DIEGO VALOTA
Department of Computer Science
University of Milan
valota@di.unimi.it

Joint work with Stefano Aguzzoli (UNIMI), Brunella Gerla and Matteo Bianchi (UNINSUBRIA)

> ECSQARU 2017 13 July 2017

- Gödel Logics and Algebras;
 - Gödel_△ Logic and Algebras;
 - Free Gödel_△ Algebras;
- States over Free Gödel_△ Algebras;
- Combinatorial Characterisation of States;
- Adaptation/Generalizations.

Gödel logic G can be semantically defined as a many-valued logic. Let FORM be the set of formulas over propositional variables x_1, x_2, \ldots in the language $\vee, \wedge, \rightarrow, \neg, \bot$.

An assignment is a function $\mu: \mathrm{FORM} \to [0,1] \subseteq \mathbb{R}$ with values in the real unit interval such that, for any two $\alpha, \beta \in \text{FORM}$,

$$\begin{split} &\mu(\alpha \wedge \beta) = \min\{\mu(\alpha), \mu(\beta)\}, \\ &\mu(\alpha \vee \beta) = \max\{\mu(\alpha), \mu(\beta)\}, \\ &\mu(\alpha \to \beta) = \begin{cases} 1 & \text{if } \mu(\alpha) \leq \mu(\beta) \\ \mu(\beta) & \text{otherwise} \end{cases} \\ &\mu(\neg \alpha) = \mu(\alpha \to \bot), \\ &\mu(\bot) = 0, \\ &\mu(\top) = 1. \end{split}$$

Gödel logic G can be semantically defined as a many-valued logic. Let FORM be the set of formulas over propositional variables x_1, x_2, \ldots in the language $\vee, \wedge, \rightarrow, \neg, \bot$.

An assignment is a function $\mu: \mathrm{FORM} \to [0,1] \subseteq \mathbb{R}$ with values in the real unit interval such that, for any two $\alpha, \beta \in \text{FORM}$,

$$\begin{split} &\mu(\alpha \wedge \beta) = \min\{\mu(\alpha), \mu(\beta)\}, \\ &\mu(\alpha \vee \beta) = \max\{\mu(\alpha), \mu(\beta)\}, \\ &\mu(\alpha \to \beta) = \begin{cases} 1 & \text{if } \mu(\alpha) \leq \mu(\beta) \\ \mu(\beta) & \text{otherwise} \end{cases} \\ &\mu(\neg \alpha) = \mu(\alpha \to \bot), \\ &\mu(\bot) = 0, \\ &\mu(\top) = 1. \end{split}$$

Gödel \triangle **logic** G_{\triangle} can be semantically defined adding:

$$\mu(\Delta(lpha)) = egin{cases} 1 & ext{if } \mu(lpha) = 1 \ 0 & ext{otherwise} \end{cases}$$

Gödel logic G can be semantically defined as a many-valued logic. Let FORM be the set of formulas over propositional variables x_1, x_2, \ldots in the language $\vee, \wedge, \rightarrow, \neg, \bot$.

An assignment is a function $\mu: \mathrm{FORM} \to [0,1] \subseteq \mathbb{R}$ with values in the real unit interval such that, for any two $\alpha, \beta \in \text{FORM}$,

$$\begin{split} &\mu(\alpha \wedge \beta) = \min\{\mu(\alpha), \mu(\beta)\}, \\ &\mu(\alpha \vee \beta) = \max\{\mu(\alpha), \mu(\beta)\}, \\ &\mu(\alpha \to \beta) = \begin{cases} 1 & \text{if } \mu(\alpha) \leq \mu(\beta) \\ \mu(\beta) & \text{otherwise} \end{cases} \\ &\mu(\neg \alpha) = \mu(\alpha \to \bot), \\ &\mu(\bot) = 0, \\ &\mu(\top) = 1. \end{split}$$

 $\mathbf{G\ddot{o}del}_{\Delta}$ \mathbf{logic} G_{Δ} can be semantically defined adding:

$$\mu(\Delta(lpha)) = egin{cases} 1 & ext{if } \mu(lpha) = 1 \ 0 & ext{otherwise} \end{cases}$$

A tautology is a formula α such that $\mu(\alpha) = 1$ for every assignment μ (denoted $\models \alpha$).

We write $\vdash \alpha$ to mean that α is derivable from the axioms of G_{Λ} using modus ponens as the only deduction rule.

 G_{Λ} is complete with respect to the many-valued semantics defined above: in symbols, $\vdash \alpha$ if and only if $\models \alpha$.

Gödel algebras are Heyting algebras (=Tarski-Lindenbaum algebras of intuitionistic propositional calculus) satisfying the prelinearity equation:

$$(x \rightarrow y) \lor (y \rightarrow x) = \top$$

Gödel algebras are Heyting algebras (=Tarski-Lindenbaum algebras of intuitionistic propositional calculus) satisfying the prelinearity equation:

$$(x \rightarrow y) \lor (y \rightarrow x) = \top$$

An MTL algebra $\mathbf{A}=(A,\wedge,\vee,\odot,\to,\perp,\top)$ is a commutative integral bounded residuated lattice satisfying the **prelinearity** equation,

$$(x \to y) \lor (y \to x) = \top$$

A Gödel Algebra $\mathbf{A}=(A,\wedge,\vee,\rightarrow,\perp,\top)$ is an idempotent MTL Algebra.

The variety \mathbb{G}_{Δ} is axiomatised as follows,

$$\Delta(x) \sqcup \neg \Delta(x) = 1, \qquad \Delta(x \sqcup y) \Rightarrow (\Delta(x) \sqcup \Delta(y)) = 1, \qquad \Delta(x) \Rightarrow x = 1,$$

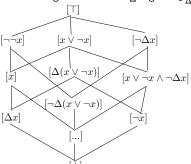
$$\Delta(x) \Rightarrow \Delta(\Delta(x)) = 1, \qquad \Delta(x \Rightarrow y) \Rightarrow (\Delta(x) \Rightarrow \Delta(y)) = 1.$$

As usual, $\varphi, \psi \in \mathsf{FORM}_n$ are called **logically equivalent** $\varphi \equiv \psi$, if both $\vdash \varphi \to \psi$ and $\vdash \psi \rightarrow \varphi$ hold.

The quotient set $\mathsf{FORM}_n/\equiv \mathsf{endowed}$ with operations $\wedge, \vee, \rightarrow, \Delta, \top, \bot$ induced from the corresponding logical connectives becomes a Gödel $_{\Lambda}$ algebra with top and bottom element \top and \bot , respectively.

