Bayesian inference under ambiguity: Conditional prior belief functions

G. Coletti^a and D. Petturiti^a and B. Vantaggi^b

^a University of Perugia
 ^b "Sapienza" University of Roma

ISIPTA 2017 Lugano, 10-14 July 2015

To study Bayesian inference under imprecise prior information: the starting point is a precise strategy σ and a full B-conditional prior belief function Bel_B , conveying ambiguity in probabilistic prior information.

The prior knowledge could be only partially specified or, even worse, it could refer to a different space of hypotheses.

Instead of considering a single prior distribution, one is forced to take into account a set of priors (see, e.g., Dempster 1967, DeRoberts-Hartigan 1981, Huber 1981, Gilboa Schmeidler 1989, Wasserman 1990, Wasserman-Kadane 1990, Walley 1991, Chateauneuf et al. 2001, Klibanoff-Hanany 2007).

Applications of multi-priors

- Statistics: Partial identifiable models, Models with latent variables (mixture models), Hierarchical Bayesian moles, Nuisance parameters elimination, Models with misclassified variables, Elicitation of priors
- Economic theory: Gilboa-Schmeidler decision model, Ambiguity in decision theory and in game theory
- Probability: de Finetti coherent probabilities, Random sets, Multivalued-mappings, Imprecise probabilities,

Non-additive uncertainty measures

 $\varphi : \mathcal{A} \to [0,1]$ s.t. $\varphi(\emptyset) = 0$, $\varphi(\Omega) = 1$ uncertainty measure:

capacity: $A \subseteq B \Rightarrow \varphi(A) \leq \varphi(B)$;

n-monotone: $\varphi\left(\bigvee_{i=1}^{n} E_{i}\right) \geq \sum_{\substack{\emptyset \neq I \subseteq \{1,...,n\}}} (-1)^{|I|+1} \varphi\left(\bigwedge_{i \in I} E_{i}\right);$

belief function: *n*-monotone for $n \in \mathbb{N}$, $n \geq 2$.

 $\overline{\varphi}: \mathcal{A} \to [0,1], \ \overline{\varphi}(\mathcal{A}) = 1 - \varphi(\mathcal{A}^c)$ for every $\mathcal{A} \in \mathcal{A}$, dual measure.

Belief function: conditioning

Conditioning for belief function is deeply discussed in literature (Dempster AMS 1967 JRSS 1968), (see also Dubois-Denœux 2012, Fagin-Halpern 1991, Jaffray IEEE 1992) have been introduced through a *generalized Bayesian conditioning rule* discussed also in (Walley TR 1981) for 2-monotone capacities.

If
$$Bel(E \wedge H) + Pl(E^c \wedge H) > 0$$

 $Bel_B(E|H) = rac{Bel(E \wedge H)}{Bel(E \wedge H) + Pl(E^c \wedge H)},$

Conditional belief²

Definition

A function $Bel_B : \mathcal{A} \times \mathcal{A}^0 \to [0,1]^1$ is a **full B-conditional belief function** on \mathcal{A} if there exists a C-class $\{Bel_0, \ldots, Bel_k\}$ of belief functions on \mathcal{A} such that, for every $E|H \in \mathcal{A} \times \mathcal{A}^0$, if $E \wedge H = H$ then $Bel_B(E|H) = 1$, while if $E \wedge H \neq H$

$$Bel_B(E|H) = \frac{Bel_{\alpha_{E,H}}(E \wedge H)}{Bel_{\alpha_{E,H}}(E \wedge H) + Pl_{\alpha_{E,H}}(E^c \wedge H)},$$
 (1)

where $\{\textit{Pl}_0,\ldots,\textit{Pl}_k\}$ is the set of dual plausibility functions of $\{\textit{Bel}_0,\ldots,\textit{Bel}_k\}$ and

 $\alpha_{E,H} = \min\{\alpha \in \{0, \dots, k\} : Bel_{\alpha}(E \wedge H) + Pl_{\alpha}(E^{c} \wedge H) > 0\}$

Full B-conditional belief

These conditional measures Bel_B and Pl_B determine the non-empty compact set

 $\mathcal{P}_B = \{ \tilde{\pi} : \tilde{\pi} \text{ is a full conditional probability on } \mathcal{A}, Bel_B \leq \tilde{\pi} \leq Pl_B \},$

