Error Bounds for Finite Approximations of Coherent Lower Previsions

Damjan Škulj

University of Ljubljana

ISIPTA '17, Lugano 12 July 2017

・ロト ・御ト ・モト ・モト

æ

Approximation of lower previsions

- Coherent lower previsions
- Partially specified coherent lower prevision
- Mathematical formulation of the problem

The bounds on the distance

• Maximal bound between the natural and another coherent extension

University of Ljubljana

2 / 28

ISIPTA '17

- Normal cones
- Normed distance between extreme points

Approximation of lower previsions

- Coherent lower previsions
- Partially specified coherent lower prevision
- Mathematical formulation of the problem

The bounds on the distance

• Maximal bound between the natural and another coherent extension

University of Ljubljana

3 / 28

ISIPTA '17

- Normal cones
- Normed distance between extreme points

Damjan Škulj (University of Ljubljana) Error

Finite (imprecise) probability spaces

We study models with the following elements:

- sample space \mathcal{X} : a finite set with elements $x \in \mathcal{X}$;
- gamble: any map $f: \mathcal{X} \to \mathbb{R}$ or a vector in $\mathbb{R}^{\mathcal{X}}$;
- an arbitrary set of gambles \mathcal{K} ;
- (precise) probability vector $p \in \mathbb{R}^{\mathcal{X}}$ satisfying $p(x) \ge 0 \forall x \in \mathcal{X}$ and $\sum_{x \in \mathcal{X}} p(x) = 1$;
- linear prevision (expectation functional) $P: \mathcal{K} \to \mathbb{R}$ of the form $P(f) = \sum_{x \in \mathcal{X}} p(x)f(x) = p \cdot f$ where p is a precise probability vector;
- coherent lower prevision $\underline{P} \colon \mathcal{K} \to \mathbb{R}$ is a lower envelope of linear previsions.

ISIPTA '17

4 / 28

Coherent lower previsions and lower expectation functionals

A coherent lower prevision $\underline{P} \colon \mathcal{K} \to \mathbb{R}$ can be expressed as a lower envelope of linear previsions

$$\underline{P}(f) = \min_{P \in \mathcal{M}(\underline{P})} P(f),$$

where $\mathcal{M}(\underline{P})$ is the credal set of \underline{P} :

$$\mathcal{M}(\underline{P}) = \{ P \colon P(f) \geq \underline{P}(f) \forall f \in \mathcal{K} \}.$$

A coherent lower prevision can be extended to a lower expectation functional $\underline{E} \colon \mathbb{R}^{\mathcal{X}} \to \mathbb{R}$, which is a coherent lower prevision defined everywhere in $\mathbb{R}^{\mathcal{X}}$.

The minimal coherent extension is called the natural extension.

Lower expectation functionals therefore form a family of coherent lower previsions.

Approximation of lower previsions

Coherent lower previsions

• Partially specified coherent lower prevision

Mathematical formulation of the problem

The bounds on the distance

• Maximal bound between the natural and another coherent extension

University of Ljubljana

6 / 28

ISIPTA '17

- Normal cones
- Normed distance between extreme points

Damjan Škulj (University of Ljubljana)

Partially specified coherent lower prevision

- Let \underline{P} be a coherent lower prevision on a set of gambles \mathcal{H} (often $\mathcal{H} = \mathbb{R}^{\mathcal{X}}$).
- But we only know the values of $\underline{P}(f) \ \forall f \in \mathcal{K} \subset \mathcal{H}$.
- What can we say about $\underline{P}(h)$ for $h \in \mathcal{H} \mathcal{K}$?
- The natural extension of $\underline{P}|_{\mathcal{K}}$ is often our best guess.

Problem

What is the maximal possible error that we make by taking the natural extension (or any other extension) instead of the true value $\underline{P}(h)$?

Reformulation of the problem

Reformulation 1

What is the maximal possible distance between two coherent extensions of $\underline{P}|_{\mathcal{K}}$ to $\mathcal{H} \supset \mathcal{K}$?

