}_{\geq 0.1} U^{b}_{\leq 0.9} Rain(C)$

I DOC

Construct the logic that will have the language powerful enough to express:

- $U^{a}_{\leq \frac{9}{10}} Rain(C)$
- $L^{a}_{\geq 0.1}U^{b}_{\leq 0.9}Rain(C)$
- $L^{a}_{\geq \frac{1}{3}}(\forall x)Rain(x)$

ELE NOR

Construct the logic that will have the language powerful enough to express:

- $U^{a}_{\leq \frac{9}{10}} Rain(C)$
- $L^{a}_{\geq 0.1}U^{b}_{\leq 0.9}Rain(C)$
- $L^{a}_{\geq \frac{1}{3}}(\forall x) Rain(x)$
- $(\exists x) U^a_{=0} Rain(x).$

ELE DOG

Let $S = \mathbb{Q} \cap [0, 1]$, $Var = \{x, y, z, ...\}$ be a denumerable set of variables and let $\Sigma = \{a, b, ...\}$ be a finite, non-empty set of agents. The language of the logic \mathcal{L}_{lu} consists of:

- the elements of set Var,
- classical propositional connectives \neg and $\wedge,$
- universal quantifier ∀,
- for every integer $k \ge 0$, denumerably many function symbols F_0^k, F_1^k, \ldots of arity k,
- for every integer $k \ge 0$, denumerably many relation symbols P_0^k, P_1^k, \ldots of arity k,
- the list of upper probability operators $U^a_{>s}$, for every $s\in S$,
- the list of lower probability operators $L^a_{>s}$, for every $s \in S$,
- comma, parentheses.

Definition (Formula)

The set $For_{\mathcal{L}_{lu}}$ of formulas is the smallest set containing atomic formulas and that is closed under following formation rules: if α, β are formulas, then $L^{a}_{\geq s}\alpha$, $U^{a}_{\geq s}\alpha$, $\neg \alpha$, $\alpha \land \beta$, $(\forall x)\alpha$ are formulas as well. The formulas from $For_{\mathcal{L}_{lu}}$ will be denoted by α, β, \ldots

We use the following abbreviations to introduce other types of inequalities:

- $U^{a}_{\leq s}\alpha$ is $\neg U^{a}_{\geq s}\alpha$, $U^{a}_{\leq s}\alpha$ is $L^{a}_{\geq 1-s}\neg \alpha$, $U^{a}_{=s}\alpha$ is $U^{a}_{\leq s}\alpha \wedge U^{a}_{\geq s}\alpha$, $U^{a}_{>s}\alpha$ is $\neg U^{a}_{\leq s}\alpha$,
- $L^a_{\leq s}\alpha$ is $\neg L^a_{\geq s}\alpha$, $L^a_{\leq s}\alpha$ is $U^a_{\geq 1-s}\neg \alpha$, $L^a_{=s}\alpha$ is $L^a_{\leq s}\alpha \wedge L^a_{\geq s}\alpha$, $L^a_{>s}\alpha$ is $\neg L^a_{\leq s}\alpha$.

Definition (\mathcal{L}_{lu} -structure)

An \mathcal{L}_{Iu} -structure is a tuple $\mathcal{M} = \langle W, D, I, LUP \rangle$, where:

- W is a nonempty set of worlds,
- D associates a non-empty domain D(w) with every world $w \in W$,
- I associates an interpretation I(w) with every world w ∈ W such that:
 - $I(w)(F_i^k): D(w)^k \to D(w)$, for all i and k,
 - $I(w)(P_i^k) \subseteq D(w)^k$, for all *i* and *k*,
- *LUP* assigns, to every $w \in W$ and every agent $a \in \Sigma$, a space, such that $LUP(a, w) = \langle W(a, w), H(a, w), P(a, w) \rangle$, where:
 - $\emptyset \neq W(a, w) \subseteq W$,
 - H(a, w) is an algebra of subsets of W(a, w), i.e. a set of subsets of W(a, w) such that:
 - $W(a, w) \in H(a, w)$,
 - if $A, B \in H(a, w)$, then $W(a, w) \setminus A \in H(a, w)$ and $A \cup B \in H(a, w)$,
 - *P*(*a*, *w*) is a set of finitely additive probability measures defined on *H*(*a*, *w*)

ELE SOC

- 4 同 6 4 日 6 4 日 6

The truth value of a formula α in a world $w \in W$:

- if $\alpha = P_i^m(t_1, \ldots, t_m)$, then $I(w)(\alpha)_v = true$ if $\langle I(w)(t_1)_v, \ldots, I(w)(t_m)_v \rangle \in I(w)(P_i^m)$, otherwise $I(w)(\alpha)_v = false$,
- if $\alpha = \neg \beta$, then $I(w)(\alpha)_v = true$ if $I(w)(\beta)_v = false$, otherwise $I(w)(\alpha)_v = false$,
- if $\alpha = \beta \land \gamma$, then $I(w)(\alpha)_v = true$ if $I(w)(\beta)_v = true$ and $I(w)(\gamma)_v = true$,
- if $\alpha = U_{\geq s}^{a}\beta$, then $I(w)(\alpha)_{v} = true$ if $P^{\star}(w, a) \{ u \in W(w, a) \mid I(u)(\beta)_{v} = true \} \geq s$, otherwise $I(w)(\alpha)_{v} = false$,
- if $\alpha = L^{a}_{\geq s}\beta$, then $I(w)(\alpha)_{\upsilon} = true$ if $P_{\star}(w, a) \{ u \in W(w, a) \mid I(u)(\beta)_{\upsilon} = true \} \geq s$, otherwise $I(w)(\alpha)_{\upsilon} = false$,
- if $\alpha = (\forall x)\beta$, then $I(w)(\alpha)_{\upsilon} = true$ if for every $d \in D(w)$, $I(w)(\beta)_{\upsilon_w[d/x]} = true$, otherwise $I(w)(\alpha)_{\upsilon} = false$.

