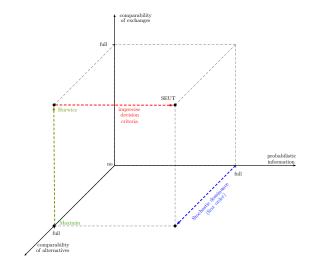
Concepts for decision making under severe uncertainty with partial ordinal and partial cardinal preferences

Christoph Jansen Georg Schollmeyer Thomas Augustin

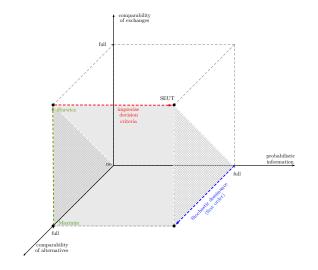
Department of Statistics, LMU Munich

ISIPTA 2017

Motivation



Motivation



Example: Choosing the right medication

- A patient P₁ has symptoms possibly caused by one of the chronic diseases D₁ or D₂. There are two different types of medication, M₁ and M₂, available.
- For another patient P₂ suffering from the same symptoms there are instead medications M₁^{*} and M₂^{*} available.

The situations are described in the following tables:

	<i>D</i> ₁	<i>D</i> ₂		D_1	<i>D</i> ₂
M_1 M_2	death abatement 30%	cure ab. 20%	-	ab. 10% ab. 30%	

Approaching the situation intuitively:

- Left: Choosing "Maximin-medication" M₂ seems to be reasonable.
- Right: Choosing "Maximin-medication" M₂^{*} might seem counter-intuitive (or at least less obvious).

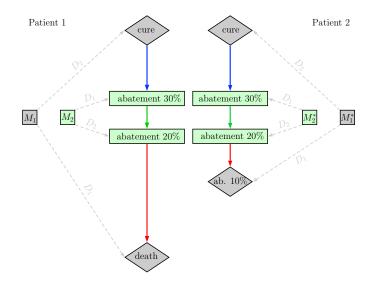
In order to formally capture the difference in the two situations discussed in the beginning, we start by defining the following concept:

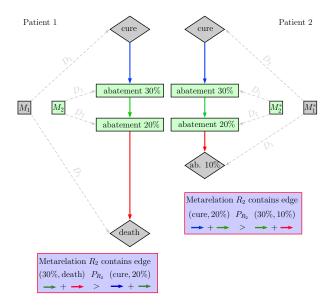
Definition: Preference System

Let A be a non-empty set and let $R_1 \subset A \times A$ denote a preorder (i.e. reflexive and transitive) on A. Moreover, let $R_2 \subset R_1 \times R_1$ denote a preorder on R_1 . Then the triplet $\mathcal{A} = [A, R_1, R_2]$ is called a **preference system** on A.

Interpretation: For elements $a, b, c, d \in A$

- $(a, b) \in R_1$ means alternative *a* is weakly preferred to alternative *b*.
- ((a, b), (c, d)) ∈ R₂ means that exchanging alternative b by alternative a is weakly preferred to exchanging alternative d by alternative c.





For what follows, we restrict our analysis on preference systems satisfying a certain property of consistency (implying compatibility of R_1 and R_2). Precisely, we have

Definition: Consistency

A preference system A is **consistent** if there exists a function $u : A \to [0, 1]$ such that for all $a, b, c, d \in A$ the following two properties hold:

- i) If $(a, b) \in R_1$, then $u(a) \ge u(b)$ with equality iff $(a, b) \in I_{R_1}$.
- ii) If $((a, b), (c, d)) \in R_2$, then $u(a) u(b) \ge u(c) u(d)$ with equality iff $((a, b), (c, d)) \in I_{R_2}$.

Every such function u is then said to **(weakly) represent** the preference system \mathcal{A} . The set of all (weak) representations u of \mathcal{A} is denoted by $\mathcal{U}_{\mathcal{A}}$.