Reformulation 2

What is the maximal possible distance between two coherent lower previsions on \mathcal{H} which coincide on $\mathcal{K} \subseteq \mathcal{H}$?

Special case

What is the maximal distance between the natural extension and any other coherent extension of a coherent lower prevision \underline{P} on \mathcal{K} ?

Common examples

Imprecise probability models are often approximated by:

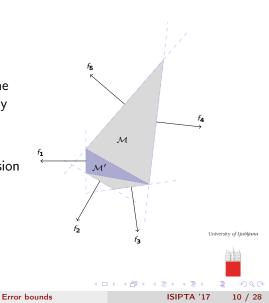
coherent lower probabilities (interval probabilities) L(A) is the lower probability of an event A; i.e. $\mathcal{K} = \{1_A : A \subseteq \mathcal{X}\};$

probability intervals intervals are given for the probabilities of atomic events [I(x), u(x)]; $\mathcal{K} = \{1_{\{x\}} : x \in \mathcal{X}\} \cup \{1_{\mathcal{X}-\{x\}} : x \in \mathcal{X}\};$

The above models are often considered as good approximations of the completely specified coherent lower previsions.

Graphical illustration

- Lower previsions \underline{P} and \underline{P}' with the credal sets \mathcal{M} and \mathcal{M}' respectively coincide on the set of gambles $\mathcal{K} = \{f_1, \dots, f_5\}.$
- (Note that \underline{P} is the natural extension of $\underline{P}|_{\mathcal{K}}$.)



Approximation of lower previsions

- Coherent lower previsions
- Partially specified coherent lower prevision
- Mathematical formulation of the problem

The bounds on the distance

• Maximal bound between the natural and another coherent extension

University of Ljubljana

11 / 28

ISIPTA '17

- Normal cones
- Normed distance between extreme points

Mathematical formulation

Let \underline{P} be a coherent lower prevision specified on a finite set of gambles \mathcal{K} .

- Let \underline{P}_1 and \underline{P}_2 be two extensions to $\mathbb{R}^{\mathcal{X}}$.
- The distance between \underline{P}_1 and \underline{P}_2 is defined as

$$d(\underline{P}_1,\underline{P}_2) = \max_{h \in \mathbb{R}^{\mathcal{X}}} \frac{|\underline{P}_1(h) - \underline{P}_2(h)|}{\|h\|},$$

where $\|\cdot\|$ denotes the Euclidean norm.

The maximal distance to the natural extension

The following result simplifies the problem.

Theorem

Let

- <u>P</u> be a coherent lower prevision specified on a finite set of gambles K;
- <u>E</u> its natural extension;
- \underline{P}_1 and \underline{P}_2 another two extensions to $\mathbb{R}^{\mathcal{X}}$.

Then

$$d(\underline{P}_1,\underline{P}_2) \leq max(d(\underline{P}_1,\underline{E}),d(\underline{P}_2,\underline{E}))$$

We thus try to find an upper bound for the rhs over all coherent extensions \underline{P}_1 .

ISIPTA '17

13 / 28

Approximation of lower previsions

- Coherent lower previsions
- Partially specified coherent lower prevision
- Mathematical formulation of the problem

The bounds on the distance

- Maximal bound between the natural and another coherent extension
- Normal cones
- Normed distance between extreme points

University of Ljubljand

15 / 28

ISIPTA '17

Contents

Approximation of lower previsions

- Coherent lower previsions
- Partially specified coherent lower prevision
- Mathematical formulation of the problem

The bounds on the distance

- Maximal bound between the natural and another coherent extension
- Normal cones
- Normed distance between extreme points

Damjan Škulj (University of Ljubljana) Error bounds

Bounding the distance

Recall that extrema w.r.t. credal sets are found in extreme points. Therefore:

$$d(\underline{P},\underline{E}) = \max_{h \in \mathbb{R}^{\mathcal{X}}} \frac{\underline{P}(h) - \underline{E}(h)}{\|h\|}$$
$$= \max_{h \in \mathbb{R}^{\mathcal{X}}} \max_{E \in \text{ext}\mathcal{M}(\underline{E})} \min_{P \in \text{ext}\mathcal{M}(\underline{P})} \frac{\underline{P}(h) - E(h)}{\|h\|},$$

where $\operatorname{ext}\nolimits\cdot$ denotes the set of extreme points of a credal set.