The specific Gödel $_{\Delta}$ algebra $\mathcal{G}_{\Delta}^{n} = \mathsf{FORM}_{n}/\equiv \mathsf{is}$, by construction, the **Lindenbaum algebra** of G_{Λ} over the language $\{x_1, \ldots, x_n\}$.

The free 1-generated $G\ddot{o}del_{\Delta}$ algebra $\mathcal{G}_{\Lambda}^{1}$:



Lindenbaum algebras are isomorphic to free algebras, and then \mathcal{G}^n_{Λ} is the free *n*-generated Gödel Λ algebra \mathbf{F}_n^{Δ} .

Since the variety of Gödel∆ algebras is locally finite, every finite $G\ddot{o}del_{\Delta}$ algebra can be obtained as a quotient of a free n-generated Gödel Δ algebra.

 $\mathbf{F}^{\Lambda}_{\alpha}$ is isomorphic to the subalgebra of the algebra of all functions $f\colon [0,1]^n_{\Delta} \to [0,1]_{\Delta}$ generated by the projection $\overline{x_i}\colon (t_1,\ldots,t_n)\mapsto t_i$, for all $i\in\{1,2,\ldots,n\}$. We write $\overline{\varphi}$ for the elements of $\mathbf{F}^{\Lambda}_{\alpha}$.

 \mathbf{F}^{Δ}_{n} is isomorphic to the subalgebra of the algebra of all functions $f\colon [0,1]^{n}_{\Delta} \to [0,1]_{\Delta}$ generated by the projection $\overline{x_{i}}\colon (t_{1},\ldots,t_{n})\mapsto t_{i}$, for all $i\in\{1,2,\ldots,n\}$. We write $\overline{\varphi}$ for the elements of \mathbf{F}^{Δ}_{n} .

The relation \approx on $[0,1]^n$ is defined as: $\mathbf{u}=(u_1,\cdots,u_n), \mathbf{v}=(v_1,\cdots,v_n)\in[0,1]^n$ $\mathbf{u}\approx\mathbf{v}$ iff there is a permutation σ of $\{1,\ldots,n\}$ and a map \prec : $\{0,\ldots,n\}\to\{<,=\}$ such that

$$0 \prec_0 u_{\sigma(1)} \prec_1 \cdots \prec_{n-1} u_{\sigma(n)} \prec_n 1$$
iff
$$0 \prec_0 v_{\sigma(1)} \prec_1 \cdots \prec_{n-1} v_{\sigma(n)} \prec_n 1$$

 \approx is an equivalence relation and [u] is the equivalence class of u. $[0,1]^n/\approx$ is hence a partition of $[0,1]^n$.

 \mathbf{F}_n^Δ is isomorphic to the subalgebra of the algebra of all functions $f\colon [0,1]_\Delta^n \to [0,1]_\Delta$ generated by the projection $\overline{x_i}\colon (t_1,\ldots,t_n)\mapsto t_i$, for all $i\in\{1,2,\ldots,n\}$. We write $\overline{\varphi}$ for the elements of \mathbf{F}_n^Δ .

The relation \approx on $[0,1]^n$ is defined as: $\mathbf{u}=(u_1,\cdots,u_n), \mathbf{v}=(v_1,\cdots,v_n)\in[0,1]^n$ $\mathbf{u}\approx\mathbf{v}$ iff there is a permutation σ of $\{1,\ldots,n\}$ and a map \prec : $\{0,\ldots,n\}\to\{<,=\}$ such that

$$0 \prec_0 u_{\sigma(1)} \prec_1 \cdots \prec_{n-1} u_{\sigma(n)} \prec_n 1$$
iff

$$0 \prec_0 v_{\sigma(1)} \prec_1 \cdots \prec_{n-1} v_{\sigma(n)} \prec_n 1$$

 \approx is an equivalence relation and [u] is the equivalence class of u. $[0,1]^n/\approx$ is hence a partition of $[0,1]^n$.

With each class [u], where $0 \prec_0 u_{\sigma(1)} \prec_1 \cdots \prec_{n-1} u_{\sigma(n)} \prec_n 1$, we associate a unique **ordered partition** $\rho_{\mathbf{u}} = Q_1 < \cdots < Q_h$ of the set $\{\bot, x_1, \ldots, x_n, \top\}$ in the following way:

- $\bullet \perp \in Q_1; \ \top \in Q_h; \ h > 1;$
- $\bullet \ \text{if} \prec_i \text{is} = \text{then} \ x_{\sigma(i)}, x_{\sigma(i+1)} \in Q_j;$
- if \prec_i is < and $x_{\sigma(i)} \in Q_j$ then $x_{\sigma(i+1)} \in Q_{j+1}$.

Ordered partitions are in bijections with equivalence classes $[\mathbf{u}] \in [0,1]^n/\approx$. When $\rho = \rho_{\mathbf{u}}$, we denote by D_ρ the associated equivalence class $[\mathbf{u}]$. We write Ω_n for the set of all ordered partitions.

 \mathbf{F}_n^{Δ} is isomorphic to the subalgebra of the algebra of all functions $f:[0,1]_{\Delta}^n \to [0,1]_{\Delta}$ generated by the projection $\overline{x_i}$: $(t_1, \ldots, t_n) \mapsto t_i$, for all $i \in \{1, 2, \ldots, n\}$. We write $\overline{\varphi}$ for the elements of \mathbf{F}_n^{Δ} .

The relation \approx on $[0,1]^n$ is defined as: $\mathbf{u} = (u_1, \dots, u_n), \mathbf{v} = (v_1, \dots, v_n) \in [0, 1]^n$ $\mathbf{u} \approx \mathbf{v}$ iff there is a permutation σ of $\{1, \ldots, n\}$ and a map \prec : $\{0,\ldots,n\} \to \{<,=\}$ such that

$$0 \prec_0 u_{\sigma(1)} \prec_1 \cdots \prec_{n-1} u_{\sigma(n)} \prec_n 1$$
iff
$$0 \prec_0 v_{\sigma(1)} \prec_1 \cdots \prec_{n-1} v_{\sigma(n)} \prec_n 1$$

 \approx is an equivalence relation and [u] is the equivalence class of u. $[0,1]^n/\approx$ is hence a partition of $[0,1]^n$.

A *n*-variate G_{Λ} -function is a function $f:[0,1]^n\to [0,1]$ such that for every $\mathbf{u}\in [0,1]^n$ (equivalently, for any $\rho \in \Omega_n$) the restriction of f to [u] (equivalently, to D_o) is either equal to 0, or to 1, or to a projection function $\overline{x_i}$.

