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AIM

To study Bayesian inference under imprecise prior information:
the starting point is a precise strategy σ and a full
B-conditional prior belief function BelB , conveying ambiguity
in probabilistic prior information.

The prior knowledge could be only partially specified or, even
worse, it could refer to a different space of hypotheses.

Instead of considering a single prior distribution, one is forced to take into account a

set of priors (see, e.g., Dempster 1967, DeRoberts-Hartigan 1981, Huber 1981, Gilboa

Schmeidler 1989, Wasserman 1990, Wasserman-Kadane 1990, Walley 1991,

Chateauneuf et al. 2001, Klibanoff-Hanany 2007).
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Applications of multi-priors

• Statistics: Partial identifiable models, Models with latent
variables (mixture models), Hierarchical Bayesian moles,
Nuisance parameters elimination, Models with misclassified
variables, Elicitation of priors

• Economic theory: Gilboa-Schmeidler decision model,
Ambiguity in decision theory and in game theory

• Probability: de Finetti coherent probabilities, Random sets,
Multivalued-mappings, Imprecise probabilities,
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Non-additive uncertainty measures

ϕ : A → [0, 1] s.t. ϕ(∅) = 0, ϕ(Ω) = 1 uncertainty measure:

capacity: A ⊆ B ⇒ ϕ(A) ≤ ϕ(B);

n-monotone: ϕ
(∨n

i=1 Ei

)
≥

∑
∅6=I⊆{1,...,n}

(−1)|I |+1ϕ
(∧

i∈I Ei

)
;

belief function: n-monotone for n ∈ N, n ≥ 2.

ϕ : A → [0, 1], ϕ(A) = 1− ϕ(Ac) for every A ∈ A, dual measure.

ϕ : A → [0, 1] ϕ : A → [0, 1]
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Belief function: conditioning

Conditioning for belief function is deeply discussed in literature
(Dempster AMS 1967 JRSS 1968), (see also Dubois-Denœux
2012, Fagin-Halpern 1991, Jaffray IEEE 1992) have been
introduced through a generalized Bayesian conditioning rule
discussed also in (Walley TR 1981) for 2-monotone capacities.

If Bel(E ∧ H) + Pl(E c ∧ H) > 0

BelB(E |H) =
Bel(E ∧ H)

Bel(E ∧ H) + Pl(E c ∧ H)
,
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Conditional belief2

Definition
A function BelB : A×A0 → [0, 1]1 is a full B-conditional belief
function on A if there exists a C-class {Bel0, . . . ,Belk} of belief
functions on A such that, for every E |H ∈ A×A0, if E ∧ H = H
then BelB(E |H) = 1, while if E ∧ H 6= H

BelB(E |H) =
BelαE ,H

(E ∧ H)

BelαE ,H
(E ∧ H) + PlαE ,H

(E c ∧ H)
, (1)

where {Pl0, . . . ,Plk} is the set of dual plausibility functions of
{Bel0, . . . ,Belk} and

αE ,H = min{α ∈ {0, . . . , k} : Belα(E ∧ H) + Plα(E c ∧ H) > 0}

1A0 = A \ {∅}
2Coletti et al. Inf. Science 2016
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Full B-conditional belief

These conditional measures BelB and PlB determine the
non-empty compact set

PB = {π̃ : π̃ is a full conditional probability on A, BelB ≤ π̃ ≤ PlB},

BelB = minPB PlB = maxPB

For every BelB : A×A0 → [0, 1] there is a finite Boolean algebra
B and a full conditional probability P : B × B0 → [0, 1] such that
PB can be recovered as the set of coherent extensions of P to
A×A0 and, thus,

BelB = minPB PlB maxPB
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Bayesian statistics

In the classical Bayesian setting3

• π : AL → [0, 1], (finitely additive) prior probability;

• σ : A× L → [0, 1], strategy s.t. for every Hi ∈ L
(S1) σ(F |Hi ) = 1 if F ∧ H = H for F ∈ A;

(S2) σ(·|Hi ) is a finitely additive probability on A;

• λ = σ|AE×L, statistical model

⇒ {π, λ} and {π, σ} is a coherent conditional probability

3L = {Hi}i∈I , E = {Ej}j∈J , partitions; AL,AE , Boolean algebras with
〈L〉 ⊆ AL ⊆ 〈L〉∗, 〈E〉 ⊆ AE ⊆ 〈E〉∗
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The role of coherence in Bayesian statistics

Given a statistical model λ on AE × L and A = 〈AL ∪ AE〉, then
there exists a unique strategy σ on A× L such that σ|AE×L = λ.

An aim is to determine the lower and upper envelope of the
coherent extensions P̃ of {σ, π}4.