Checking consistency via linear programming

Proposition: Checking consistency

Let $\mathcal{A} = [A, R_1, R_2]$ be a preference system, where $A = \{a_1, \ldots, a_n\}$ is a finite and non-empty set. Consider the linear optimization problem

$$\varepsilon = \langle (0, \dots, 0, 1)', (u_1, \dots, u_n, \varepsilon)' \rangle \longrightarrow \max_{(u_1, \dots, u_n, \varepsilon) \in \mathbb{R}^{n+1}}$$
(1)

with constraints $0 \leq (u_1, \ldots, u_n, \varepsilon) \leq 1$ and

i)
$$u_p = u_q$$
 for all $(a_p, a_q) \in I_{R_1} \setminus \text{diag}(A)$
ii) $u_q + \varepsilon \le u_p$ for all $(a_p, a_q) \in P_{R_1}$

iii)
$$u_p - u_q = u_r - u_s$$
 for all $((a_p, a_q), (a_r, a_s)) \in I_{R_2} \setminus \text{diag}(R_1)$

iv)
$$u_r - u_s + \varepsilon \leq u_p - u_q$$
 for all $((a_p, a_q), (a_r, a_s)) \in P_{R_2}$

Then A is consistent if and only if the optimal outcome of (1) is strictly positive.

Decision making with ps-valued acts: Basic setting

We now turn to decision theory under complex uncertainty with acts taking values in a preference system (ps). First, we need some additional notation:

- $(S, \sigma(S))$: set of states equipped with suitable σ -field
- M: credal set of all probability measures on (S, σ(S)) compatible with the available (partial) probabilistic information

For a given consistent preference system A, we call every mapping $X : S \to A$ a ps-valued act. Moreover, we define $\mathcal{F}_{(\mathcal{A},\mathcal{M},S)} \subset A^S := \{f | f : S \to A\}$ by setting

$$\mathcal{F}_{(\mathcal{A},\mathcal{M},S)}:=\Bigl\{X\in\mathcal{A}^S:u\circ X ext{ is }\sigma(S) ext{-}\mathcal{B}_{\mathbb{R}} ext{-} ext{measurable for all }u\in\mathcal{U}_{\mathcal{A}}\Bigr\}$$

Given this notation, we can now define our main object of study:

Definition: Decision System

A subset $\mathcal{G} \subset \mathcal{F}_{(\mathcal{A},\mathcal{M},S)}$ is called **decision system** (with information base $(\mathcal{A},\mathcal{M})$). Moreover, call \mathcal{G} finite, if both $|\mathcal{G}| < \infty$ and $|S| < \infty$.

Consider again the scenario for patient 2:

$$\begin{array}{cccc} D_1 & D_2 \\ \hline M_1^* & a_1 := \text{ab. } 10\% & a_2 := \text{cure} \\ M_2^* & a_3 := \text{ab. } 30\% & a_4 := \text{ab. } 20\% \end{array}$$

Moreover, suppose we have the information that disease D_2 is more likely than disease D_1 , i.e. probabilistic information is described by the credal set

$$\mathcal{M} = \Big\{ \pi \in \mathcal{P}(\{D_1, D_2\}) | \ \pi(\{D_1\}) \le \pi(\{D_2\}) \Big\}$$

Finally, the preference system $\mathcal{A} = [\{a_1, a_2, a_3, a_4\}, R_1, R_2]$ where

- R_1 induced by $a_2 P_{R_1} a_3 P_{R_1} a_4 P_{R_1} a_1$
- $P_{R_2} = \{((a_2, a_4), (a_3, a_1))\}$ consists of one single edge

Then $\mathcal{G} = \{M_1^*, M_2^*\}$ defines a decision system with information base $(\mathcal{A}, \mathcal{M})$.

How to utilize the information base?

