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Approximation of lower previsions Coherent lower previsions

Finite (imprecise) probability spaces

We study models with the following elements:
sample space X : a finite set with elements x ∈ X ;
gamble: any map f : X → R or a vector in RX ;
an arbitrary set of gambles K;
(precise) probability vector p ∈ RX satisfying p(x) ≥ 0 ∀x ∈ X and∑

x∈X p(x) = 1;
linear prevision (expectation functional) P : K → R of the form
P(f ) =

∑
x∈X p(x)f (x) = p · f where p is a precise probability vector;

coherent lower prevision P : K → R is a lower envelope of linear
previsions.
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Approximation of lower previsions Coherent lower previsions

Coherent lower previsions and lower expectation functionals

A coherent lower prevision P : K → R can be expressed as a lower envelope
of linear previsions

P(f ) = min
P∈M(P)

P(f ),

whereM(P) is the credal set of P :

M(P) = {P : P(f ) ≥ P(f )∀f ∈ K}.

A coherent lower prevision can be extended to a lower expectation
functional E : RX → R, which is a coherent lower prevision defined
everywhere in RX .

The minimal coherent extension is called the natural extension.

Lower expectation functionals therefore form a family of coherent lower
previsions.
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Partially specified coherent lower prevision

Let P be a coherent lower prevision on a set of gambles H (often
H = RX ).
But we only know the values of P(f ) ∀f ∈ K ⊂ H.
What can we say about P(h) for h ∈ H −K?
The natural extension of P|K is often our best guess.

Problem
What is the maximal possible error that we make by taking the natural
extension (or any other extension) instead of the true value P(h)?
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Approximation of lower previsions Partially specified coherent lower prevision

Reformulation of the problem

Reformulation 1
What is the maximal possible distance between two coherent extensions of
P|K to H ⊃ K?

Reformulation 2
What is the maximal possible distance between two coherent lower
previsions on H which coincide on K ⊆ H?

Special case
What is the maximal distance between the natural extension and any other
coherent extension of a coherent lower prevision P on K?
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Approximation of lower previsions Partially specified coherent lower prevision

Common examples

Imprecise probability models are often approximated by:
coherent lower probabilities (interval probabilities) L(A) is the lower

probability of an event A; i.e. K = {1A : A ⊆ X};
probability intervals intervals are given for the probabilities of atomic

events [l(x), u(x)]; K = {1{x} : x ∈ X} ∪ {1X−{x} : x ∈ X};
The above models are often considered as good approximations of the
completely specified coherent lower previsions.
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Approximation of lower previsions Partially specified coherent lower prevision

Graphical illustration

Lower previsions P and P ′ with the
credal setsM andM′ respectively
coincide on the set of gambles
K = {f1, . . . , f5}.

(Note that P is the natural extension
of P|K.)

M

M′

f1

f2
f3

f4

f5
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Approximation of lower previsions Mathematical formulation of the problem

Mathematical formulation

Let P be a coherent lower prevision specified on a finite set of gambles K.
Let P1 and P2 be two extensions to RX .
The distance between P1 and P2 is defined as

d(P1,P2) = max
h∈RX

|P1(h)− P2(h)|
‖h‖

,

where ‖ · ‖ denotes the Euclidean norm.
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Approximation of lower previsions Mathematical formulation of the problem

The maximal distance to the natural extension

The following result simplifies the problem.

Theorem
Let

P be a coherent lower prevision specified on a finite set of gambles K;
E its natural extension;
P1 and P2 another two extensions to RX .

Then
d(P1,P2) ≤ max(d(P1,E ), d(P2,E ))

We thus try to find an upper bound for the rhs over all coherent extensions
P1.
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The bounds on the distance
Maximal bound between the natural and another coherent

extension

Bounding the distance

Recall that extrema w.r.t. credal sets are found in extreme points.
Therefore:

d(P,E ) = max
h∈RX

P(h)− E (h)

‖h‖

= max
h∈RX

max
E∈extM(E)

min
P∈extM(P)

P(h)− E (h)

‖h‖
,

where ext· denotes the set of extreme points of a credal set.