With each class [u], where $0 \prec_0 u_{\sigma(1)} \prec_1 \cdots \prec_{n-1} u_{\sigma(n)} \prec_n 1$, we associate a unique ordered partition $\rho_{\mathbf{u}} = Q_1 < \cdots < Q_h$ of the set $\{\bot, x_1, \ldots, x_n, \top\}$ in the following way:

- \bullet $\bot \in Q_1$: $\top \in Q_h$: h > 1:
- if \prec_i is = then $x_{\sigma(i)}, x_{\sigma(i+1)} \in Q_i$;
- if \prec_i is < and $x_{\sigma(i)} \in Q_i$ then $x_{\sigma(i+1)} \in Q_{i+1}$.

Ordered partitions are in bijections with equivalence classes $[\mathbf{u}] \in [0,1]^n / \approx$. When $\rho = \rho_{\mathbf{u}}$, we denote by D_{ρ} the associated equivalence class [u]. We write Ω_n for the set of all ordered partitions.

Theorem

The elements of \mathbf{F}_n^{Δ} are exactly the n-variate G_{Δ} -functions.

Combinatorial Characterisation

Introduction

Let
$$x \triangleleft y = \Delta(x \rightarrow y) \land \neg \Delta(y \rightarrow x)$$
.

Interpreted in [0, 1] we have

 $\overline{x \triangleleft y} = 1$ if x < y and $\overline{x \triangleleft y} = 0$ otherwise.

For any $\rho = \rho_{\mathbf{u}} \in \Omega_n$, consider the formula

$$\chi_{\rho} = \bigwedge_{i=0}^{n} \delta_{i},$$

$$\delta_i = \left\{ \begin{array}{ll} \Delta(\mathsf{x}_{\sigma(i)} \leftrightarrow \mathsf{x}_{\sigma(i+1)}) & \text{ iff } \prec_i \text{ is } =, \\ \mathsf{x}_{\sigma(i)} \lhd \mathsf{x}_{\sigma(i+1)} & \text{ iff } \prec_i \text{ is } <. \end{array} \right.$$

Then it is straightforward to check that $\overline{\chi_{\rho}}(\mathbf{v}) = 1$ iff $\mathbf{v} \approx \mathbf{u}$, while $\overline{\chi_{\rho}}(\mathbf{v}) = 0$ otherwise.

Let $x \triangleleft y = \Delta(x \rightarrow y) \land \neg \Delta(y \rightarrow x)$. Interpreted in [0, 1] we have

Interpreted in [0, 1] we have $\overline{x \triangleleft y} = 1$ if $x \triangleleft y$ and $\overline{x \triangleleft y} = 0$ otherwise.

For any $ho=
ho_{f u}\in\Omega_{\it n}$, consider the formula

$$\chi_{\rho} = \bigwedge_{i=0}^{n} \delta_{i},$$

$$\delta_i = \begin{cases} \Delta(x_{\sigma(i)} \leftrightarrow x_{\sigma(i+1)}) & \text{iff } \prec_i \text{ is } =, \\ x_{\sigma(i)} \lhd x_{\sigma(i+1)} & \text{iff } \prec_i \text{ is } <. \end{cases}$$

Then it is straightforward to check that $\overline{\chi_{\rho}}(\mathbf{v})=1$ iff $\mathbf{v}\approx\mathbf{u}$, while $\overline{\chi_{\rho}}(\mathbf{v})=0$ otherwise.

For n=2, the set of Gödel partitions Ω_2 is:

$$\rho_1 = \{0, x, y\} < \{1\}$$

$$\rho_2 = \{0, y\} < \{x\} < \{1\}$$

$$\rho_3 = \{0, x\} < \{y\} < \{1\}$$

$$\rho_4 = \{0\} < \{x, y\} < \{1\}$$

$$\rho_5 = \{0\} < \{x\} < \{y\} < \{1\}$$

$$\rho_6 = \{0\} < \{y\} < \{x\} < \{1\}$$

$$\rho_7 = \{0, x\} < \{y, 1\}$$

$$\rho_8 = \{0, v\} < \{x, 1\}$$

$$\rho_9 = \{0\} < \{x, y, 1\}$$

$$\rho_{10} = \{0\} < \{y\} < \{x, 1\}$$

$$\rho_{11} = \{0\} < \{x\} < \{y, 1\}$$

Let $x \triangleleft y = \Delta(x \rightarrow y) \land \neg \Delta(y \rightarrow x)$. Interpreted in [0, 1] we have $\overline{x \triangleleft v} = 1$ if x < v and $\overline{x \triangleleft v} = 0$ otherwise.

For any $\rho = \rho_{\mathbf{u}} \in \Omega_n$, consider the formula

$$\chi_{\rho} = \bigwedge_{i=0}^{n} \delta_{i},$$

$$\delta_{i} = \begin{cases} \Delta(x_{\sigma(i)} \leftrightarrow x_{\sigma(i+1)}) & \text{iff } \prec_{i} \text{ is } =, \\ x_{\sigma(i)} \lhd x_{\sigma(i+1)} & \text{iff } \prec_{i} \text{ is } <. \end{cases}$$

Then it is straightforward to check that $\overline{\chi_{\rho}}(\mathbf{v}) = 1$ iff $\mathbf{v} \approx \mathbf{u}$, while $\overline{\chi_{\rho}}(\mathbf{v}) = 0$ otherwise. For n = 2, the set of Gödel partitions Ω_2 is:

$$\begin{split} \rho_1 &= \{0, x, y\} < \{1\} \\ \rho_2 &= \{0, y\} < \{x\} < \{1\} \\ \rho_3 &= \{0, x\} < \{y\} < \{1\} \\ \rho_4 &= \{0\} < \{x, y\} < \{1\} \\ \rho_5 &= \{0\} < \{x\} < \{y\} < \{1\} \\ \rho_6 &= \{0\} < \{y\} < \{x\} < \{1\} \\ \rho_7 &= \{0, x\} < \{y, 1\} \\ \rho_8 &= \{0, y\} < \{x, 1\} \\ \rho_9 &= \{0\} < \{x, y, 1\} \\ \rho_{10} &= \{0\} < \{y\} < \{x, 1\} \\ \rho_{11} &= \{0\} < \{y\} < \{x, 1\} \\ \hline \overline{\chi_{\rho_1}}(\rho_1) &= 1 \\ \overline{\chi_{\rho_1}}(\rho_5) &= 0 \end{split}$$

because $\Delta(x \leftrightarrow v) = \Delta(x) = 0$ on ρ_5 .

Let $x \triangleleft y = \Delta(x \rightarrow y) \land \neg \Delta(y \rightarrow x)$. Interpreted in [0, 1] we have $\overline{x \triangleleft v} = 1$ if x < v and $\overline{x \triangleleft v} = 0$ otherwise.