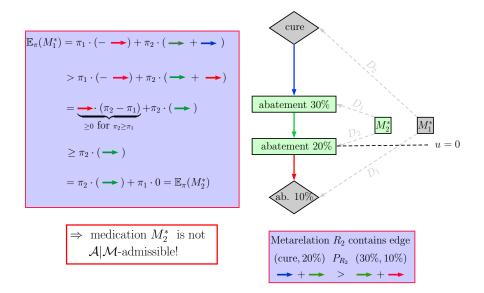
Given a decision system \mathcal{G} , our goal is to choose a subset $\mathcal{G}_{opt} \subset \mathcal{G}$ of 'optimal' acts in a way best possibly utilizing the available information specified by $(\mathcal{A}, \mathcal{M})$. In the following, we discuss three different approaches:

- Numerical representations: Assign a real number, based on a generalized expected value, to each act and choose those acts with the highest values.
- Global comparisons: E.g., choose an act X if there exists (global) (u, π) compatible with $(\mathcal{A}, \mathcal{M})$ with respect to which X dominates *all* other acts in expectation.
- Pairwise comparisons: E.g., choose an act X if, for all other acts Y, there exists (u_Y, π_Y) compatible with $(\mathcal{A}, \mathcal{M})$ with respect to X dominates Y in expectation.

Approach 2: Criteria based on Global Comparisons

We now turn to the first of two approaches not needing the specification of the granularity parameter $\delta.$

Approach 2: Decision criteria Let $\mathcal{G} \subset \mathcal{F}_{(\mathcal{A},\mathcal{M},S)}$ denote a decision system. We call an act $X \in \mathcal{G}$ i) $\mathcal{A}|\mathcal{M}-admissible$:iff $\exists u \in \mathcal{U}_{\mathcal{A}} \ \exists \pi \in \mathcal{M} \ \forall Y \in \mathcal{G} : \ \mathbb{E}_{\pi}(u \circ X) \geq \mathbb{E}_{\pi}(u \circ Y)$ ii) A-admissible :iff $\exists u \in \mathcal{U}_{\mathcal{A}} \ \forall \pi \in \mathcal{M} \ \forall Y \in \mathcal{G} : \ \mathbb{E}_{\pi}(u \circ X) \geq \mathbb{E}_{\pi}(u \circ Y)$ iii) \mathcal{M} -admissible :iff $\exists \pi \in \mathcal{M} \ \forall u \in \mathcal{U}_A \ \forall Y \in \mathcal{G} : \ \mathbb{E}_{\pi}(u \circ X) > \mathbb{E}_{\pi}(u \circ Y)$ iv) $\mathcal{A}|\mathcal{M}$ -dominant :iff $\forall u \in \mathcal{U}_{\mathcal{A}} \ \forall \pi \in \mathcal{M} \ \forall Y \in \mathcal{G} : \mathbb{E}_{\pi}(u \circ X) > \mathbb{E}_{\pi}(u \circ Y)$



Approach 3: Criteria based on Pairwise Comparisons

Finally, we consider a local approach. We define six binary relations $R_{\exists\exists}, R_{\exists\forall}^1, R_{\exists\forall}^2, R_{\forall\exists}^1, R_{\forall\exists}^2$ and $R_{\forall\forall}$ on $\mathcal{F}_{(\mathcal{A},\mathcal{M},S)}$ by setting for all $X, Y \in \mathcal{F}_{(\mathcal{A},\mathcal{M},S)}$:

