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Example: Choosing the right medication

A patient P1 has symptoms possibly caused by one of the chronic diseases D1
or D2. There are two different types of medication, M1 and M2, available.

For another patient P2 suffering from the same symptoms there are instead
medications M∗1 and M∗2 available.

The situations are described in the following tables:

D1 D2

M1 death cure
M2 abatement 30% ab. 20%

D1 D2

M∗1 ab. 10% cure
M∗2 ab. 30% ab. 20%

Approaching the situation intuitively:

Left: Choosing "Maximin-medication" M2 seems to be reasonable.

Right: Choosing "Maximin-medication" M∗2 might seem counter-intuitive (or
at least less obvious).
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Setting the stage

In order to formally capture the difference in the two situations discussed in the
beginning, we start by defining the following concept:

Definition: Preference System
Let A be a non-empty set and let R1 ⊂ A×A denote a preorder (i.e. reflexive and
transitive) on A. Moreover, let R2 ⊂ R1 × R1 denote a preorder on R1. Then the
triplet A = [A,R1,R2] is called a preference system on A.

Interpretation: For elements a, b, c , d ∈ A

(a, b) ∈ R1 means alternative a is weakly preferred to alternative b.

((a, b), (c , d)) ∈ R2 means that exchanging alternative b by alternative a is
weakly preferred to exchanging alternative d by alternative c .
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Example, continued
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Example, continued

Metarelation R2 contains edge
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Setting the stage, continued

For what follows, we restrict our analysis on preference systems satisfying a certain
property of consistency (implying compatibility of R1 and R2). Precisely, we have

Definition: Consistency
A preference system A is consistent if there exists a function u : A→ [0, 1] such
that for all a, b, c , d ∈ A the following two properties hold:

i) If (a, b) ∈ R1, then u(a) ≥ u(b) with equality iff (a, b) ∈ IR1 .

ii) If ((a, b), (c , d)) ∈ R2, then u(a)− u(b) ≥ u(c)− u(d) with equality iff
((a, b), (c , d)) ∈ IR2 .

Every such function u is then said to (weakly) represent the preference system
A. The set of all (weak) representations u of A is denoted by UA.
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Checking consistency via linear programming

Proposition: Checking consistency
Let A = [A,R1,R2] be a preference system, where A = {a1, . . . , an} is a finite and
non-empty set. Consider the linear optimization problem

ε = 〈(0, . . . , 0, 1)′ , (u1, . . . , un, ε)
′〉 −→ max

(u1,...,un,ε)∈Rn+1
(1)

with constraints 0 ≤ (u1, . . . , un, ε) ≤ 1 and

i) up = uq for all (ap, aq) ∈ IR1 \ diag(A)

ii) uq + ε ≤ up for all (ap, aq) ∈ PR1

iii) up − uq = ur − us for all ((ap, aq), (ar , as)) ∈ IR2 \ diag(R1)

iv) ur − us + ε ≤ up − uq for all ((ap, aq), (ar , as)) ∈ PR2

Then A is consistent if and only if the optimal outcome of (1) is strictly positive.
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Decision making with ps-valued acts: Basic setting

We now turn to decision theory under complex uncertainty with acts taking values
in a preference system (ps). First, we need some additional notation:

(S , σ(S)): set of states equipped with suitable σ-field

M: credal set of all probability measures on (S , σ(S)) compatible with the
available (partial) probabilistic information

For a given consistent preference system A, we call every mapping X : S → A a
ps-valued act. Moreover, we define F(A,M,S) ⊂ AS := {f |f : S → A} by setting

F(A,M,S) :=
{
X ∈ AS : u ◦ X is σ(S)-BR-measurable for all u ∈ UA

}

Given this notation, we can now define our main object of study:

Definition: Decision System
A subset G ⊂ F(A,M,S) is called decision system (with information base (A,M)).
Moreover, call G finite, if both |G| <∞ and |S | <∞.
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Example, continued

Consider again the scenario for patient 2:

D1 D2

M∗1 a1 := ab. 10% a2 := cure
M∗2 a3 := ab. 30% a4 := ab. 20%

Moreover, suppose we have the information that disease D2 is more likely than
disease D1, i.e. probabilistic information is described by the credal set

M =
{
π ∈ P({D1,D2})| π({D1}) ≤ π({D2})

}

Finally, the preference system A = [{a1, a2, a3, a4},R1,R2] where

R1 induced by a2PR1a3PR1a4PR1a1

PR2 = {((a2, a4), (a3, a1))} consists of one single edge

Then G = {M∗1 ,M∗2 } defines a decision system with information base (A,M).
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How to utilize the information base?

