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AIM

To study Bayesian inference under imprecise prior information:
the starting point is a precise strategy ¢ and a full
B-conditional prior belief function Belg, conveying ambiguity
in probabilistic prior information.

The prior knowledge could be only partially specified or, even
worse, it could refer to a different space of hypotheses.

Instead of considering a single prior distribution, one is forced to take into account a
set of priors (see, e.g., Dempster 1967, DeRoberts-Hartigan 1981, Huber 1981, Gilboa
Schmeidler 1989, Wasserman 1990, Wasserman-Kadane 1990, Walley 1991,
Chateauneuf et al. 2001, Klibanoff-Hanany 2007).
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Applications of multi-priors

e Statistics: Partial identifiable models, Models with latent
variables (mixture models), Hierarchical Bayesian moles,
Nuisance parameters elimination, Models with misclassified
variables, Elicitation of priors

e Economic theory: Gilboa-Schmeidler decision model,
Ambiguity in decision theory and in game theory

e Probability: de Finetti coherent probabilities, Random sets,
Multivalued-mappings, Imprecise probabilities,
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Non-additive uncertainty measures
¢: A—[0,1] s.t. p(0) =0, ¢(2) =1 uncertainty measure:
capacity: A C B = ¢(A) < ¢(B);
n-monotone: ¢ (VI E) > S (=)o (A E);

0AIC{T,....n}

belief function: n-monotone for n € N, n > 2.

?: A—1[0,1], B(A) =1 — ©(A°) for every A € A, dual measure.

o A= [0,1] »:A—]0,1]

capacities capacities

2-monotone
belief functions
fa. probabilities

0.a. probabilities

2-alternating

plausibility functions

f-a. probabilities

o.a. probabilities

Example
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Belief function: conditioning

Conditioning for belief function is deeply discussed in literature
(Dempster AMS 1967 JRSS 1968), (see also Dubois-Denceux
2012, Fagin-Halpern 1991, Jaffray IEEE 1992) have been
introduced through a generalized Bayesian conditioning rule
discussed also in (Walley TR 1981) for 2-monotone capacities.

If Bel(E A H) + PI(E€ A H) > 0

Bel(E A H)
Belg(E|H) =
el (EIH) = Bl & A < PI(EE A H)’
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Conditional belief?

Definition
A function Belg : A x A° — [0,1]! is a full B-conditional belief
function on A if there exists a C-class {Bely, ..., Belx} of belief

functions on A such that, for every E|[H ¢ Ax A% if EAH =H
then Belg(E|H) = 1, while if EAH # H

Bl ,,(E A H)

1
Belug ) (E N H) + Plog ,(ES A H)’ (1)

Belg(E|H) =

where {Ply, ..., Pli} is the set of dual plausibility functions of
{Bely, ..., Belc} and

apy=min{a € {0,...,k} : Belo,(EANH)+ Pl,(ESANH) >0}

1A = AN {0}
2Coletti et al. Inf. Science 2016
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Full B-conditional belief

These conditional measures Belg and Plg determine the
non-empty compact set

Pg = {# : 7 is a full conditional probability on A, Belg < 7 < Plg},

Be/B = min PB PIB = maxPB
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Full B-conditional belief

These conditional measures Belg and Plg determine the
non-empty compact set

Pg = {# : 7 is a full conditional probability on A, Belg < 7 < Plg},
Belg = minPg Plg = maxPg

For every Belg : A x A° — [0, 1] there is a finite Boolean algebra

B and a full conditional probability P : B x B — [0,1] such that

Pg can be recovered as the set of coherent extensions of P to
A x A° and, thus,

Belg = minPg  PlgmaxPg
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Bayesian statistics

In the classical Bayesian setting®

o m: Az — [0,1], (finitely additive) prior probability;
e 0: Ax L —[0,1], strategy s.t. for every H; € L
(S1) o(F|H:) =1if FAH=H for F € A;
(S2) o(-|H;) is a finitely additive probability on A;

o )\ = O\ Aex Lo statistical model

= {m, A} and {7, o} is a coherent conditional probability

3L = {Hi}ier, € = {Ej}jey, partitions; Ar, As, Boolean algebras with
(L) T AL C(L)", () CTAe C (&)
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The role of coherence in Bayesian statistics

Given a statistical model A on Ag x £ and A = (A U Ag), then
there exists a unique strategy o on A x L such that o4, = A.

An aim is to determine the lower and upper envelope of the
coherent extensions P of {o, m}*.