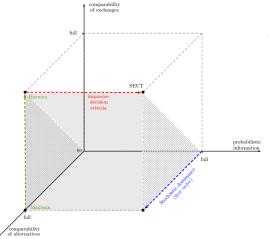
$$\begin{array}{ll} (X,Y) \in R_{\exists\exists} & :\Leftrightarrow & \exists u \in \mathcal{U}_{\mathcal{A}} \; \exists \pi \in \mathcal{M} : \mathbb{E}_{\pi}(u \circ X) \geq \mathbb{E}_{\pi}(u \circ Y) \\ (X,Y) \in R_{\exists\forall}^{1} & :\Leftrightarrow & \exists u \in \mathcal{U}_{\mathcal{A}} \; \forall \pi \in \mathcal{M} : \mathbb{E}_{\pi}(u \circ X) \geq \mathbb{E}_{\pi}(u \circ Y) \\ (X,Y) \in R_{\exists\forall}^{2} & :\Leftrightarrow & \exists \pi \in \mathcal{M} \; \forall u \in \mathcal{U}_{\mathcal{A}} : \mathbb{E}_{\pi}(u \circ X) \geq \mathbb{E}_{\pi}(u \circ Y) \\ (X,Y) \in R_{\forall\exists}^{1} & :\Leftrightarrow & \forall u \in \mathcal{U}_{\mathcal{A}} \; \exists \pi \in \mathcal{M} : \mathbb{E}_{\pi}(u \circ X) \geq \mathbb{E}_{\pi}(u \circ Y) \\ (X,Y) \in R_{\forall\exists}^{2} & :\Leftrightarrow & \forall \pi \in \mathcal{M} \; \exists u \in \mathcal{U}_{\mathcal{A}} : \mathbb{E}_{\pi}(u \circ X) \geq \mathbb{E}_{\pi}(u \circ Y) \\ (X,Y) \in R_{\forall\exists}^{2} & :\Leftrightarrow & \forall \pi \in \mathcal{M} \; \exists u \in \mathcal{U}_{\mathcal{A}} : \mathbb{E}_{\pi}(u \circ X) \geq \mathbb{E}_{\pi}(u \circ Y) \\ (X,Y) \in R_{\forall\forall} & :\Leftrightarrow & \forall \pi \in \mathcal{M} \; \forall u \in \mathcal{U}_{\mathcal{A}} : \mathbb{E}_{\pi}(u \circ X) \geq \mathbb{E}_{\pi}(u \circ Y) \end{array}$$

Definition: Local admissibility

Let $R \in \{R_{\exists\exists}, R_{\exists\forall}^1, R_{\exists\forall}^2, R_{\forall\exists}^1, R_{\forall\exists}^2, R_{\forall\forall}\} =: \mathcal{R}_p$. We call $X \in \mathcal{G}$ locally admissible w.r.t. R, if it is an element of $\max_R(\mathcal{G}) := \{Y \in \mathcal{G} : \nexists Z \in \mathcal{G} \text{ s.t. } (Z, Y) \in P_R\}$.

Approach 3: Some special cases

We now discuss some special cases of the relations just defined:

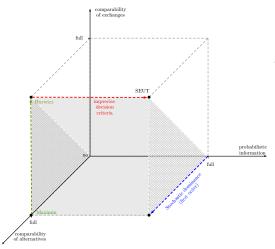


 $\mathcal{U}_{\mathcal{A}}$ is a class of plts: The *R*-locally admissible acts w.r.t. relations $R \in \mathcal{R}_p$ containing

- ...∃π ∈ M... coincide with the acts that are optimal in the sense of Walley's maximality.
- $\ldots \forall \pi \in \mathcal{M} \dots$ coincide with the acts that are optimal in the sense of Bewley's dominance.

Approach 3: Some special cases

We now discuss some special cases of the relations just defined:



 $\mathcal{M} = \{\pi\}$ is a singleton: The relations containing $\ldots \forall u \in \mathcal{U}_{\mathcal{A}} \ldots$ reduce to

- first order stochastic dominance if R₂ = Ø.
- SEUT if R_1 and R_2 are complete and 'compatible'.
- second order SD if R_1 is complete and R_2 appropriately models decreasing returns to scale.

- Introduced preference systems as tools for modeling partially ordinal and partially cardinal preference structures
- Proposed three approaches for decision making with ps-valued acts:
 - i) Numerical representations based on generalized expectation intervals
 - ii) Criteria induced by pairwise comparisons of acts
 - iii) Criteria induced by global (simultaneous) comparisons of acts
- provided linear programming based algorithms for checking optimality of acts with respect to the proposed criteria