 $Bel_B = \min \mathcal{P}_B \quad Pl_B = \max \mathcal{P}_B$

For every $Bel_B : \mathcal{A} \times \mathcal{A}^0 \to [0,1]$ there is a finite Boolean algebra \mathcal{B} and a full conditional probability $P : \mathcal{B} \times \mathcal{B}^0 \to [0,1]$ such that \mathcal{P}_B can be recovered as the set of coherent extensions of P to $\mathcal{A} \times \mathcal{A}^0$ and, thus,

 $\mathit{Bel}_B = \mathsf{min}\,\mathcal{P}_B - \mathit{Pl}_B\,\mathsf{max}\,\mathcal{P}_B$

Full B-conditional belief

These conditional measures Bel_B and Pl_B determine the non-empty compact set

 $\mathcal{P}_B = \{ \tilde{\pi} : \tilde{\pi} \text{ is a full conditional probability on } \mathcal{A}, Bel_B \leq \tilde{\pi} \leq Pl_B \},\$

 $Bel_B = \min \mathcal{P}_B \quad Pl_B = \max \mathcal{P}_B$

For every $Bel_B : \mathcal{A} \times \mathcal{A}^0 \to [0, 1]$ there is a finite Boolean algebra \mathcal{B} and a full conditional probability $P : \mathcal{B} \times \mathcal{B}^0 \to [0, 1]$ such that \mathcal{P}_B can be recovered as the set of coherent extensions of P to $\mathcal{A} \times \mathcal{A}^0$ and, thus,

$$\mathit{Bel}_{B} = \mathsf{min}\,\mathcal{P}_{B} \,\,\,\,\,\,\, \mathit{Pl}_{B}\,\mathsf{max}\,\mathcal{P}_{B}$$

Bayesian statistics

In the classical Bayesian setting³

- $\pi:\mathcal{A}_{\mathcal{L}}
 ightarrow [0,1]$, (finitely additive) prior probability;
- σ : A × L → [0, 1], strategy s.t. for every H_i ∈ L
 (S1) σ(F|H_i) = 1 if F ∧ H = H for F ∈ A;
 (S2) σ(·|H_i) is a finitely additive probability on A;
- $\lambda = \sigma_{|\mathcal{A}_{\mathcal{E}} \times \mathcal{L}}$, statistical model

 \Rightarrow { π , λ } and { π , σ } is a coherent conditional probability

 ${}^{3}\mathcal{L} = \{H_i\}_{i \in I}, \mathcal{E} = \{E_j\}_{j \in J}, \text{ partitions; } \mathcal{A}_{\mathcal{L}}, \mathcal{A}_{\mathcal{E}}, \text{ Boolean algebras with} \ \langle \mathcal{L} \rangle \subseteq \mathcal{A}_{\mathcal{L}} \subseteq \langle \mathcal{L} \rangle^*, \ \langle \mathcal{E} \rangle \subseteq \mathcal{A}_{\mathcal{E}} \subseteq \langle \mathcal{E} \rangle^*$

The role of coherence in Bayesian statistics

Given a statistical model λ on $\mathcal{A}_{\mathcal{E}} \times \mathcal{L}$ and $\mathcal{A} = \langle \mathcal{A}_{\mathcal{L}} \cup \mathcal{A}_{\mathcal{E}} \rangle$, then there exists a unique strategy σ on $\mathcal{A} \times \mathcal{L}$ such that $\sigma_{|\mathcal{A}_{\mathcal{E}} \times \mathcal{L}} = \lambda$.

An aim is to determine the lower and upper envelope of the coherent extensions \tilde{P} of $\{\sigma, \pi\}^4$.