For any $\rho = \rho_{\mathbf{u}} \in \Omega_n$, consider the formula

$$\chi_{\rho} = \bigwedge_{i=0}^{n} \delta_{i},$$

$$\delta_{i} = \begin{cases} \Delta(x_{\sigma(i)} \leftrightarrow x_{\sigma(i+1)}) & \text{iff } \prec_{i} \text{ is } =, \\ x_{\sigma(i)} \lhd x_{\sigma(i+1)} & \text{iff } \prec_{i} \text{ is } <. \end{cases}$$

Then it is straightforward to check that
$$\overline{\chi_{\varrho}}(\mathbf{v}) = 1$$
 iff $\mathbf{v} \approx \mathbf{u}$, while $\overline{\chi_{\varrho}}(\mathbf{v}) = 0$ otherwise.

Let $f: [0,1]^n \to [0,1]$ be a G_{Λ} -function. y_{ρ} is the element of $\{\bot, x_1, \ldots, x_n, \top\}$ such that $\overline{v_o}$ coincides with f over the whole of D_o . For n = 2, the set of Gödel partitions Ω_2 is:

$$\begin{aligned} \rho_1 &= \{0, x, y\} < \{1\} \\ \rho_2 &= \{0, y\} < \{x\} < \{1\} \\ \rho_3 &= \{0, x\} < \{y\} < \{1\} \\ \rho_4 &= \{0\} < \{x, y\} < \{1\} \\ \rho_5 &= \{0\} < \{x\} < \{y\} < \{1\} \\ \rho_6 &= \{0\} < \{y\} < \{x\} < \{1\} \\ \rho_7 &= \{0, x\} < \{y, 1\} \\ \rho_8 &= \{0, y\} < \{x, 1\} \\ \rho_9 &= \{0\} < \{x, y, 1\} \\ \rho_{10} &= \{0\} < \{y\} < \{x, 1\} \\ \rho_{11} &= \{0\} < \{x\} < \{y, 1\} \end{aligned}$$

$$\frac{\overline{\chi_{\rho_1}}(\rho_1) = 1}{\overline{\chi_{\rho_1}}(\rho_5) = 0}$$

because
$$\Delta(x \leftrightarrow y) = \Delta(x) = 0$$
 on ρ_5 .

Functional Representation

Then, $\overline{\varphi} = f$.

Introduction

Interpreted in
$$[0,1]$$
 we have $\overline{x \lhd y} = 1$ if $x < y$ and $\overline{x \lhd y} = 0$ otherwise.

For any $\rho = \rho_{\mathbf{u}} \in \Omega_n$, consider the formula

Let $x \triangleleft y = \Delta(x \rightarrow y) \land \neg \Delta(y \rightarrow x)$.

$$\chi_{\rho} = \bigwedge_{i=0}^{n} \delta_{i},$$

$$\delta_i = \left\{ \begin{array}{ll} \Delta(x_{\sigma(i)} \leftrightarrow x_{\sigma(i+1)}) & \text{ iff } \prec_i \text{ is } =, \\ x_{\sigma(i)} \lhd x_{\sigma(i+1)} & \text{ iff } \prec_i \text{ is } <. \end{array} \right.$$

$$\overline{\chi_{\rho}}(\mathbf{v}) = 1$$
 iff $\mathbf{v} \approx \mathbf{u}$, while $\overline{\chi_{\rho}}(\mathbf{v}) = 0$ otherwise.
Let $f: [0,1]^n \to [0,1]$ be a G_{Δ} -function.

Then it is straightforward to check that

 y_{ρ} is the element of $\{\bot, x_1, \dots, x_n, \top\}$ such that $\overline{y_{\rho}}$ coincides with f over the whole of D_{ρ} .

$$\varphi = \bigvee_{\rho \in \Omega_n} (\chi_\rho \wedge y_\rho).$$

For any point $\mathbf{u} \in [0,1]^n$, $\overline{\varphi}(\mathbf{u})$ coincides with $\overline{\chi_{\rho} \wedge y_{\rho}}(\mathbf{u})$ for the unique $\rho \in \Omega_{\rho}$ such that $\mathbf{u} \in D_{\rho}$.

For
$$n=2$$
, the set of Gödel partitions Ω_2 is:

$$\begin{split} \rho_1 &= \{0, x, y\} < \{1\} \\ \rho_2 &= \{0, y\} < \{x\} < \{1\} \\ \rho_3 &= \{0, x\} < \{y\} < \{1\} \\ \rho_4 &= \{0\} < \{x, y\} < \{1\} \\ \rho_5 &= \{0\} < \{x\} < \{y\} < \{1\} \\ \rho_6 &= \{0\} < \{y\} < \{x\} < \{1\} \\ \rho_7 &= \{0, x\} < \{y, 1\} \\ \rho_8 &= \{0, y\} < \{x, 1\} \\ \rho_9 &= \{0\} < \{x, y, 1\} \\ \rho_{10} &= \{0\} < \{y\} < \{x, 1\} \end{split}$$

$$\overline{\chi_{\rho_1}}(\rho_1) = 1$$
 $\overline{\chi_{\rho_1}}(\rho_5) = 0$

because $\Delta(x \leftrightarrow y) = \Delta(x) = 0$ on ρ_5 .

 $\rho_{11} = \{0\} < \{x\} < \{y, 1\}$

A state on \mathbf{F}_n^{Δ} is a function $s \colon \mathbf{F}_n^{\Delta} \to [0,1]$ such that, for every $f,g \in \mathbf{F}_n^{\Delta}$:

- **1** $s(\bot) = 0, s(\top) = 1;$

A state on \mathbf{F}_n^{Δ} is a function $s \colon \mathbf{F}_n^{\Delta} \to [0,1]$ such that, for every $f,g \in \mathbf{F}_n^{\Delta}$:

- **1** $s(\bot) = 0, s(\top) = 1;$
- If f < g then s(f) < s(g):

$\mathsf{Theorem}$

The following hold.

1 If $s: \mathbf{F}_n^{\Delta} \to [0,1]^n$ is a state, there exists a Borel probability measure μ on $[0,1]^n$ such that

$$\int_{[0,1]^n} f \, \mathrm{d}\mu = s(f)$$
 , for every $f \in \mathbf{F}_n^\Delta$.

2 Viceversa, for any Borel probability measure μ on $[0,1]^n$, the function $s: \mathbf{F}_n^{\Delta} \to [0,1]$ defined by the above integral is a state.

States on Free Gödel $_{\Delta}$ Algebras

Corollary

States of \mathbf{F}_n^Δ are the convex combinations of finitely many truth value assignments.