Unfortunately, only the set of extreme points of $\mathcal{M}(\underline{E})$ is known, while $\mathcal{M}(\underline{P})$ is unspecified, as well as its extreme points.

We do assume that \underline{P} is coherent, though. What does it tell us?

University of Liubliand

16 / 28

A consequence of coherence

 \underline{P} is a coherent extension of $\underline{P}|_{\mathcal{K}}$, and therefore there must exist some $P \in \mathcal{M}(\underline{P})$ so that $P(f) = \underline{P}(f)$ for every $f \in \mathcal{K}$.

Thus, the face $\mathcal{M}_f = \{P \in \mathcal{M}(\underline{E}) \colon P(f) = \underline{P}(f)\}$ must intersect $\mathcal{M}(\underline{P})$.

Consequently, the part of the expression used in the maximizing formula can be bounded as follows:

$$\min_{P \in \text{ext}\mathcal{M}(\underline{P})} P(h) \leq \min_{f \in \mathcal{K}} \max_{P \in \text{ext}\mathcal{M}_f} P(h)$$

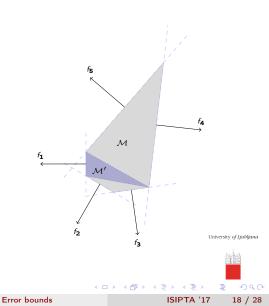
Since \mathcal{M}_f is a face of $\mathcal{M}(\underline{E})$, the rhs in the above inequality is obtainable in terms of extreme points of $\mathcal{M}(\underline{E})$.

ISIPTA '17

17 / 28

Graphical illustration

Notice that \mathcal{M}' intersects every face \mathcal{M}_f . Otherwise, the corresponding lower prevision would not be coherent.



A final form of the optimization problem

Using the above estimates, we can now state:

$$d(\underline{P},\underline{E}) \leq \max_{E \in \text{ext}\mathcal{M}(\underline{E})} \min_{f \in \mathcal{K}} \max_{P \in \text{ext}\mathcal{M}_f} \max_{h \in \mathbb{R}^{\mathcal{X}}} \frac{P(h) - E(h)}{\|h\|}$$

It is sufficient to restrict to those *h* that satisfy: $E(h) = \underline{E}(h)$, whence we obtain more restrictive error bound:

$$d(\underline{P},\underline{E}) \leq \max_{E \in \text{ext}\mathcal{M}(\underline{E})} \min_{f \in \mathcal{K}} \max_{\substack{P \in \text{ext}\mathcal{M}_f \\ E(h) = \underline{E}(h)}} \max_{\substack{h \in \mathbb{R}^{\mathcal{X}} \\ E(h) = \underline{E}(h)}} \frac{P(h) - E(h)}{\|h\|}$$

We will therefore solve a maximization problem in a set called normal content of E.

Damjan Škulj (University of Ljubljana)

Approximation of lower previsions

- Coherent lower previsions
- Partially specified coherent lower prevision
- Mathematical formulation of the problem

The bounds on the distance

• Maximal bound between the natural and another coherent extension

University of Ljubljana

20 / 28

ISIPTA '17

- Normal cones
- Normed distance between extreme points

Damjan Škulj (University of Ljubljana)

Normal cones

Let \mathcal{M} be a credal set and $E \in \mathcal{M}$ an extreme point.

The set

$$N_{\mathcal{M}}(E) = \{f \colon E(f) = \underline{P}(f)\}$$

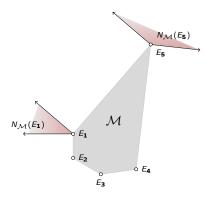
is called the normal cone of \mathcal{M} at point E.