⁴Petturiti-V. IJAR 2017

- Bel_B is a full B-conditional belief function on $\mathcal{A}_{\mathcal{L}}^5$;
- $\sigma : \mathcal{A} \times \mathcal{L} \rightarrow [0, 1]$, strategy s.t. for every $H_i \in \mathcal{L}$ (S1) $\sigma(F|H_i) = 1$ if $F \wedge H = H$ for $F \in \mathcal{A}$; (S2) $\sigma(\cdot|H_i)$ is a finitely additive probability on \mathcal{A} ;
- $\lambda = \sigma_{|\mathcal{A}_{\mathcal{E}} \times \mathcal{L}}$, statistical model
- $\Rightarrow \sigma \text{ is a strategy on } \mathcal{A} \times \mathcal{L}$

 $\mathcal{P}_B = \{ \tilde{\pi} : \tilde{\pi} \text{ is a full conditional probability on } \mathcal{A}, Bel_B \leq \tilde{\pi} \leq Pl_B \},$

⁵Coletti et. al Inf. Science 2016

- Bel_B is a full B-conditional belief function on $\mathcal{A}_{\mathcal{L}}^5$;
- $\sigma : \mathcal{A} \times \mathcal{L} \rightarrow [0, 1]$, strategy s.t. for every $H_i \in \mathcal{L}$ (S1) $\sigma(F|H_i) = 1$ if $F \wedge H = H$ for $F \in \mathcal{A}$; (S2) $\sigma(\cdot|H_i)$ is a finitely additive probability on \mathcal{A} ;
- $\lambda = \sigma_{|\mathcal{A}_{\mathcal{E}} \times \mathcal{L}}$, statistical model
- $\Rightarrow \sigma \text{ is a strategy on } \mathcal{A} \times \mathcal{L}$

 $\mathcal{P}_B = \{ \tilde{\pi} : \tilde{\pi} \text{ is a full conditional probability on } \mathcal{A}, Bel_B \leq \tilde{\pi} \leq Pl_B \},\$

⁵Coletti et. al Inf. Science 2016

 $\label{eq:BelB} \begin{array}{l} \Rightarrow \ Bel_B \ \text{is a full B-conditional belief function on } \mathcal{A}_{\mathcal{L}} \\ \Rightarrow \ \mathcal{P}_B \ \text{is the set of full conditional probabilities on } \mathcal{A}_{\mathcal{L}} \ \text{dominating } \\ Bel_B \end{array}$

 $\Rightarrow \sigma$ is a strategy on $\mathcal{A} \times \mathcal{L}$

$\mathcal{P} = \{ \tilde{P} : \tilde{P} \text{ is a full cond. prob. on } \mathcal{A} \text{ extending } \{ \tilde{\pi}, \sigma \}, \, \tilde{\pi} \in \mathcal{P}_B \},$

is a non-empty compact subset of $[0,1]^{\mathcal{A}\times\mathcal{A}^0}$ endowed with the product topology and

$$\underline{P} = \min \mathcal{P} \quad \overline{P} = \max \mathcal{P}$$

⇒ The lower envelope $\underline{P}(\cdot|\cdot)$ turns out to be the natural extension of the Williams-coherent lower conditional probability { Bel_B, σ }. ⇒ In the finite setting it coincides with that due to (Walley 1991) since the conglomerability condition is automatically satisfied.

 $\label{eq:BelB} \begin{array}{l} \Rightarrow \ Bel_B \ \text{is a full B-conditional belief function on } \mathcal{A}_{\mathcal{L}} \\ \Rightarrow \ \mathcal{P}_B \ \text{is the set of full conditional probabilities on } \mathcal{A}_{\mathcal{L}} \ \text{dominating } \\ Bel_B \end{array}$

 $\Rightarrow \sigma$ is a strategy on $\mathcal{A} \times \mathcal{L}$

 $\mathcal{P} = \{ \tilde{P} : \tilde{P} \text{ is a full cond. prob. on } \mathcal{A} \text{ extending } \{ \tilde{\pi}, \sigma \}, \, \tilde{\pi} \in \mathcal{P}_B \},$

is a non-empty compact subset of $[0,1]^{\mathcal{A}\times\mathcal{A}^0}$ endowed with the product topology and

 $\underline{P} = \min \mathcal{P} \quad \overline{P} = \max \mathcal{P}$

⇒ The lower envelope $\underline{P}(\cdot|\cdot)$ turns out to be the natural extension of the Williams-coherent lower conditional probability { Bel_B, σ }. ⇒ In the finite setting it coincides with that due to (Walley 1991) since the conglomerability condition is automatically satisfied.