Introduction

States of \mathbf{F}_n^{Δ} are the convex combinations of finitely many truth value assignments.

For
$$n=2$$
, the set of Gödel partitions Ω_2 is:
$$\rho_1=\{0,x,y\}<\{1\}$$

$$\rho_2=\{0,y\}<\{x\}<\{1\}$$

$$\rho_3=\{0,x\}<\{y\}<\{1\}$$

$$\rho_4=\{0\}<\{x,y\}<\{1\}$$

$$\rho_5=\{0\}<\{x\}<\{y\}<\{1\}$$

$$\rho_6=\{0\}<\{y\}<\{x\}<\{1\}$$

$$\rho_6=\{0\}<\{y\}<\{x\}<\{1\}$$

$$\rho_7=\{0,x\}<\{y,1\}$$

$$\rho_8=\{0,y\}<\{x,1\}$$

$$\rho_9=\{0\}<\{x,y,1\}$$

$$\rho_{10}=\{0\}<\{y\}<\{x,1\}$$

$$\rho_{11}=\{0\}<\{x\}<\{y,1\}$$

States of $\mathbf{F}_{\alpha}^{\Delta}$ are the convex combinations of finitely many truth value assignments.

Let s be the state on $\mathbf{F}_2(\mathbb{G}_{\Delta})$ given by

$$\begin{split} s(\overline{\chi_{\rho_1}}) &= 1/3 & s(\overline{\chi_{\rho_4}}) &= 1/6 \\ s(\overline{\chi_{\rho_5}}) &= 1/2 & s(\overline{\chi \wedge \chi_{\rho_4}}) &= 1/12 \\ s(\overline{\chi \wedge \chi_{\rho_5}}) &= 1/12 & s(\overline{y \wedge \chi_{\rho_4}}) &= 1/6 \\ s(\overline{\chi_{\sigma}}) &= 0 & \text{for } \sigma \not\in \{\rho_1, \rho_4, \rho_5\} \end{split}$$

For n=2, the set of Gödel partitions Ω_2 is:

$$\rho_{1} = \{0, x, y\} < \{1\}
\rho_{2} = \{0, y\} < \{x\} < \{1\}
\rho_{3} = \{0, x\} < \{y\} < \{1\}
\rho_{4} = \{0\} < \{x, y\} < \{1\}
\rho_{5} = \{0\} < \{x\} < \{y\} < \{1\}
\rho_{6} = \{0\} < \{y\} < \{x\} < \{1\}
\rho_{7} = \{0, x\} < \{y, 1\}
\rho_{8} = \{0, y\} < \{x, 1\}
\rho_{9} = \{0\} < \{x, y, 1\}
\rho_{10} = \{0\} < \{y\} < \{x, 1\}
\rho_{11} = \{0\} < \{x\} < \{y, 1\}$$

 $s(\overline{\chi_{01}}) = 1/3$

States of \mathbf{F}_n^{Δ} are the convex combinations of finitely many truth value assignments.

 $s(\overline{\chi_{04}}) = 1/6$

Let s be the state on $\mathbf{F}_2(\mathbb{G}_\Delta)$ given by

$$\begin{split} s(\overline{\chi_{\rho_5}}) &= 1/2 & s(\overline{x \wedge \chi_{\rho_4}}) = 1/12 \\ s(\overline{x \wedge \chi_{\rho_5}}) &= 1/12 & s(\overline{y \wedge \chi_{\rho_4}}) = 1/6 \\ s(\overline{\chi_\sigma}) &= 0 & \text{for } \sigma \not\in \{\rho_1, \rho_4, \rho_5\} \end{split}$$
 Define the discrete measure μ by setting
$$\mu(\{\mathbf{z}_{\rho_1}\}) &= 1/3 & \mathbf{z}_{\rho_1} = (0,0) \\ \mu(\{\mathbf{z}_{\rho_4}\}) &= 1/6 & \mathbf{z}_{\rho_4} = (1/2, 1/2) \end{split}$$

 $\mu(\{z_{05}\}) = 1/2$ $z_{05} = (1/6, 1/3)$

For n=2, the set of Gödel partitions Ω_2 is: $\begin{aligned} \rho_1 &= \{0,x,y\} < \{1\} \\ \rho_2 &= \{0,y\} < \{x\} < \{1\} \\ \rho_3 &= \{0,x\} < \{y\} < \{1\} \\ \rho_4 &= \{0\} < \{x,y\} < \{1\} \\ \rho_5 &= \{0\} < \{x\} < \{y\} < \{1\} \\ \rho_6 &= \{0\} < \{y\} < \{x\} < \{1\} \\ \rho_7 &= \{0,x\} < \{y,1\} \\ \rho_8 &= \{0,y\} < \{x,1\} \end{aligned}$

 $\rho_9 = \{0\} < \{x, y, 1\}$ $\rho_{10} = \{0\} < \{y\} < \{x, 1\}$ $\rho_{11} = \{0\} < \{x\} < \{y, 1\}$

States of $\mathbf{F}_{\alpha}^{\Delta}$ are the convex combinations of finitely many truth value assignments.

Let
$$s$$
 be the state on $\mathbf{F}_2(\mathbb{G}_\Delta)$ given by

Introduction

$$s(\overline{\chi_{\rho_1}}) = 1/3$$
 $s(\overline{\chi_{\rho_4}}) = 1/6$

$$s(\overline{\chi_{\rho_5}}) = 1/2$$
 $s(\overline{x \wedge \chi_{\rho_4}}) = 1/12$
 $s(\overline{x \wedge \chi_{\rho_5}}) = 1/12$ $s(\overline{y \wedge \chi_{\rho_4}}) = 1/6$

$$s(\overline{\chi_{\sigma}}) = 0$$
 for $\sigma \notin \{\rho_1, \rho_4, \rho_5\}$

Define the discrete measure
$$\mu$$
 by setting

$$\mu(\{\mathbf{z}_{\rho_1}\}) = 1/3$$
 $\mathbf{z}_{\rho_1} = (0,0)$

$$\mu(\{\mathbf{z}_{\rho_4}\}) = 1/6$$
 $\mathbf{z}_{\rho_4} = (1/2, 1/2)$

$$\mu(\{\mathbf{z}_{
ho_5}\}) = 1/2$$
 $\mathbf{z}_{
ho_5} = (1/6, 1/3)$

Take the G_{Λ} -function f that is equal to 1 over D_{ρ_1} , it is equal to 0 over D_{ρ_4} and it is equal to \overline{y} on $D_{o_{\overline{b}}}$. Then

