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Monty Hall’s game show

Initial probability:
1/3 1/3 1/3

New probability:
? ? 0

Illustration by Gracia Bovenberg-Murris
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Formalizing the problem

We will look at the part of the problem after the initial choice of door1

Step 1 Outcome X is randomly drawn from X = {x1, x2, x3} (the
three doors) according to the uniform distribution p

Step 2 The quizmaster, knowing X , chooses a set
Y ∈ Y = {{x1, x2}, {x2, x3}} such that Y 3 X

The structure of Y reflects that the quizmaster will
always open one door, but never the door the
contestant picked
The chosen set Y is called the message

Step 3 The contestant sees Y but not X , and must make a decision
based on this incomplete observation

1This is the setting of Van Ommen, Koolen, Feenstra and Grünwald (2016), IJAR
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Generalizing the problem

We also want to know what probabilities to assign to the outcomes in a
more general situation:

For arbitrary (but finite) outcome spaces X ;

For arbitrary marginal distribution p;

For arbitrary families of allowed messages Y.
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The quizmaster’s freedom of choice

The quizmaster may use randomness when deciding which message Y
to give us

However, we don’t know what distribution P(Y | X ) he uses

The conditional distribution P(Y | X ) together with the marginal
distribution p on X gives a joint distribution P(X ,Y ):

Quizmaster uses fair coin:
P x1 x2 x3

{x1, x2} 1/3 1/6 −
{x2, x3} − 1/6 1/3

px 1/3 1/3 1/3

Quizmaster always opens x3:
P x1 x2 x3

{x1, x2} 1/3 1/3 −
{x2, x3} − 0 1/3

px 1/3 1/3 1/3

Decision maker has aleatory uncertainty about X , and epistemic
uncertainty about Y given X
→ the possible joint distributions form a credal set
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Minimax decision problem

Worst-case approach: we want to give guarantees on our decisions
that hold no matter what mechanism is used to choose the message

Corresponds to a two-player zero-sum game between the contestant
and the quizmaster

Different action spaces possible:

Contestant’s action may be choosing a single outcome

Can put any loss function on this
We allow him to randomize, to ensure existence of Nash equilibrium

Interesting alternative: it may be a prediction Q over the outcomes

Can then consider different loss functions (/scoring rules); for example:

Logarithmic loss: L(x ,Q) = − logQ(x)

Brier loss: L(x ,Q) =
∑
x′∈X

(Q(x ′)− 1x′=x)
2
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Optimality theorem

If L is logarithmic loss, the characterization of optimality takes a very
nice form:

Theorem (IJAR 2016 paper)

For logarithmic loss, a joint distribution P∗ is optimal for the quizmaster if
and only if there exists a vector q ∈ [0, 1]X such that

qx = P∗(x | y) for all x ∈ y ∈ Y with P∗(y) > 0, and∑
x∈y

qx ≤ 1 for all y ∈ Y

We call this condition on P∗ the RCAR condition

Same condition applies if Y is a ‘graph game’ or a ‘matroid game’, for
any loss function!
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Hardness of computing RCAR strategies

Previous theorem allows us to recognize whether a strategy is minimax
optimal, but not to find such strategies

One thing that makes this hard: combinatorial search due to
distinction P∗(y) > 0 vs. P∗(y) = 0

And another: may require solving system of polynomial equations
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Well-behaved case: Partition matroids

Partition matroid: partition X into S1, . . . ,Sk ; Y consists of all subsets of
X that take one element from each Si

x1 x2 x3 x4 x5
{x1, x3} ∗ − ∗ − −
{x1, x4} ∗ − − ∗ −
{x1, x5} ∗ − − − ∗
{x2, x3} − ∗ ∗ − −
{x2, x4} − ∗ − ∗ −
{x2, x5} − ∗ − − ∗

Example:

messages (rows) are products

S1 = {x1, x2} are brands, S2 = {x3, x4, x5} are colours; customers buy
products based on preference for either a brand or a colour

shopkeeper observers customer buying a product and wants to know
underlying preference
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Form of strategy

For partition matroid, RCAR solution can be computed directly:

qx =
∑

x′∈Si
px′ , where Si is the set containing x

Possible choice for P(y) (may not be unique):

P(y) =
∏
x∈y

px
qx

.

Interpretation: this P makes the message Y independent of the index
I of the true set Si — tells the decision maker nothing extra!
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Conclusion

RCAR solutions play a central rule in this decision problem with
incomplete observations, but are often hard to compute

. . . but are very easy to compute if Y is a partition matroid!

Efficient algorithms for graph games and general matroid games also
exist (Chapter 8 of Van Ommen, 2015).

Thank you!
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Optimal strategy may depend on the loss function

P x1 x2 x3 x4
{x1, x2} 1/3 1/6 − −

{x2, x3, x4} − 1/6 1/6 1/6

px 1/3 1/3 1/6 1/6

This strategy P is optimal for logarithmic loss (it satisfies the RCAR
condition), but not for Brier loss
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RCAR condition beyond log loss

If the set of available messages Y forms a graph (meaning that each
message contains exactly two outcomes), then the RCAR condition
characterizes optimality regardless of the loss function;

If Y forms a matroid (satisfies the matroid basis exchange property),
then the same is true;

For any other Y, this is not the case: there exists some marginal p
such that the optimal strategies for log loss and Brier loss are different
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