We will consider a class of \mathcal{L}_{lu} models that satisfy:

- all the worlds from a model have the same domain, i.e., for all v, w ∈ W, D(v) = D(w),
- for every sentence α, for every agent a ∈ Σ and every world w from a model M, the set {u ∈ W(w, a) | I(u)(α)_v = true} of all worlds from W(w, a) that satisfy α is measurable,
- the terms are rigid, i.e., for every model their meanings are the same in all the worlds.

Previous work on this topic

- Halpern and Pucella's Paper
- Our previous work

2 The Logic \mathcal{L}_{lu}

- Syntax and Semantics
- Axiomatization and Strong Completeness

Axiom schemes

- (1) all instances of the classical propositional tautologies
- (2) $(\forall x)(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow (\forall x)\beta)$, where the variable x does not occur free in α
- (3) (∀x)α(x) → α(t), where α(t) is obtained by substitution of all free occurrences of x in the first-order formula α(x) by the term t which is free for x in α(x)

(4)
$$U_{\leq 1}^{a} \alpha \wedge L_{\leq 1}^{a} \alpha$$

(5) $U_{\leq r}^{a} \alpha \rightarrow U_{, $s > r$
(6) $U_{
(7) $(U_{\leq r_{1}}^{a} \alpha_{1} \wedge \dots \wedge U_{\leq r_{m}}^{a} \alpha_{m}) \rightarrow U_{\leq r}^{a} \alpha$, if
 $\alpha \rightarrow \bigvee_{J \subseteq \{1,\dots,m\}, |J| = k+n} \bigwedge_{j \in J} \alpha_{j} \text{ and } \bigvee_{J \subseteq \{1,\dots,m\}, |J| = k} \bigwedge_{j \in J} \alpha_{j} \text{ are tautologies, where } r = \frac{\sum_{i=1}^{m} r_{i} - k}{n}, n \neq 0$
(8) $\neg (U_{\leq r_{1}}^{a} \alpha_{1} \wedge \dots \wedge U_{\leq r_{m}}^{a} \alpha_{m}), \text{ if } \bigvee_{J \subseteq \{1,\dots,m\}, |J| = k} \bigwedge_{j \in J} \alpha_{j} \text{ is a tautology and } \sum_{i=1}^{m} r_{i} < k$
(9) $L_{=1}^{a} (\alpha \rightarrow \beta) \rightarrow (U_{\geq s}^{a} \alpha \rightarrow U_{\geq s}^{a} \beta)$$$

Inference Rules

- (1) From α and $\alpha \rightarrow \beta$ infer β
- (2) From α infer $(\forall x)\alpha$
- (3) From α infer $L^{a}_{>1}\alpha$
- (4) From the set of premises

$$\{\alpha \to U^{\mathsf{a}}_{\geq \mathsf{s}-\frac{1}{k}}\beta \mid k \geq \frac{1}{\mathsf{s}}\}$$

infer $\alpha \to U^{a}_{\geq s}\beta$ (5) From the set of premises

$$\{\alpha \to L^{\mathbf{a}}_{\geq \mathbf{s} - \frac{1}{k}}\beta \mid k \geq \frac{1}{s}\}$$

 $\text{infer } \alpha \to \textit{L}^{\textit{a}}_{\geq \textit{s}}\beta.$

Lugano, July 2017 25 / 28

-

Definition (Canonical model)

A canonical model $\mathcal{M}_{Can} = \langle W, D, I, LUP \rangle$ is a tuple such that:

- W is the set of all saturated sets of formulas,
- D is the set of all variable-free terms,
- for every $w \in W$, I(w) is an interpretation such that:
 - for every function symbol F^m_i, I(w)(F^m_i): D^m → D such that for all variable-free terms t₁,..., t_m, I(w)(F^m_i): ⟨t₁,..., t_m⟩ ↦ F^m_i(t₁,..., t_m),
 for every relation symbol P^m_i, I(w)(P^m_i) = {⟨t₁,..., t_m⟩ | P^m_i(t₁,..., t_m) ∈ w}, for all variable-free

terms
$$t_1, \ldots, t_m$$

Set of formulas T is *saturated* if it is maximally consistent and satisfies: if $\neg(\forall x)\alpha(x) \in T$, then for some term t, $\neg\alpha(t) \in T$.

Set of formulas T is *saturated* if it is maximally consistent and satisfies: if $\neg(\forall x)\alpha(x) \in T$, then for some term t, $\neg\alpha(t) \in T$.

Theorem (Lindenbaum's theorem)

Every consistent set of formulas can be extended to a saturated set.

Set of formulas T is *saturated* if it is maximally consistent and satisfies: if $\neg(\forall x)\alpha(x) \in T$, then for some term t, $\neg\alpha(t) \in T$.

Theorem (Lindenbaum's theorem)

Every consistent set of formulas can be extended to a saturated set.

Theorem (Strong completeness)

Every consistent set of formulas T is satisfiable.

- Anger, B., Lembcke, J.: Infnitely subadditive capacities as upper envelopes of measures. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, 68: 403–414. (1985)
- Halpern, J. Y., Pucella, R.: A Logic for Reasoning about Upper Probabilities. Journal of Artificial Intelligence Research, 17: 57–81 (2002)
- Savić, N., Doder, D., Ognjanović, Z.: A logic with Upper and Lower Probability Operators. In Proceedings of the 9th International Symposium on Imprecise Probability: Theories and Applications, 267–276, Pescara, Italy (2015)

ELE NOR