For n=2, the set of Gödel partitions Ω_2 is:

$$\rho_1 = \{0, x, y\} < \{1\}$$

$$\rho_2 = \{0, y\} < \{x\} < \{1\}$$

$$\rho_3 = \{0, x\} < \{y\} < \{1\}$$

$$\rho_4 = \{0\} < \{x, y\} < \{1\}$$

$$\rho_5 = \{0\} < \{x\} < \{y\} < \{1\}$$

$$\rho_6 = \{0\} < \{y\} < \{x\} < \{1\}$$

$$\rho_7 = \{0, x\} < \{y, 1\}$$

$$\rho_8 = \{0, y\} < \{x, 1\}$$

$$\rho_9 = \{0\} < \{x, y, 1\}$$

$$\rho_{10} = \{0\} < \{y\} < \{x, 1\}$$

$$\rho_{11} = \{0\} < \{x\} < \{y, 1\}$$

 $\rho_6 = \{0\} < \{y\} < \{x\} < \{1\}$

 $\rho_7 = \{0, x\} < \{y, 1\}$

 $\rho_8 = \{0, y\} < \{x, 1\}$

 $\rho_9 = \{0\} < \{x, v, 1\}$ $\rho_{10} = \{0\} < \{y\} < \{x, 1\}$

 $\rho_{11} = \{0\} < \{x\} < \{y, 1\}$

Corollary

Introduction

States of \mathbf{F}_n^{Δ} are the convex combinations of finitely many truth value assignments.

Let s be the state on $\mathbf{F}_2(\mathbb{G}_{\Delta})$ given by For n=2, the set of Gödel partitions Ω_2 is:

$$s(\overline{\chi_{\rho_1}}) = 1/3$$
 $s(\overline{\chi_{\rho_4}}) = 1/6$ $\rho_1 = \{0, x, y\} < \{1\}$

$$s(\overline{\chi_{\rho_5}}) = 1/2 \qquad s(\overline{x \wedge \chi_{\rho_4}}) = 1/12 \qquad \rho_2 = \{0, y\} < \{x\} < \{1\}$$

$$s(\overline{x \wedge \chi_{\rho_5}}) = 1/12 \qquad s(\overline{y \wedge \chi_{\rho_4}}) = 1/6 \qquad \rho_3 = \{0, x\} < \{y\} < \{1\}$$

$$s(\overline{\chi_{\sigma}}) = 0 \qquad \text{for } \sigma \notin \{\rho_1, \rho_4, \rho_5\} \qquad \rho_4 = \{0\} < \{x, y\} < \{1\}$$

$$\rho_5 = \{0\} < \{x\} < \{y\} < \{1\}$$

Define the discrete measure
$$\mu$$
 by setting

$$\mu(\{\mathbf{z}_{\rho_1}\}) = 1/3$$
 $\mathbf{z}_{\rho_1} = (0,0)$
 $\mu(\{\mathbf{z}_{\rho_4}\}) = 1/6$ $\mathbf{z}_{\rho_4} = (1/2,1/2)$

$$\mu(\{\mathbf{z}_{\rho_5}\}) = 1/2$$
 $\mathbf{z}_{\rho_5} = (1/6, 1/3)$

Take the
$$G_{\Delta}$$
-function f that is equal to 1 over $D_{\alpha s}$, it is equal to 0 over $D_{\alpha s}$ and it is equal to

 D_{ρ_1} , it is equal to 0 over D_{ρ_4} and it is equal to \overline{y} on D_{ρ_5} . Then

$$s(f) = s(\overline{\chi_{\rho_1}} \vee (\overline{y} \wedge \overline{\chi_{\rho_5}})) = s(\overline{\chi_{\rho_1}}) + s(\overline{y} \wedge \overline{\chi_{\rho_5}}) = \frac{1}{3} + \frac{1}{6} = \frac{1}{2}$$

$$\int_{[0,1]^2} f \mathrm{d} \mu = \sum_{i \in \{1,4,5\}} f(z_{\rho_i}) \mu(\{z_{\rho_i}\}) = 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{6} + \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{2} = s(f) \,.$$

Duals of Gödel Algebras

A nonempty subset F of A is called an *upper-set* when for all $x, y \in A$, if x < y and $x \in F$, then $y \in F$. If $x \odot y \in F$ for all $x, y \in F$, then F is a filter of **A**. We call $\bigwedge_{x \in F} x$ the generator of the filter F. A filter F of A is **prime** if $F \neq A$ and for all $x, y \in A$, either $x \to y \in F$ or $y \to x \in F$.

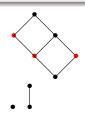
We call the poset SpecA of prime filters of finite Gödel algebra A ordered by reverse inclusion, the prime spectrum of A.

A nonempty subset F of A is called an *upper-set* when for all $x,y\in A$, if $x\leq y$ and $x\in F$, then $y\in F$. If $x\odot y\in F$ for all $x,y\in F$, then F is a **filter** of A. We call $\bigwedge_{x\in F}x$ the *generator* of the filter F. A filter F of A is **prime** if $F\neq A$ and for all $x,y\in A$, either $x\to y\in F$ or $y\to x\in F$.

We call the poset SpecA of prime filters of finite Gödel algebra A ordered by reverse inclusion, the **prime spectrum** of A.

Proposition (Horn, 1969)

Let \boldsymbol{A} be a finite Gödel algebra, then $\mathsf{Spec}\boldsymbol{A}$ is a forest.



A nonempty subset F of A is called an *upper-set* when for all $x,y\in A$, if $x\leq y$ and $x\in F$, then $y\in F$. If $x\odot y\in F$ for all $x,y\in F$, then F is a **filter** of A. We call $\bigwedge_{x\in F}x$ the *generator* of the filter F. A filter F of A is **prime** if $F\neq A$ and for all $x,y\in A$, either $x\to y\in F$ or $y\to x\in F$.

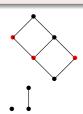
We call the poset SpecA of prime filters of finite Gödel algebra A ordered by reverse inclusion, the **prime spectrum** of A.

Proposition (Horn, 1969)

Let A be a finite Gödel algebra, then SpecA is a forest.

If **A** is a G_{Δ} -algebra then a filter F of **A** is a filter of its Gödel reduct $\bar{\mathbf{A}}$ further satisfying $x \in F$ implies $\Delta x \in F$.

The inclusion-maximal elements of Spec(A) are the maximal filters of A, and they form the maximal spectrum $Max(A) \subseteq Spec(A)$.



A nonempty subset F of A is called an *upper-set* when for all $x, y \in A$, if x < y and $x \in F$, then $y \in F$. If $x \odot y \in F$ for all $x, y \in F$, then F is a filter of **A**. We call $\bigwedge_{x \in F} x$ the generator of the filter F. A filter F of A is **prime** if $F \neq A$ and for all $x, y \in A$, either $x \to y \in F$ or $y \to x \in F$.