Given a decision system G, our goal is to choose a subset Gopt ⊂ G of ’optimal’
acts in a way best possibly utilizing the available information specified by (A,M).

In the following, we discuss three different approaches:

Numerical representations: Assign a real number, based on a generalized ex-
pected value, to each act and choose those acts with the highest values.

Global comparisons: E.g., choose an act X if there exists (global) (u, π) com-
patible with (A,M) with respect to which X dominates all other acts in
expectation.

Pairwise comparisons: E.g., choose an act X if, for all other acts Y , there
exists (uY , πY ) compatible with (A,M) with respect to X dominates Y in
expectation.
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Approach 2: Criteria based on Global Comparisons

We now turn to the first of two approaches not needing the specification of the
granularity parameter δ.

Approach 2: Decision criteria
Let G ⊂ F(A,M,S) denote a decision system. We call an act X ∈ G

i) A|M−admissible :iff

∃u ∈ UA ∃π ∈M ∀Y ∈ G : Eπ(u ◦ X ) ≥ Eπ(u ◦ Y )

ii) A−admissible :iff

∃u ∈ UA ∀π ∈M ∀Y ∈ G : Eπ(u ◦ X ) ≥ Eπ(u ◦ Y )

iii) M−admissible :iff

∃π ∈M ∀u ∈ UA ∀Y ∈ G : Eπ(u ◦ X ) ≥ Eπ(u ◦ Y )

iv) A|M−dominant :iff

∀u ∈ UA ∀π ∈M ∀Y ∈ G : Eπ(u ◦ X ) ≥ Eπ(u ◦ Y )
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Example, continued
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Approach 3: Criteria based on Pairwise Comparisons

Finally, we consider a local approach. We define six binary relations
R∃∃,R

1
∃∀,R

2
∃∀,R

1
∀∃, R

2
∀∃ and R∀∀ on F(A,M,S) by setting for all X ,Y ∈ F(A,M,S):

(X ,Y ) ∈ R∃∃ :⇔ ∃u ∈ UA ∃π ∈M : Eπ(u ◦ X ) ≥ Eπ(u ◦ Y )

(X ,Y ) ∈ R1
∃∀ :⇔ ∃u ∈ UA ∀π ∈M : Eπ(u ◦ X ) ≥ Eπ(u ◦ Y )

(X ,Y ) ∈ R2
∃∀ :⇔ ∃π ∈M ∀u ∈ UA : Eπ(u ◦ X ) ≥ Eπ(u ◦ Y )

(X ,Y ) ∈ R1
∀∃ :⇔ ∀u ∈ UA ∃π ∈M : Eπ(u ◦ X ) ≥ Eπ(u ◦ Y )

(X ,Y ) ∈ R2
∀∃ :⇔ ∀π ∈M ∃u ∈ UA : Eπ(u ◦ X ) ≥ Eπ(u ◦ Y )

(X ,Y ) ∈ R∀∀ :⇔ ∀π ∈M ∀u ∈ UA : Eπ(u ◦ X ) ≥ Eπ(u ◦ Y )

Definition: Local admissibility
Let R ∈ {R∃∃,R1

∃∀,R
2
∃∀,R

1
∀∃, R

2
∀∃,R∀∀} =: Rp. We call X ∈ G locally admissible

w.r.t. R, if it is an element of maxR(G) := {Y ∈ G : @Z ∈ G s.t. (Z ,Y ) ∈ PR}.
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Approach 3: Some special cases

We now discuss some special cases of the relations just defined:
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We now discuss some special cases of the relations just defined:

probabilistic
information

comparability
of alternatives

comparability
of exchanges

full

full

full

no

b
SEUT

St
oc
ha
st
ic
do
m
in
an
ce

(fi
rs
t
or
de
r)

imprecise
decision
criteria

Hurwicz

Maximin

b

b b

M = {π} is a singleton: The
relations containing . . . ∀u ∈
UA . . . reduce to

first order stochastic do-
minance if R2 = ∅.
SEUT if R1 and R2 are
complete and ’compati-
ble’.

second order SD if R1 is
complete and R2 appro-
priately models decreasing
returns to scale.
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Summary

Introduced preference systems as tools for modeling partially ordinal and par-
tially cardinal preference structures

Proposed three approaches for decision making with ps-valued acts:

i) Numerical representations based on generalized expectation intervals

ii) Criteria induced by pairwise comparisons of acts

iii) Criteria induced by global (simultaneous) comparisons of acts

provided linear programming based algorithms for checking optimality of acts
with respect to the proposed criteria
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