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Gödel∆ Logic

Gödel logic G can be semantically
defined as a many-valued logic.
Let Form be the set of formulas over
propositional variables x1, x2, , . . . in the
language ∨,∧,→,¬,⊥.

An assignment is a function
µ : Form→ [0, 1] ⊆ R with values in
the real unit interval such that, for any
two α, β ∈ Form,

µ(α ∧ β) = min{µ(α), µ(β)},
µ(α ∨ β) = max{µ(α), µ(β)},

µ(α→ β) =

{
1 if µ(α) ≤ µ(β)

µ(β) otherwise

µ(¬α) = µ(α→ ⊥),

µ(⊥) = 0,

µ(>) = 1.

Gödel∆ logic G∆ can be semantically
defined adding:

µ(∆(α)) =

{
1 if µ(α) = 1

0 otherwise

A tautology is a formula α such that
µ(α) = 1 for every assignment µ
(denoted � α).

We write ` α to mean that α is
derivable from the axioms of G∆ using
modus ponens as the only deduction
rule.

G∆ is complete with respect to the
many-valued semantics defined above:
in symbols, ` α if and only if � α.
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Gödel Algebras

Gödel algebras are Heyting algebras (=Tarski-Lindenbaum algebras of intuitionistic
propositional calculus) satisfying the prelinearity equation:

(x → y) ∨ (y → x) = >

An MTL algebra A = (A,∧,∨,�,→,⊥,>) is a commutative integral bounded
residuated lattice satisfying the prelinearity equation,

(x → y) ∨ (y → x) = >

.
A Gödel Algebra A = (A,∧,∨,→,⊥,>) is an idempotent MTL Algebra.

The variety G∆ is axiomatised as follows,

∆(x) t ¬∆(x) = 1, ∆(x t y)⇒ (∆(x) t∆(y)) = 1, ∆(x)⇒ x = 1,

∆(x)⇒ ∆(∆(x)) = 1, ∆(x ⇒ y)⇒ (∆(x)⇒ ∆(y)) = 1.
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Free Algebras

As usual, ϕ,ψ ∈ FORMn are called logically equivalent ϕ ≡ ψ, if both ` ϕ→ ψ and
` ψ → ϕ hold.

The quotient set FORMn/ ≡ endowed with operations ∧,∨,→,∆,>,⊥ induced from
the corresponding logical connectives becomes a Gödel∆ algebra with top and bottom
element > and ⊥, respectively.

The specific Gödel∆ algebra Gn
∆ = FORMn/ ≡ is, by construction, the Lindenbaum

algebra of G∆ over the language {x1, . . . , xn}.

The free 1-generated Gödel∆ algebra G1
∆:

[>]

[x ∨ ¬x][¬¬x] [¬∆x]

[∆(x ∨ ¬x)]

[¬∆(x ∨ ¬x)]

[x]

[∆x] [¬x]

[⊥]

[...]

[x ∨ ¬x ∧ ¬∆x]

Lindenbaum algebras are
isomorphic to free algebras, and
then Gn

∆ is the free n-generated

Gödel∆ algebra F∆
n .

Since the variety of Gödel∆
algebras is locally finite, every
finite Gödel∆ algebra can be
obtained as a quotient of a free
n-generated Gödel∆ algebra.
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Functional Representation

F∆
n is isomorphic to the subalgebra of the algebra of all functions f : [0, 1]n

∆ → [0, 1]∆

generated by the projection xi : (t1, . . . , tn) 7→ ti , for all i ∈ {1, 2, . . . , n}.
We write ϕ for the elements of F∆

n .

The relation ≈ on [0, 1]n is defined as:
u = (u1, · · · , un), v = (v1, · · · , vn) ∈ [0, 1]n

u ≈ v iff there is a permutation σ of {1, . . . , n}
and a map ≺ : {0, . . . , n} → {<,=} such that

0 ≺0 uσ(1) ≺1 · · · ≺n−1 uσ(n) ≺n 1

iff

0 ≺0 vσ(1) ≺1 · · · ≺n−1 vσ(n) ≺n 1

≈ is an equivalence relation and [u] is the
equivalence class of u.
[0, 1]n/ ≈ is hence a partition of [0, 1]n.

A n-variate G∆-function is a function
f : [0, 1]n → [0, 1] such that for every u ∈ [0, 1]n

(equivalently, for any ρ ∈ Ωn) the restriction of
f to [u] (equivalently, to Dρ) is either equal to
0, or to 1, or to a projection function xi .

With each class [u], where
0 ≺0 uσ(1) ≺1 · · · ≺n−1 uσ(n) ≺n 1 ,
we associate a unique ordered partition
ρu = Q1 < · · · < Qh of the set
{⊥, x1, . . . , xn,>} in the following way:

⊥ ∈ Q1; > ∈ Qh; h > 1;

if ≺i is = then xσ(i), xσ(i+1) ∈ Qj ;

if ≺i is < and xσ(i) ∈ Qj then
xσ(i+1) ∈ Qj+1.