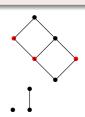
We call the poset SpecA of prime filters of finite Gödel algebra A ordered by reverse inclusion, the prime spectrum of A.

Proposition (Horn, 1969)

Let A be a finite Gödel algebra, then SpecA is a forest.

If **A** is a G_{Δ} -algebra then a filter F of **A** is a filter of its Gödel reduct **A** further satisfying $x \in F$ implies $\Delta x \in F$.

The inclusion-maximal elements of Spec(A) are the maximal filters of A, and they form the maximal spectrum $Max(A) \subseteq Spec(A)$.



Proposition (Aguzzoli and Codara, 2016)

Every finite G_{Δ} -algebra **A** is a direct product of chains. That is, $\mathbf{A} \simeq \prod_{F \in \mathsf{Max}(\mathbf{A})} \mathbf{A}/F$, and $Max(\mathbf{A}) = Spec(\mathbf{A})$.

iais of GodelV Algebras

For each $\mathbf{A} \in (\mathbb{G}_{\Delta})_{fin}$, the poset $Spec(\bar{\mathbf{A}})$, that is, the prime spectrum of the G-algebra reduct of \mathbf{A} , ordered by reverse inclusion, is isomorphic with the poset of the j.i. elements of \mathbf{A} .

$$\mathsf{Spec}^{\Delta}(\mathbf{A}) = \mathcal{C}(\mathit{Spec}(\mathbf{\bar{A}}))$$

where $\mathcal{C}(P)$ is the multiset $\{C_1, C_2, \ldots, C_u\}$, when the poset P is a disjoint union $C_1 \cup C_2 \cup \cdots \cup C_u$ of chains.

Duals of Gödel Algebras

Introduction

For each $\mathbf{A} \in (\mathbb{G}_{\Delta})_{fin}$, the poset $Spec(\bar{\mathbf{A}})$, that is, the prime spectrum of the G-algebra reduct of \mathbf{A} , ordered by reverse inclusion, is isomorphic with the poset of the j.i. elements of A.

$$\mathsf{Spec}^\Delta(\mathbf{A}) = \mathcal{C}(\mathit{Spec}(\mathbf{ar{A}}))$$

where C(P) is the multiset $\{C_1, C_2, \ldots, C_u\}$, when the poset P is a disjoint union $C_1 \cup C_2 \cup \cdots \cup C_u$ of chains.

The free Gödel Algebra on one generator \mathcal{G}^1_{Λ} and its dual:

Duals of $G\"{o}del_{\Delta}$ Algebras

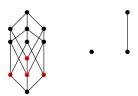
Introduction

For each $\mathbf{A} \in (\mathbb{G}_{\Delta})_{fin}$, the poset $Spec(\bar{\mathbf{A}})$, that is, the prime spectrum of the G-algebra reduct of \mathbf{A} , ordered by reverse inclusion, is isomorphic with the poset of the j.i. elements of \mathbf{A} .

$$\mathsf{Spec}^{\Delta}(\mathbf{A}) = \mathcal{C}(\mathit{Spec}(\mathbf{ar{A}}))$$

where $\mathcal{C}(P)$ is the multiset $\{C_1, C_2, \dots, C_u\}$, when the poset P is a disjoint union $C_1 \cup C_2 \cup \dots \cup C_u$ of chains.

The free $G\ddot{o}del_{\Delta}$ Algebra on one generator \mathcal{G}^1_{Δ} and its dual:



Conversely, given a chain C we define:

$$\begin{aligned} & \mathsf{Sub}^{\Delta}(\mathit{C}) = \\ & \left(\{ D \subseteq \mathit{C} \mid D = \mathop{\downarrow}\! D \}, \cup, \cap, \rightarrow, \sim, \emptyset, \mathit{C}, \Delta \right), \end{aligned}$$

where $\Delta C = C$ and $\Delta D = \emptyset$, for each subchain $D \subsetneq C$, $D_1 \to D_2 = C \setminus \uparrow(D_1 \setminus D_2)$, for all $D_1, D_2 \subseteq C$, $\sim D_1 = C$ if $D_1 = \emptyset$ and $\sim D_1 = \emptyset$ otherwise.

For each $\mathbf{A} \in (\mathbb{G}_{\Delta})_{fin}$, the poset $Spec(\bar{\mathbf{A}})$, that is, the prime spectrum of the G-algebra reduct of \mathbf{A} , ordered by reverse inclusion, is isomorphic with the poset of the i.i. elements of A.

$$\mathsf{Spec}^{\Delta}(\mathbf{A}) = \mathcal{C}(\mathit{Spec}(\mathbf{ar{A}}))$$

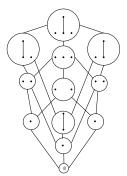
where C(P) is the multiset $\{C_1, C_2, \ldots, C_u\}$, when the poset P is a disjoint union $C_1 \cup C_2 \cup \cdots \cup C_n$ of chains.

The free Gödel Algebra on one generator \mathcal{G}^1_{Λ} and its dual:

Conversely, given a chain C we define:

$$Sub^{\Delta}(C) = \{ \{ D \subset C \mid D = \downarrow D \}, \cup, \cap, \rightarrow, \sim, \emptyset, C, \Delta \},$$

where $\Delta C = C$ and $\Delta D = \emptyset$, for each subchain $D \subseteq C$, $D_1 \rightarrow D_2 = C \setminus \uparrow (D_1 \setminus D_2)$, for all $D_1, D_2 \subseteq C$. $\sim D_1 = C$ if $D_1 = \emptyset$ and $\sim D_1 = \emptyset$ otherwise.



Duals of Gödel Algebras

Introduction

MC be the category whose objects are finite multisets of (nonempty) finite chains, and whose morphisms $h: C \to D$, are defined as follows.

Display C as $\{C_1,\ldots,C_m\}$ and D as $\{D_1,\ldots,D_n\}$. Then $h=\{h_i\}_{i=1}^m$, where each h_i is an order preserving surjection h_i : $C_i \rightarrow D_i$ for some $j \in \{1, 2, ..., n\}$.

 $(\mathbb{G}_{\Delta})_{fin}$ is the full subcategory of \mathbb{G}_{Δ} whose objects have finite cardinality, and morphisms are simply homomorphisms of algebras.