The normal cone is the set of all gambles that reach minimal expectation at E.

Normal cones

Example: normal cones

Normal cones $N_{\mathcal{M}}(E_i)$ at the extreme points are the positive hulls of the normal vectors of adjacent faces.



Approximation of lower previsions

- Coherent lower previsions
- Partially specified coherent lower prevision
- Mathematical formulation of the problem

The bounds on the distance

Maximal bound between the natural and another coherent extension

University of Ljubljana

23 / 28

ISIPTA '17

- Normal cones
- Normed distance between extreme points

Distance between extreme points

Let *E* be an extreme point of a credal set \mathcal{M} and *P* another linear prevision in \mathcal{M} .

We will need to find the maximal possible distance

$$d_E(E,P) = \max_{h \in \mathcal{N}_{\mathcal{M}}(E)} \frac{|P(h) - E(h)|}{\|h\|}.$$

The above distance is called the normed distance of P from E.

The reason for only considering elements of the normal cone is that in expression $\underline{P}(h)$ only those gambles will reach the minimal value in E.

University of Ljubljana

24 / 28

ISIPTA '17

Setting up the problem

Let $h \in N_{\mathcal{M}}(E)$. We can represent it as a positive combination:

$$h=\sum_{i\in I}\alpha_i f_i$$

where $I = \{i : f_i \in \mathcal{K}, E(f_i) = \underline{P}(f_i)\}.$

Recall that P and E are themselves vectors too, and therefore we can write:

$$P(h) - E(h) = (P - E) \cdot h = D \cdot h$$

We can also decompose

$$f_i = \lambda_i D + u_i.$$

We thus obtain vectors $\underline{\alpha} = (\alpha_i)_{i \in I}$ and $\underline{\lambda} = (\lambda_i)_{i \in I}$ and a matrix U^{whose} rows are u_i .

We have:

$$h = (\underline{\alpha} \cdot \underline{\lambda})D + \underline{\alpha}U$$
$$\|h\|^{2} = \|D\|^{2}\underline{\alpha}\underline{\lambda}\underline{\lambda}^{t}\underline{\alpha}^{t} + \underline{\alpha}UU^{t}\underline{\alpha}^{t}$$
$$P(h) - E(h) = D \cdot (\underline{\alpha} \cdot \underline{\lambda})D = (\underline{\alpha} \cdot \underline{\lambda})\|D\|^{2}.$$

Further denote $\Pi = \|D\|^2 \underline{\lambda} \underline{\lambda}^t + UU^t$, which is a symmetric positive semi-definite matrix.

Thus we would like to minimize the expression

$$rac{(\underline{lpha}\cdot\underline{\lambda})\|D\|^2}{\sqrt{\underline{lpha}\Pi\underline{lpha}^t}}$$

University of Ljubljana

26 / 28

ISIPTA '17

with respect to $\underline{\alpha}$.

Quadratic programming formulation

Since we may always multiply vector $\underline{\alpha}$ by a positive constant, we can always ensure the numerator in

$$\frac{(\underline{\alpha} \cdot \underline{\lambda}) \|D\|^2}{\sqrt{\underline{\alpha} \Pi \underline{\alpha}^t}}$$

to be equal 1.

In this case, we can maximize the above expression by minimizing the norm:

 $\underline{\alpha} \Pi \underline{\alpha}^t$

subject to

$$(\underline{\alpha} \cdot \underline{\lambda}) \|D\|^2 = 1$$

$$\underline{\alpha} \ge 0$$
Error bounds
University of Lindbjana
$$\underline{\alpha} \ge 0$$
Error bounds
USIPTA '17 27 / 28

Damjan Škulj (University of Ljubljana)

Final thoughts

- The method is practically applicable; unfortunately, highly computationally complex...
- Approximate methods might be computationally more efficient.

Thank you for your attention!!

Questions...

University of Ljubljana