Unfortunately, only the set of extreme points ofM(E ) is known, while
M(P) is unspecified, as well as its extreme points.

We do assume that P is coherent, though. What does it tell us?
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The bounds on the distance
Maximal bound between the natural and another coherent

extension

A consequence of coherence

P is a coherent extension of P|K, and therefore there must exist some
P ∈M(P) so that P(f ) = P(f ) for every f ∈ K.

Thus, the faceMf = {P ∈M(E ) : P(f ) = P(f )} must intersectM(P).

Consequently, the part of the expression used in the maximizing formula
can be bounded as follows:

min
P∈extM(P)

P(h) ≤ min
f ∈K

max
P∈extMf

P(h)

SinceMf is a face ofM(E ), the rhs in the above inequality is obtainable
in terms of extreme points ofM(E ).
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The bounds on the distance
Maximal bound between the natural and another coherent

extension

Graphical illustration

Notice thatM′
intersects every face
Mf .
Otherwise, the
corresponding lower
prevision would not be
coherent.

M
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The bounds on the distance
Maximal bound between the natural and another coherent

extension

A final form of the optimization problem

Using the above estimates, we can now state:

d(P,E ) ≤ max
E∈extM(E)

min
f ∈K

max
P∈extMf

max
h∈RX

P(h)− E (h)

‖h‖

It is sufficient to restrict to those h that satisfy: E (h) = E (h), whence we
obtain more restrictive error bound:

d(P,E ) ≤ max
E∈extM(E)

min
f ∈K

max
P∈extMf

max
h∈RX

E(h)=E(h)

P(h)− E (h)

‖h‖

We will therefore solve a maximization problem in a set called normal cone
of E .
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The bounds on the distance Normal cones

Normal cones

LetM be a credal set and E ∈M an extreme point.

The set
NM(E ) = {f : E (f ) = P(f )}

is called the normal cone ofM at point E .

The normal cone is the set of all gambles that reach minimal expectation
at E .
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The bounds on the distance Normal cones

Example: normal cones

Normal cones NM(Ei ) at the extreme
points are the positive hulls of the
normal vectors of adjacent faces.

MNM(E1)

NM(E5)

E1

E2

E3

E4

E5
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The bounds on the distance Normed distance between extreme points

Distance between extreme points

Let E be an extreme point of a credal setM and P another linear
prevision inM.

We will need to find the maximal possible distance

dE (E ,P) = max
h∈NM(E)

|P(h)− E (h)|
‖h‖

.

The above distance is called the normed distance of P from E .

The reason for only considering elements of the normal cone is that in
expression P(h) only those gambles will reach the minimal value in E .
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The bounds on the distance Normed distance between extreme points

Setting up the problem

Let h ∈ NM(E ). We can represent it as a positive combination:

h =
∑
i∈I

αi fi

where I = {i : fi ∈ K,E (fi ) = P(fi )}.
Recall that P and E are themselves vectors too, and therefore we can write:

P(h)− E (h) = (P − E ) · h = D · h

We can also decompose
fi = λiD + ui .

We thus obtain vectors α = (αi )i∈I and λ = (λi )i∈I and a matrix U whose
rows are ui .
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The bounds on the distance Normed distance between extreme points

We have:

h = (α · λ)D + αU

‖h‖2 = ‖D‖2αλλtαt + αUUtαt

P(h)− E (h) = D · (α · λ)D = (α · λ)‖D‖2.

Further denote Π = ‖D‖2λλt + UUt , which is a symmetric positive
semi-definite matrix.

Thus we would like to minimize the expression

(α · λ)‖D‖2√
αΠαt

with respect to α.
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The bounds on the distance Normed distance between extreme points

Quadratic programming formulation

Since we may always multiply vector α by a positive constant, we can
always ensure the numerator in

(α · λ)‖D‖2√
αΠαt

to be equal 1.

In this case, we can maximize the above expression by minimizing the norm:

αΠαt

subject to

(α · λ)‖D‖2 = 1
α ≥ 0
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The bounds on the distance Normed distance between extreme points

Final thoughts

The method is practically applicable; unfortunately, highly
computationally complex...
Approximate methods might be computationally more efficient.

Thank you for your attention!!

Questions...
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