The two previous constructions are functorial:

$$\mathsf{Spec}^{\Delta}: (\mathbb{G}_{\Delta})_{\mathit{fin}} \to \mathsf{MC}, \qquad \mathsf{Sub}^{\Delta}: \mathsf{MC} \to (\mathbb{G}_{\Delta})_{\mathit{fin}},$$

Duals of Gödel Algebras

Introduction

MC be the category whose objects are finite multisets of (nonempty) finite chains, and whose morphisms $h: C \to D$, are defined as follows.

Display C as $\{C_1,\ldots,C_m\}$ and D as $\{D_1,\ldots,D_n\}$. Then $h=\{h_i\}_{i=1}^m$, where each h_i is an order preserving surjection $h_i: C_i \rightarrow D_i$ for some $j \in \{1, 2, ..., n\}$.

 $(\mathbb{G}_{\Delta})_{fin}$ is the full subcategory of \mathbb{G}_{Δ} whose objects have finite cardinality, and morphisms are simply homomorphisms of algebras.

The two previous constructions are functorial:

$$\mathsf{Spec}^{\Delta}: (\mathbb{G}_{\Delta})_{\mathit{fin}} \to \mathsf{MC}, \qquad \mathsf{Sub}^{\Delta}: \mathsf{MC} \to (\mathbb{G}_{\Delta})_{\mathit{fin}},$$

Theorem (Aguzzoli and Codara, 2016)

The categories $(\mathbb{G}_{\Delta})_{fin}$ and MC are dually equivalent.

A combinatorial way to States

A labeling / is a function /: $\operatorname{Spec}^\Delta \mathbf{F}_n^\Delta \to [0,1]$, such that

- ② If $I(\mathfrak{p})=0$ then $I(\mathfrak{q})=0$ for all \mathfrak{p} and \mathfrak{q} such that $\mathfrak{p}\leq\mathfrak{q}$ or $\mathfrak{q}\leq\mathfrak{p}$.

A **labeling** I is a function I: Spec $^{\Delta}$ $\mathbf{F}_{n}^{\Delta} \rightarrow [0, 1]$, such that

- 2 If $I(\mathfrak{p})=0$ then $I(\mathfrak{q})=0$ for all \mathfrak{p} and \mathfrak{q} such that $\mathfrak{p}\leq\mathfrak{q}$ or $\mathfrak{q}\leq\mathfrak{p}$.

Theorem

Let S_n be the collection of all states $s: \mathbf{F}_n^{\Delta} \to [0,1]$, and let L_n be the collection of all labelings I: Spec $^{\Delta} \mathbf{F}_{n}^{\Delta} \to [0,1]$. Then, the map defined for every formula φ over the set of variables $\{x_1, \ldots, x_n\}$ by

$$(S(I))(\overline{\varphi}) = \sum_{g \in J(\overline{\varphi})} I(\langle g \rangle)$$

is a bijective correspondence $S: L_n \to S_n$.

A **labeling** I is a function I: Spec $^{\Delta}$ $\mathbf{F}_{n}^{\Delta} \rightarrow [0,1]$, such that

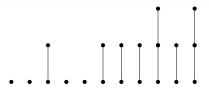
- 2 If $I(\mathfrak{p}) = 0$ then $I(\mathfrak{q}) = 0$ for all \mathfrak{p} and \mathfrak{q} such that $\mathfrak{p} \leq \mathfrak{q}$ or $\mathfrak{q} \leq \mathfrak{p}$.

Theorem

Let S_n be the collection of all states $s : \mathbf{F}_n^{\Delta} \to [0,1]$, and let L_n be the collection of all labelings I: Spec $^{\Delta}$ $\mathbf{F}_{n}^{\Delta} \rightarrow [0,1]$. Then, the map defined for every formula φ over the set of variables $\{x_1, \ldots, x_n\}$ by

$$(S(I))(\overline{\varphi}) = \sum_{g \in J(\overline{\varphi})} I(\langle g \rangle)$$

is a bijective correspondence $S: L_n \to S_n$.



A labeling I is a function $I: \operatorname{Spec}^{\Delta} \mathbf{F}_n^{\Delta} \to [0,1]$, such that

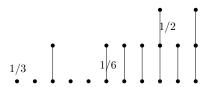
- 2 If $I(\mathfrak{p})=0$ then $I(\mathfrak{q})=0$ for all \mathfrak{p} and \mathfrak{q} such that $\mathfrak{p}\leq\mathfrak{q}$ or $\mathfrak{q}\leq\mathfrak{p}$.

Theorem

Let S_n be the collection of all states $s\colon F_n^\Delta\to [0,1]$, and let L_n be the collection of all labelings $I\colon \operatorname{Spec}^\Delta F_n^\Delta\to [0,1]$. Then, the map defined for every formula φ over the set of variables $\{x_1,\ldots,x_n\}$ by

$$(S(I))(\overline{\varphi}) = \sum_{g \in J(\overline{\varphi})} I(\langle g \rangle)$$

is a bijective correspondence $S: L_n \to S_n$.



Further axiomatisations

Drastic Product algebras constitute the subvariety \mathbb{DP} of \mathbb{MTL} axiomatised by $x \sqcup \sim (x * x) = 1.$

Theorem (Aguzzoli, Bianchi and V., 2014),

 MC^{\top} is dually equivalent to the category $\mathbb{DP}_{\mathit{fin}}$ of finite DP algebras and their homomorphisms.

 MC^{\top} is a non-full subcategory of MC.

Hence, we can adapt the presented constructions to axiomatise States over DP algebras.

Further axiomatisations

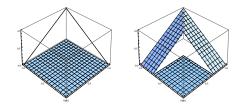
Drastic Product algebras constitute the subvariety \mathbb{DP} of \mathbb{MTL} axiomatised by $x \sqcup \sim (x * x) = 1$.

Theorem (Aguzzoli, Bianchi and V., 2014)

 MC^{T} is dually equivalent to the category \mathbb{DP}_fin of finite DP algebras and their homomorphisms.

 MC^{\top} is a non-full subcategory of MC.

Hence, we can adapt the presented constructions to axiomatise States over DP algebras.



The DP t-norm and the RDP t-norm $*_{2/3}$.

Further axiomatisations

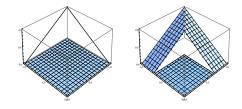
Drastic Product algebras constitute the subvariety \mathbb{DP} of \mathbb{MTL} axiomatised by $x \sqcup \sim (x * x) = 1.$

Theorem (Aguzzoli, Bianchi and V., 2014)

 MC^{\top} is dually equivalent to the category $\mathbb{DP}_{\mathit{fin}}$ of finite DP algebras and their homomorphisms.

MC[⊤] is a non-full subcategory of MC.

Hence, we can adapt the presented constructions to axiomatise States over DP algebras.



The DP t-norm and the RDP t-norm $*_{2/3}$.