 $\label{eq:BelB} \begin{array}{l} \Rightarrow \ Bel_B \ \text{is a full B-conditional belief function on } \mathcal{A}_{\mathcal{L}} \\ \Rightarrow \ \mathcal{P}_B \ \text{is the set of full conditional probabilities on } \mathcal{A}_{\mathcal{L}} \ \text{dominating } \\ Bel_B \end{array}$

 $\Rightarrow \sigma$ is a strategy on $\mathcal{A} \times \mathcal{L}$

 $\mathcal{P} = \{ \tilde{P} : \tilde{P} \text{ is a full cond. prob. on } \mathcal{A} \text{ extending } \{ \tilde{\pi}, \sigma \}, \, \tilde{\pi} \in \mathcal{P}_B \},$

is a non-empty compact subset of $[0,1]^{\mathcal{A}\times\mathcal{A}^0}$ endowed with the product topology and

$$\underline{P} = \min \mathcal{P} \quad \overline{P} = \max \mathcal{P}$$

⇒ The lower envelope $\underline{P}(\cdot|\cdot)$ turns out to be the natural extension of the Williams-coherent lower conditional probability { Bel_B, σ }. ⇒ In the finite setting it coincides with that due to (Walley 1991) since the conglomerability condition is automatically satisfied.

Bayes Theorem under ambiguity

The lower envelope $\underline{P}(\cdot|\cdot)$ is such that, for every $F|K \in \mathcal{A} \times \mathcal{A}_{\mathcal{L}}^{0}$, if $F \wedge K = K$, then $\underline{P}(F|K) = 1$, otherwise:

(i) if $K \in \mathcal{A}^0_{\mathcal{L}}$, then

$$\underline{P}(F|K) = \oint \sigma(F|H_i) Bel_B(\mathrm{d}H_i|K);$$

(ii) if $K \in \mathcal{A}^0 \setminus \mathcal{A}^0_{\mathcal{L}}$, then if there exists $A \in \mathcal{A}^0_{\mathcal{L}}$ such that $K \subseteq A$ and $\underline{P}(K|A) > 0$ we have that

$$\underline{P}(F|K) = \min\left\{\frac{\underline{P}(F \land K|A)}{\underline{P}(F \land K|A) + U(F^c, K; A)}, \frac{L(F, K; A)}{L(F, K; A) + \overline{P}(F^c \land K|A)}\right\}$$

otherwise $\underline{P}(F|K) = 0$.

where

$$\begin{split} L(F, K; A) &= \min_{\tilde{\pi} \in \mathcal{P}_B} \left\{ \sum_{i=1}^n \sigma(FK|H_i) \tilde{\pi}(H_i|A) : \sum_{i=1}^n \sigma(F^c K|H_i) \tilde{\pi}(H_i|A) = \overline{P}(F^c K|A) \right\}, \\ U(F, K; A) &= \max_{\tilde{\pi} \in \mathcal{P}_B} \left\{ \sum_{i=1}^n \sigma(FK|H_i) \tilde{\pi}(H_i|A) : \sum_{i=1}^n \sigma(F^c K|H_i) \tilde{\pi}(H_i|A) = \underline{P}(F^c K|A) \right\}, \end{split}$$

Lower posterior probabilities

For every $F|K \in \mathcal{A} \times \mathcal{A}^0$ such that $F \wedge K \neq K$, $K \in \mathcal{A}^0 \setminus \mathcal{A}^0_{\mathcal{L}}$ and there exists $A \in \mathcal{A}^0_{\mathcal{L}}$ such that $K \subseteq A$ and $\underline{P}(K|A) > 0$, if $X(\cdot) = \sigma(F \wedge H|\cdot)$ and $(1 - Y(\cdot)) = (1 - \sigma(F^c \wedge H|\cdot))$ are comonotonic⁶ then

$$\underline{P}(F|K) = \frac{\underline{P}(F \land K|A)}{\underline{P}(F \land K|A) + \overline{P}(F^c \land K|A)}$$

- \Rightarrow This is a generalization of a result of (Wasserman 1990)
- \Rightarrow $Bel_B(\cdot|K)$ is a belief function on $\mathcal{A}_{\mathcal{L}}$, for every $K \in \mathcal{A}_{\mathcal{L}}^0$
- ⇒ The function $\underline{P}(\cdot|K)$ can fail 2-monotonicity, for some $K \in \mathcal{A}^0$.