Ordered partitions are in bijections with
equivalence classes [u] ∈ [0, 1]n/ ≈.
When ρ = ρu, we denote by Dρ the associated
equivalence class [u].
We write Ωn for the set of all ordered partitions.

Theorem

The elements of F∆
n are exactly the n-variate

G∆-functions.
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Functional Representation

Let x C y = ∆(x → y) ∧ ¬∆(y → x) .
Interpreted in [0, 1] we have
x C y = 1 if x < y and x C y = 0 otherwise.

For any ρ = ρu ∈ Ωn, consider the formula

χρ =
n∧

i=0

δi ,

δi =

{
∆(xσ(i) ↔ xσ(i+1)) iff ≺i is = ,
xσ(i) C xσ(i+1) iff ≺i is < .

Then it is straightforward to check that
χρ(v) = 1 iff v ≈ u, while χρ(v) = 0 otherwise.

Let f : [0, 1]n → [0, 1] be a G∆-function.
yρ is the element of {⊥, x1, . . . , xn,>} such
that yρ coincides with f over the whole of Dρ.

ϕ =
∨
ρ∈Ωn

(χρ ∧ yρ) .

For any point u ∈ [0, 1]n, ϕ(u) coincides with
χρ ∧ yρ(u) for the unique ρ ∈ Ωn such that
u ∈ Dρ.
Then, ϕ = f .

For n = 2, the set of Gödel partitions Ω2 is:

ρ1 = {0, x , y} < {1}
ρ2 = {0, y} < {x} < {1}
ρ3 = {0, x} < {y} < {1}
ρ4 = {0} < {x , y} < {1}
ρ5 = {0} < {x} < {y} < {1}
ρ6 = {0} < {y} < {x} < {1}
ρ7 = {0, x} < {y , 1}
ρ8 = {0, y} < {x , 1}
ρ9 = {0} < {x , y , 1}
ρ10 = {0} < {y} < {x , 1}
ρ11 = {0} < {x} < {y , 1}

χρ1 (ρ1) = 1

χρ1 (ρ5) = 0

because ∆(x ↔ y) = ∆(x) = 0 on ρ5.



Introduction Logics and Algebras Probability Measures Combinatorial Characterisation Conclusions

Functional Representation

Let x C y = ∆(x → y) ∧ ¬∆(y → x) .
Interpreted in [0, 1] we have
x C y = 1 if x < y and x C y = 0 otherwise.

For any ρ = ρu ∈ Ωn, consider the formula

χρ =
n∧

i=0

δi ,

δi =

{
∆(xσ(i) ↔ xσ(i+1)) iff ≺i is = ,
xσ(i) C xσ(i+1) iff ≺i is < .

Then it is straightforward to check that
χρ(v) = 1 iff v ≈ u, while χρ(v) = 0 otherwise.

Let f : [0, 1]n → [0, 1] be a G∆-function.
yρ is the element of {⊥, x1, . . . , xn,>} such
that yρ coincides with f over the whole of Dρ.

ϕ =
∨
ρ∈Ωn

(χρ ∧ yρ) .

For any point u ∈ [0, 1]n, ϕ(u) coincides with
χρ ∧ yρ(u) for the unique ρ ∈ Ωn such that
u ∈ Dρ.
Then, ϕ = f .

For n = 2, the set of Gödel partitions Ω2 is:
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States on Free Gödel∆ Algebras

A state on F∆
n is a function s : F∆

n → [0, 1] such that, for every f , g ∈ F∆
n :

1 s(⊥) = 0, s(>) = 1;

2 s(f ∨ g) = s(f ) + s(g)− s(f ∧ g);

3 If f ≤ g then s(f ) ≤ s(g);

4 If f ≤ g and s(g) = s(f ) then s(∆(g → f )) = 1.

Theorem

The following hold.

1 If s : F∆
n → [0, 1]n is a state, there exists a Borel probability measure µ on [0, 1]n

such that ∫
[0,1]n

f dµ = s(f ) , for every f ∈ F∆
n .

2 Viceversa, for any Borel probability measure µ on [0, 1]n, the function
s : F∆

n → [0, 1] defined by the above integral is a state.
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States on Free Gödel∆ Algebras

Corollary

States of F∆
n are the convex combinations of finitely many truth value assignments.

Let s be the state on F2(G∆) given by

s(χρ1 ) = 1/3 s(χρ4 ) = 1/6

s(χρ5 ) = 1/2 s(x ∧ χρ4 ) = 1/12

s(x ∧ χρ5 ) = 1/12 s(y ∧ χρ4 ) = 1/6

s(χσ) = 0 for σ 6∈ {ρ1, ρ4, ρ5}

Define the discrete measure µ by setting

µ({zρ1}) = 1/3 zρ1 = (0, 0)

µ({zρ4}) = 1/6 zρ4 = (1/2, 1/2)

µ({zρ5}) = 1/2 zρ5 = (1/6, 1/3)

Take the G∆-function f that is equal to 1 over
Dρ1 , it is equal to 0 over Dρ4 and it is equal to
y on Dρ5 .Then

For n = 2, the set of Gödel partitions Ω2 is:

ρ1 = {0, x , y} < {1}
ρ2 = {0, y} < {x} < {1}
ρ3 = {0, x} < {y} < {1}
ρ4 = {0} < {x , y} < {1}
ρ5 = {0} < {x} < {y} < {1}
ρ6 = {0} < {y} < {x} < {1}
ρ7 = {0, x} < {y , 1}
ρ8 = {0, y} < {x , 1}
ρ9 = {0} < {x , y , 1}
ρ10 = {0} < {y} < {x , 1}
ρ11 = {0} < {x} < {y , 1}

s(f ) = s(χρ1 ∨ (y ∧ χρ5 )) = s(χρ1 ) + s(y ∧ χρ5 ) =
1

3
+

1

6
=

1

2∫
[0,1]2

f dµ =
∑

i∈{1,4,5}
f (zρi )µ({zρi }) = 1 ·

1

3
+ 0 ·

1

6
+

1

3
·

1

2
=

1

2
= s(f ) .
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Duals of Gödel Algebras

A nonempty subset F of A is called an upper-set when for all x , y ∈ A, if x ≤ y and
x ∈ F , then y ∈ F . If x � y ∈ F for all x , y ∈ F , then F is a filter of A. We call∧

x∈F x the generator of the filter F . A filter F of A is prime if F 6= A and for all
x , y ∈ A, either x → y ∈ F or y → x ∈ F .

We call the poset SpecA of prime filters of finite Gödel algebra A ordered by reverse
inclusion, the prime spectrum of A.

Proposition (Horn, 1969)

Let A be a finite Gödel algebra, then SpecA is a forest.

If A is a G∆-algebra then a filter F of A is a filter of its
Gödel reduct Ā further satisfying x ∈ F implies ∆x ∈ F .

The inclusion-maximal elements of Spec(A) are the
maximal filters of A, and they form the maximal
spectrum Max(A) ⊆ Spec(A).

•

• •

• •

•
•

• •

Proposition (Aguzzoli and Codara, 2016)

Every finite G∆-algebra A is a direct product of chains. That is, A '
∏

F∈Max(A) A/F ,

and Max(A) = Spec(A).
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Duals of Gödel∆ Algebras

For each A ∈ (G∆)fin, the poset
Spec(Ā), that is, the prime spectrum of
the G -algebra reduct of A, ordered by
reverse inclusion, is isomorphic with the
poset of the j.i. elements of A.

Spec∆(A) = C(Spec(Ā))

where C(P) is the multiset
{C1,C2, . . . ,Cu}, when the poset P is a
disjoint union C1 ∪ C2 ∪ · · · ∪ Cu of
chains.

The free Gödel∆ Algebra on one
generator G1

∆ and its dual:

•
• • •
• • •
•

• • •
•

•

• • •

Conversely, given a chain C we define:

Sub∆(C) =

({D ⊆ C | D = ↓D},∪,∩,→,∼, ∅,C ,∆) ,

where ∆C = C and ∆D = ∅, for each
subchain D ( C ,
D1 → D2 = C \ ↑(D1 \ D2), for all
D1,D2 ⊆ C ,
∼D1 = C if D1 = ∅ and ∼D1 = ∅
otherwise.

∅
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Duals of Gödel∆ Algebras

MC be the category whose objects are finite multisets of (nonempty) finite chains,
and whose morphisms h : C → D, are defined as follows.
Display C as {C1, . . . ,Cm} and D as {D1, . . . ,Dn}. Then h = {hi}m

i=1, where each hi

is an order preserving surjection hi : Ci � Dj for some j ∈ {1, 2, . . . , n}.

(G∆)fin is the full subcategory of G∆ whose objects have finite cardinality, and
morphisms are simply homomorphisms of algebras.

The two previous constructions are functorial:

Spec∆ : (G∆)fin → MC, Sub∆ : MC→ (G∆)fin,

Theorem (Aguzzoli and Codara, 2016)

The categories (G∆)fin and MC are dually equivalent.
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A combinatorial way to States

A labeling l is a function l : Spec∆ F∆
n → [0, 1], such that

1
∑

p∈Spec∆ F∆
n

l(p) = 1;

2 If l(p) = 0 then l(q) = 0 for all p and q such that p ≤ q or q ≤ p.

Theorem

Let Sn be the collection of all states s : F∆
n → [0, 1], and let Ln be the collection of all

labelings l : Spec∆ F∆
n → [0, 1]. Then, the map defined for every formula ϕ over the

set of variables {x1, . . . , xn} by

(S(l))(ϕ) =
∑

g∈J(ϕ)

l(〈g〉)

is a bijective correspondence S : Ln → Sn.
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Further axiomatisations

Drastic Product algebras constitute the subvariety DP of MTL axiomatised by
x t ∼(x ∗ x) = 1.

Theorem (Aguzzoli, Bianchi and V., 2014)

MC> is dually equivalent to the category DPfin of finite DP algebras and their
homomorphisms.

MC> is a non-full subcategory of MC.

Hence, we can adapt the presented constructions to axiomatise States over DP
algebras.
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