4Petturiti-V. IJAR 2017
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Bayes theorem under ambiguity

• BelB is a full B-conditional belief function on AL5;

• σ : A× L → [0, 1], strategy s.t. for every Hi ∈ L
(S1) σ(F |Hi ) = 1 if F ∧ H = H for F ∈ A;

(S2) σ(·|Hi ) is a finitely additive probability on A;

• λ = σ|AE×L, statistical model

⇒ σ is a strategy on A× L

PB = {π̃ : π̃ is a full conditional probability on A, BelB ≤ π̃ ≤ PlB},

5Coletti et. al Inf. Science 2016
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Bayes theorem under ambiguity
⇒ BelB is a full B-conditional belief function on AL
⇒ PB is the set of full conditional probabilities on AL dominating
BelB
⇒ σ is a strategy on A× L

P = {P̃ : P̃ is a full cond. prob. on A extending {π̃, σ}, π̃ ∈ PB},

is a non-empty compact subset of [0, 1]A×A
0

endowed with the
product topology and

P = minP P = maxP

⇒ The lower envelope P(·|·) turns out to be the natural extension
of the Williams-coherent lower conditional probability {BelB , σ}.
⇒ In the finite setting it coincides with that due to (Walley 1991)
since the conglomerability condition is automatically satisfied.
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Bayes Theorem under ambiguity

The lower envelope P(·|·) is such that, for every F |K ∈ A×A0
L, if F ∧K = K ,

then P(F |K) = 1, otherwise:

(i) if K ∈ A0
L, then

P(F |K) = C

∫
σ(F |Hi )BelB(dHi |K);

(ii) if K ∈ A0 \ A0
L, then if there exists A ∈ A0

L such that K ⊆ A and
P(K |A) > 0 we have that

P(F |K) = min

{
P(F ∧ K |A)

P(F ∧ K |A) + U(F c ,K ;A)
,

L(F ,K ;A)

L(F ,K ;A) + P(F c ∧ K |A)

}
,

otherwise P(F |K) = 0.

where

L(F ,K ;A) = min
π̃∈PB

{
n∑

i=1

σ(FK |Hi )π̃(Hi |A) :
n∑

i=1

σ(F cK |Hi )π̃(Hi |A) = P(F cK |A)

}
,

U(F ,K ;A) = max
π̃∈PB

{
n∑

i=1

σ(FK |Hi )π̃(Hi |A) :
n∑

i=1

σ(F cK |Hi )π̃(Hi |A) = P(F cK |A)

}
,
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Bayes Theorem under ambiguity

Lower posterior probabilities

For every F |K ∈ A×A0 such that F ∧ K 6= K , K ∈ A0 \ A0
L and there exists

A ∈ A0
L such that K ⊆ A and P(K |A) > 0, if X (·) = σ(F ∧ H|·) and

(1− Y (·)) = (1− σ(F c ∧ H|·)) are comonotonic6 then

P(F |K) =
P(F ∧ K |A)

P(F ∧ K |A) + P(F c ∧ K |A)
.

⇒ This is a generalization of a result of (Wasserman 1990)
⇒ BelB(·|K) is a belief function on AL, for every K ∈ A0

L

⇒ The function P(·|K) can fail 2-monotonicity, for some K ∈ A0.

6X (·) = σ(F ∧ H|·) and (1− Y (·)) = (1− σ(F c ∧ H|·)) defined on L are
comonotonic if, for every Hh,Hk ∈ L,
[X (Hh)− X (Hk)] · [(1− Y (Hh))− (1− Y (Hk))] ≥ 0
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Example

An automatic system S can assume the states s1, s2, s3 with
π(0) =

(
1
3 ,

1
3 ,

1
3

)
and its evolution is determined by the Markov

chain

A =

 1 0 0
1
3

1
3

1
3

1
3

1
3

1
3



Figure : Transition matrix and graph of the Markov chain related to S
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Example
After n steps

π(n) = π(n−1)A =

(
1−

(
2

3

)n+1

,
1

3

(
2

3

)n

,
1

3

(
2

3

)n
)

π(n) is positive for every n ≥ 0, so it induces a unique full cond.
probability
The sequence of full cond. probabilities converges pointwise to

A§ ∅ S1 S2 S3 S1 ∨ S2 S1 ∨ S3 S2 ∨ S3 Ω

π(∞)(·|S1) 0 1 0 0 1 1 0 1

π(∞)(·|S2) 0 0 1 0 1 0 1 1

π(∞)(·|S3) 0 0 0 1 0 1 1 1

π(∞)(·|S1 ∨ S2) 0 1 0 0 1 1 0 1

π(∞)(·|S1 ∨ S3) 0 1 0 0 1 1 0 1

π(∞)(·|S2 ∨ S3) 0 0 1
2

1
2

1
2

1
2

1 1

π(∞)(·|Ω) 0 1 0 0 1 1 0 1

that is determined by {P0,P1} such that P0(·) = π(∞)(·|Ω) and
P1(·) = π(∞)(·|S2 ∨ S3).
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Example

Consider a second system T not directly observable: T can assume
three possible states t1, t2, t3, and if S is in state si then T is not
in state ti , for i = 1, 2, 3.