 ${}^{6}X(\cdot) = \sigma(F \wedge H|\cdot)$ and $(1 - Y(\cdot)) = (1 - \sigma(F^{c} \wedge H|\cdot))$ defined on \mathcal{L} are comonotonic if, for every $H_h, H_k \in \mathcal{L}$, $[X(H_h) - X(H_k)] \cdot [(1 - Y(H_h)) - (1 - Y(H_k))] \ge 0$

Example

An automatic system **S** can assume the states s_1 , s_2 , s_3 with $\pi^{(0)} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ and its evolution is determined by the Markov chain

Figure : Transition matrix and graph of the Markov chain related to S

After *n* steps

$$\pi^{(n)} = \pi^{(n-1)} A = \left(1 - \left(\frac{2}{3}\right)^{n+1}, \frac{1}{3}\left(\frac{2}{3}\right)^n, \frac{1}{3}\left(\frac{2}{3}\right)^n\right)$$

 $\pi^{(n)}$ is positive for every $n \ge 0$, so it induces a unique full cond. probability

The sequence of full cond. probabilities converges pointwise to

\mathcal{A}_{\S}	Ø	S_1	S_2	S_3	$S_1 \vee S_2$	$S_1 \vee S_3$	$S_2 \vee S_3$	Ω
$\pi^{(\infty)}(\cdot S_1)$	0	1	0	0	1	1	0	1
$\pi^{(\infty)}(\cdot S_2)$	0	0	1	0	1	0	1	1
$\pi^{(\infty)}(\cdot S_3)$	0	0	0	1	0	1	1	1
$\pi^{(\infty)}(\cdot S_1 \lor S_2)$	0	1	0	0	1	1	0	1
$\pi^{(\infty)}(\cdot S_1 \lor S_3)$	0	1	0	0	1	1	0	1
$\pi^{(\infty)}(\cdot S_2 \lor S_3)$	0	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1	1
$\pi^{(\infty)}(\cdot \Omega)$	0	1	Õ	Õ	ī	ī	0	1

that is determined by $\{P_0, P_1\}$ such that $P_0(\cdot) = \pi^{(\infty)}(\cdot|\Omega)$ and $P_1(\cdot) = \pi^{(\infty)}(\cdot|S_2 \vee S_3)$.

Example

Consider a second system **T** not directly observable: **T** can assume three possible states t_1 , t_2 , t_3 , and if **S** is in state s_i then **T** is not in state t_i , for i = 1, 2, 3.

 $(B)_* = \bigvee \{S_i \in \S : S_i \subseteq B\}, \quad Bel_0(B) = P_0((B)_*) \text{ and } Bel_1(B) = P_1((B)_*),$

we obtain a B-conditional belief function on \mathcal{A}_{Θ}

\mathcal{A}_{Θ}	Ø	T_1	T_2	T_3	$T_1 \vee T_2$	$T_1 \vee T_3$	$T_2 \vee T_3$	Ω
$Bel_B(\cdot T_1)$	0	1	0	0	1	1	0	1
$Bel_B(\cdot T_2)$	0	0	1	0	1	0	1	1
$Bel_B(\cdot T_3)$	0	0	0	1	0	1	1	1
$Bel_B(\cdot T_1 \lor T_2)$	0	0	0	0	1	0	0	1
$Bel_B(\cdot T_1 \vee T_3)$	0	0	0	0	0	1	0	1
$Bel_B(\cdot T_2 \lor T_3)$	0	0	0	0	0	0	1	1
$Bel_B(\cdot \Omega)$	0	0	0	0	0	0	1	1

Example

The state of the unobservable system **T** can be verified through a detector **D** taking three possible values d_1 , d_2 and d_3 , with d_i corresponding to the state t_i , for i = 1, 2, 3, with a reliability of 90% and equal chances on failures. The statistical model on $A_D \times \Theta$

$$\lambda(D_i|T_i) = 90\%, \quad \lambda(D_j|T_i) = \lambda(D_k|T_i) = 5\%$$

$$\underline{P}(T_1|D_j) = \frac{\underline{P}(T_1 \wedge D_j)}{\underline{P}(T_1 \wedge D_j) + \overline{P}(T_1^c \wedge D_j)} = 0,$$

and $\underline{P}(T_1^c|D_j) = 1$, so, $\underline{P}(T_1|D_j) = \overline{P}(T_1|D_j) = 0$ i.e., the observation of the detector **D** does not change our degree of belief on T_1

Example: Nuisance parameter elimination⁷

PROBLEM: Given a statistical model $\lambda(E|\Theta = \theta, \Gamma = \gamma)$ where Θ is the interest parameter, we want to eliminate the nuisance parameter Γ .

