Computing Minimax Decisions with Incomplete Observations

Thijs van Ommen

University of Amsterdam

ISIPTA — July 10, 2017

Monty Hall's game show

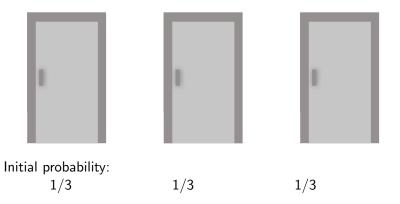


Illustration by Gracia Bovenberg-Murris

Monty Hall's game show

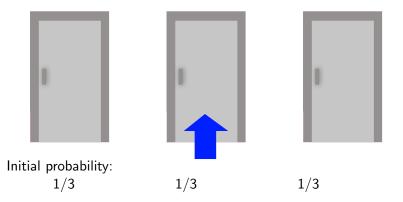


Illustration by Gracia Bovenberg-Murris

Monty Hall's game show

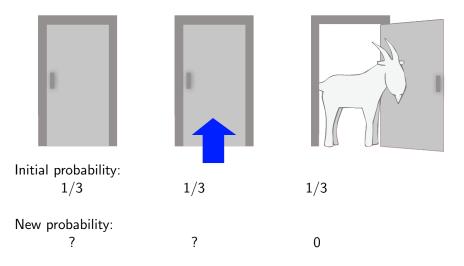


Illustration by Gracia Bovenberg-Murris

We will look at the part of the problem *after* the initial choice of door¹ Step 1 Outcome X is randomly drawn from $\mathcal{X} = \{x_1, x_2, x_3\}$ (the three doors) according to the uniform distribution p

¹This is the setting of Van Ommen, Koolen, Feenstra and Grünwald (2016), IJAR

Thijs van Ommen (Amsterdam)

Computing Minimax Decisions

3 / 11

We will look at the part of the problem *after* the initial choice of door¹

- Step 1 Outcome X is randomly drawn from $\mathcal{X} = \{x_1, x_2, x_3\}$ (the three doors) according to the uniform distribution p
- Step 2 The quizmaster, knowing X, chooses a set

 $Y \in \mathcal{Y} = \{\{x_1, x_2\}, \{x_2, x_3\}\}$ such that $Y \ni X$

- The structure of \mathcal{Y} reflects that the quizmaster will always open one door, but never the door the contestant picked
- The chosen set Y is called the message

¹This is the setting of Van Ommen, Koolen, Feenstra and Grünwald (2016), IJAR

3 / 11

We will look at the part of the problem *after* the initial choice of door¹

- Step 1 Outcome X is randomly drawn from $\mathcal{X} = \{x_1, x_2, x_3\}$ (the three doors) according to the uniform distribution p
- Step 2 The quizmaster, knowing X, chooses a set

 $Y \in \mathcal{Y} = \{\{x_1, x_2\}, \{x_2, x_3\}\}$ such that $Y \ni X$

- The structure of ${\mathcal Y}$ reflects that the quizmaster will always open one door, but never the door the contestant picked
- The chosen set Y is called the message
- Step 3 The contestant sees Y but not X, and must make a decision based on this incomplete observation

¹This is the setting of Van Ommen, Koolen, Feenstra and Grünwald (2016), IJAR

We also want to know what probabilities to assign to the outcomes in a more general situation:

- For arbitrary (but finite) outcome spaces \mathcal{X} ;
- For arbitrary marginal distribution p;
- For arbitrary families of allowed messages \mathcal{Y} .

The quizmaster's freedom of choice

- The quizmaster may use randomness when deciding which message Y to give us
- However, we don't know what distribution $P(Y \mid X)$ he uses

The quizmaster's freedom of choice

- The quizmaster may use randomness when deciding which message Y to give us
- However, we don't know what distribution $P(Y \mid X)$ he uses
- The conditional distribution P(Y | X) together with the marginal distribution p on X gives a joint distribution P(X, Y):

Quizmaster uses fair	coin:
----------------------	-------

Р	x_1	<i>x</i> ₂	<i>x</i> 3
$\{x_1, x_2\}$	1/3	1/6	_
$\{x_2, x_3\}$	_	1/6	1/3
p_{x}	1/3	1/3	1/3

Quizmaster always opens x_3 :

Р	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3
$\{x_1, x_2\}$	1/3	1/3	-
$\{x_2, x_3\}$	_	0	1/3
p_{x}	1/3	1/3	1/3

- Decision maker has aleatory uncertainty about X, and epistemic uncertainty about Y given X
 - \rightarrow the possible joint distributions form a credal set

Minimax decision problem

- Worst-case approach: we want to give guarantees on our decisions that hold no matter what mechanism is used to choose the message
 - Corresponds to a two-player zero-sum game between the contestant and the quizmaster

- Worst-case approach: we want to give guarantees on our decisions that hold no matter what mechanism is used to choose the message
 - Corresponds to a two-player zero-sum game between the contestant and the quizmaster

Different action spaces possible:

- Contestant's action may be choosing a single outcome
 - Can put any loss function on this
 - We allow him to randomize, to ensure existence of Nash equilibrium

- Worst-case approach: we want to give guarantees on our decisions that hold no matter what mechanism is used to choose the message
 - Corresponds to a two-player zero-sum game between the contestant and the quizmaster

Different action spaces possible:

- Contestant's action may be choosing a single outcome
 - Can put any loss function on this
 - We allow him to randomize, to ensure existence of Nash equilibrium

• Interesting alternative: it may be a prediction Q over the outcomes

• Can then consider different loss functions (/scoring rules); for example:

Logarithmic loss:
$$L(x, Q) = -\log Q(x)$$
Brier loss: $L(x, Q) = \sum_{x' \in \mathcal{X}} (Q(x') - \mathbf{1}_{x'=x})^2$

• If *L* is logarithmic loss, the characterization of optimality takes a very nice form:

Theorem (IJAR 2016 paper)

For logarithmic loss, a joint distribution P^* is optimal for the quizmaster if and only if there exists a vector $q \in [0, 1]^{\mathcal{X}}$ such that

$$q_x = P^*(x \mid y)$$
 for all $x \in y \in \mathcal{Y}$ with $P^*(y) > 0$, and
 $\sum_{x \in y} q_x \le 1$ for all $y \in \mathcal{Y}$

• We call this condition on P* the RCAR condition

• If *L* is logarithmic loss, the characterization of optimality takes a very nice form:

Theorem (IJAR 2016 paper)

For logarithmic loss, a joint distribution P^* is optimal for the quizmaster if and only if there exists a vector $q \in [0, 1]^{\mathcal{X}}$ such that

 $q_x = P^*(x \mid y)$ for all $x \in y \in \mathcal{Y}$ with $P^*(y) > 0$, and $\sum_{x \in y} q_x \le 1$ for all $y \in \mathcal{Y}$

- We call this condition on P* the RCAR condition
- Same condition applies if ${\mathcal Y}$ is a 'graph game' or a 'matroid game', for any loss function!

Previous theorem allows us to recognize whether a strategy is minimax optimal, but not to *find* such strategies

 One thing that makes this hard: combinatorial search due to distinction P*(y) > 0 vs. P*(y) = 0 Previous theorem allows us to recognize whether a strategy is minimax optimal, but not to *find* such strategies

- One thing that makes this hard: combinatorial search due to distinction P*(y) > 0 vs. P*(y) = 0
- And another: may require solving system of polynomial equations

Well-behaved case: Partition matroids

Partition matroid: partition \mathcal{X} into S_1, \ldots, S_k ; \mathcal{Y} consists of *all* subsets of \mathcal{X} that take one element from each S_i

	x_1	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5
$\{x_1, x_3\}$	*	_	*	_	
$\{x_1, x_4\}$	*	_	_	*	_
$\{x_1, x_5\}$	*	_	_	_	*
$\{x_2, x_3\}$	—	*	*	—	_
$\{x_2, x_4\}$	—	*	—	*	—
$\{x_2, x_5\}$	_	*	-	_	*

Well-behaved case: Partition matroids

Partition matroid: partition \mathcal{X} into S_1, \ldots, S_k ; \mathcal{Y} consists of *all* subsets of \mathcal{X} that take one element from each S_i

	x_1	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5
$\{x_1, x_3\}$	*	_	*	_	-
$\{x_1, x_4\}$	*	_	_	*	-
$\{x_1, x_5\}$	*	_	_	_	*
$\{x_2, x_3\}$	_	*	*	_	-
$\{x_2, x_4\}$	_	*	_	*	-
$\{x_2, x_5\}$	_	*		_	*

Example:

- messages (rows) are products
- $S_1 = \{x_1, x_2\}$ are brands, $S_2 = \{x_3, x_4, x_5\}$ are colours; customers buy products based on preference for either a brand or a colour
- shopkeeper observers customer buying a product and wants to know underlying preference

Thijs van Ommen (Amsterdam)

• For partition matroid, RCAR solution can be computed directly:

- $q_x = \sum_{x' \in S_i} p_{x'}$, where S_i is the set containing x
- Possible choice for P(y) (may not be unique):

$$P(y) = \prod_{x \in y} \frac{p_x}{q_x}.$$

• For partition matroid, RCAR solution can be computed directly:

- $q_x = \sum_{x' \in S_i} p_{x'}$, where S_i is the set containing x
- Possible choice for P(y) (may not be unique):

$$P(y) = \prod_{x \in y} \frac{p_x}{q_x}.$$

• Interpretation: this *P* makes the message *Y* independent of the index *I* of the true set *S_i* — tells the decision maker nothing extra!

- RCAR solutions play a central rule in this decision problem with incomplete observations, but are often hard to compute
- ... but are very easy to compute if $\mathcal Y$ is a partition matroid!
 - Efficient algorithms for graph games and general matroid games also exist (Chapter 8 of Van Ommen, 2015).

Thank you!

Р	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4
x_1, x_2	1/3	1/6		_
$\{x_2, x_3, x_4\}$	_	1/6	1/6	1/6
<i>p</i> _x	1/3	1/3	1/6	1/6

• This strategy *P* is optimal for logarithmic loss (it satisfies the RCAR condition), but not for Brier loss

- If the set of available messages \mathcal{Y} forms a graph (meaning that each message contains exactly two outcomes), then the RCAR condition characterizes optimality regardless of the loss function;
- If \mathcal{Y} forms a matroid (satisfies the matroid basis exchange property), then the same is true;
- For any other \mathcal{Y} , this is not the case: there exists some marginal p such that the optimal strategies for log loss and Brier loss are different