(B)∗ =
∨
{Si ∈ § : Si ⊆ B}, Bel0(B) = P0((B)∗) and Bel1(B) = P1((B)∗),

we obtain a B-conditional belief function on AΘ

AΘ ∅ T1 T2 T3 T1 ∨ T2 T1 ∨ T3 T2 ∨ T3 Ω
BelB(·|T1) 0 1 0 0 1 1 0 1
BelB(·|T2) 0 0 1 0 1 0 1 1
BelB(·|T3) 0 0 0 1 0 1 1 1

BelB(·|T1 ∨ T2) 0 0 0 0 1 0 0 1
BelB(·|T1 ∨ T3) 0 0 0 0 0 1 0 1
BelB(·|T2 ∨ T3) 0 0 0 0 0 0 1 1

BelB(·|Ω) 0 0 0 0 0 0 1 1
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Example

The state of the unobservable system T can be verified through a
detector D taking three possible values d1, d2 and d3, with di
corresponding to the state ti , for i = 1, 2, 3, with a reliability of
90% and equal chances on failures.
The statistical model on AD ×Θ

λ(Di |Ti ) = 90%, λ(Dj |Ti ) = λ(Dk |Ti ) = 5%

P(T1|Dj) =
P(T1 ∧ Dj)

P(T1 ∧ Dj) + P(T c
1 ∧ Dj)

= 0,

and P(T c
1 |Dj) = 1, so, P(T1|Dj) = P(T1|Dj) = 0 i.e., the

observation of the detector D does not change our degree of belief
on T1
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Example: Nuisance parameter elimination7

PROBLEM: Given a statistical model λ(E |Θ = θ, Γ = γ) where
Θ is the interest parameter, we want to eliminate the nuisance
parameter Γ.

• Integrated likelihood: for a conditional prior π

λ(E |Θ = θ) = D

∫
λ(E |Θ = θ, Γ = γ)π(d(Γ = γ)|Θ = θ)

• Profile likelihood:

λ̂(E |Θ = θ) = sup
γ
λ(E |Θ = θ, Γ = γ)

7Berger et al. Stat. Science 1999
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Example: Nuisance parameter elimination (1)

Consider:

• (Θ, Γ), random vector ranging in Θ× Γ = N× (0, 1)

• X = (X1, . . . ,Xk), random vector ranging in X = Nk
0

• Xi |(Θ = θ, Γ = γ) ∼ Bin(θ, γ), for i = 1, . . . , k , and
independent conditionally to (Θ = θ, Γ = γ)

• L = {H(θ,γ) = (Θ = θ, Γ = γ) : (θ, γ) ∈ Θ× Γ}
• E = {Ex = (X = x) : x ∈ X}

λ(X = x |Θ = θ, Γ = γ) =


[

k∏
i=1

(
θ
xi

)]
γ||x||1 (1− γ)θk−||x||1 , if θ ≥ ||x ||∞,

0 otherwise,
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Example: Nuisance parameter elimination (2)
Take:

• AL = 〈L〉∗ and AE = 〈E〉
• ϕ, vacuous belief (ϕ(Ω) = 1 and 0 otherwise) on AL giving rise to the

class
Pp = {π̃ : conditional prior on AL ×A0

L}
whose upper envelope πp = maxPp is defined for F |K ∈ AL ×A0

L as

πp(F |K) =

{
1 if K ⊆ F ,
0 otherwise,

GOAL
Make inference on conditional events (X = x |(Θ, Γ) ∈ {θ} × Γ)

⇒ The profile likelihood is a supremum of integrated likelihoods

λ̂(X = x |Θ = θ) = P
fd
ϕ (X = x |(Θ, Γ) ∈ {θ} × Γ)

= C

∫
λ(X = x |Θ = θ, Γ = γ)πp(d(Γ = γ)|Θ = θ)

= sup
γ
λ(X = x |Θ = θ, Γ = γ)
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Conclusions

We consider Bayesian inference under a precise strategy σ and
ambiguity in the prior information through a full B-conditional
belief function BelB : a characterization for the envelopes of the
class of full conditional probabilities dominating the assessment
{BelB , σ} is provided.

Future research: to introduce ambiguity also in the strategy by
considering an imprecise strategy β such that β(·|Hi ) is a belief
function, for every Hi ∈ L, possibly removing the finiteness
assumption. This would lead to a theory to compare with that of
Walley8.

8Miranda-Zaffalon 2013, 2017
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