• Integrated likelihood: for a conditional prior π

$$\lambda(E|\Theta = \theta) = \oint \lambda(E|\Theta = \theta, \Gamma = \gamma)\pi(\mathrm{d}(\Gamma = \gamma)|\Theta = \theta)$$

• Profile likelihood:

$$\hat{\lambda}(E|\Theta=\theta) = \sup_{\gamma} \lambda(E|\Theta=\theta, \Gamma=\gamma)$$

⁷Berger et al. Stat. Science 1999

Example: Nuisance parameter elimination (1)

Consider:

- (Θ, Γ), random vector ranging in $\Theta \times \Gamma = \mathbb{N} \times (0, 1)$
- $X = (X_1, \dots, X_k)$, random vector ranging in $\mathbf{X} = \mathbb{N}_0^k$
- X_i|(Θ = θ, Γ = γ) ~ Bin(θ, γ), for i = 1,..., k, and independent conditionally to (Θ = θ, Γ = γ)
- $\mathcal{L} = \{ H_{(\theta,\gamma)} = (\Theta = \theta, \Gamma = \gamma) : (\theta, \gamma) \in \Theta \times \Gamma \}$

•
$$\mathcal{E} = \{E_x = (X = x) : x \in \mathbf{X}\}$$

$$\lambda(X = x | \Theta = \theta, \Gamma = \gamma) = \begin{cases} \left[\prod_{i=1}^{k} {\theta \choose x_i}\right] \gamma^{||x||_1} (1 - \gamma)^{\theta k - ||x||_1}, & \text{if } \theta \ge ||x||_{\infty}, \\ 0 & \text{otherwise}, \end{cases}$$

Example: Nuisance parameter elimination (2) Take:

- $\mathcal{A}_{\mathcal{L}} = \langle \mathcal{L} \rangle^*$ and $\mathcal{A}_{\mathcal{E}} = \langle \mathcal{E} \rangle$
- φ , vacuous belief ($\varphi(\Omega) = 1$ and 0 otherwise) on $\mathcal{A}_{\mathcal{L}}$ giving rise to the class

 $\mathcal{P}^{\mathbf{p}} = \{ \tilde{\pi} : \text{ conditional prior on } \mathcal{A}_{\mathcal{L}} \times \mathcal{A}_{\mathcal{L}}^{0} \}$

whose upper envelope $\overline{\pi}^{\mathbf{p}} = \max \mathcal{P}^{\mathbf{p}}$ is defined for $F | K \in \mathcal{A}_{\mathcal{L}} \times \mathcal{A}_{\mathcal{L}}^{0}$ as

 $\overline{\pi}^{\mathbf{p}}(F|K) = \begin{cases} 1 & \text{if } K \subseteq F, \\ 0 & \text{otherwise,} \end{cases}$

GOAL

Make inference on conditional events $(X = x | (\Theta, \Gamma) \in \{\theta\} \times \Gamma)$

 $\Rightarrow \text{ The profile likelihood is a supremum of integrated likelihoods} \\ \hat{\lambda}(X = x | \Theta = \theta) = \overline{P}_{\varphi}^{\mathsf{fd}}(X = x | (\Theta, \Gamma) \in \{\theta\} \times \Gamma) \\ = \oint \lambda(X = x | \Theta = \theta, \Gamma = \gamma) \overline{\pi}^{\mathsf{p}}(\mathrm{d}(\Gamma = \gamma) | \Theta = \theta) \\ = \sup_{\gamma} \lambda(X = x | \Theta = \theta, \Gamma = \gamma)$

Conclusions

We consider Bayesian inference under a precise strategy σ and ambiguity in the prior information through a full B-conditional belief function Bel_B : a characterization for the envelopes of the class of full conditional probabilities dominating the assessment $\{Bel_B, \sigma\}$ is provided.

Future research: to introduce ambiguity also in the strategy by considering an imprecise strategy β such that $\beta(\cdot|H_i)$ is a belief function, for every $H_i \in \mathcal{L}$, possibly removing the finiteness assumption. This would lead to a theory to compare with that of Walley⁸.