*Petturiti-V. 1JAR 2017
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Bayes theorem under ambiguity

e Belg is a full B-conditional belief function on A,?;
e 0: Ax L —[0,1], strategy s.t. for every H; € L
(S1) o(F|H:) =1if FAH = H for F € A;
(S2) o(+|H;) is a finitely additive probability on A;
* A =04, xc, Statistical model

= o is a strategy on A x L

5Coletti et. al Inf. Science 2016
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Bayes theorem under ambiguity

e Belg is a full B-conditional belief function on A,?;
e 0: Ax L —[0,1], strategy s.t. for every H; € L
(S1) o(F|H:) =1if FAH = H for F € A;
(S2) o(+|H;) is a finitely additive probability on A;
* A =04, xc, Statistical model

= o is a strategy on A x L

Pg = {# : 7 is a full conditional probability on A, Belg < 7 < Plg},

5Coletti et. al Inf. Science 2016
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Bayes theorem under ambiguity

= Belg is a full B-conditional belief function on A,

= Ppg is the set of full conditional probabilities on A, dominating
BeIB

= o is a strategy on A x L

P ={P : Pisafull cond. prob. on A extending {#,0}, 7 € Pg},
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Bayes theorem under ambiguity

= Belg is a full B-conditional belief function on A,

= Ppg is the set of full conditional probabilities on A, dominating
BeIB
= o is a strategy on A x L

P ={P : Pisafull cond. prob. on A extending {#,0}, 7 € Pg},

is a non-empty compact subset of [0, 1]“4X'4o endowed with the
product topology and

P=minP P =maxP



Imprecise prior Conditional belief Bayesian inference under ambiguity Example

Bayes theorem under ambiguity
= Belg is a full B-conditional belief function on A,
= Ppg is the set of full conditional probabilities on A, dominating
BeIB
= o is a strategy on A x L

P ={P : Pisafull cond. prob. on A extending {#,0}, 7 € Pg},

is a non-empty compact subset of [0, 1]“4X'4o endowed with the
product topology and
P=minP P =maxP

= The lower envelope P(:|-) turns out to be the natural extension
of the Williams-coherent lower conditional probability {Belg,o}.
= In the finite setting it coincides with that due to (Walley 1991)
since the conglomerability condition is automatically satisfied.
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Bayes Theorem under ambiguity

The lower envelope P(:|-) is such that, for every F[K € Ax A%, if FAK = K,
then P(F|K) = 1, otherwise:

(i) if K € A%, then
P(F|IK) = fU(F|H,-)Be/B(dH,-|K);

(ii) if K € A%\ A%, then if there exists A € A% such that K C A and
P(K|A) > 0 we have that

B(F|K):min{ LE(E ALY L(F,K;A) }

P(F AK|A) + U(Fe,K; A)’ L(F, K; A) 4+ P(F< A K|A)
otherwise P(F|K) = 0.

where

L(F, K; A) = min {ZJ(FKH,-)%(H,-|A) 2> o(FEK|H))#(H;|A) = P(;:cKA)} :
i=1 i=1

U(F,K;A) = Jmax {ZU(FKH,-)ﬁ(H,-A) : ZU(FCK|H,-)7?(H,-|A) = P(F°K|A)} ,

fi=il, i=1
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Bayes Theorem under ambiguity

Lower posterior probabilities

For every F|K € A x A° such that FA K # K, K € A°\ A% and there exists
A € A% such that K C A and P(K|A) > 0, if X(-) = o(F A H|-) and
(1—Y()) = (1—a(F°A H|-)) are comonotonic® then

P(F AK|A)

P(FIK) = P(F A K|A) + P(F< AK|A)'

= This is a generalization of a result of (Wasserman 1990)
= Belg(+|K) is a belief function on A, for every K € A%

= The function P(-|K) can fail 2-monotonicity, for some K € A°.

6X(-)=a(FAH|)and (1 - Y(-)) = (1 — o(F° A H|)) defined on L are
comonotonic if, for every Hp, Hy € L,
[X(Hn) = X(H)] - [(1 = Y(Hn)) — (1= Y(H))] >0
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Example

An automatic system S can assume the states sj, sp, s3 with
7(0) = (%, %, %) and its evolution is determined by the Markov
chain

(&

10 0 1/3 1/3
A= 1 11
IO
3 3 3
w(D  GDw»
173

Figure : Transition matrix and graph of the Markov chain related to S
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Example
After n steps

2\™ 1 /2\" 1 /2\"
(M z-Da_[1_(2 (= 2z
7(" is positive for every n > 0, so it induces a unique full cond.

probability
The sequence of full cond. probabilities converges pointwise to

.A§ ] 51 S S3 S51VS 51V Ss S,V S3 Q

() (-|S;) 0 1 0 o0 1 1 0 1
() (.|S,) 0 0 1 o0 1 0 1 1
() (.|S3) 0o 0 o0 1 0 1 1 1
) |SvS) o 1 0 o0 1 1 0 1
a)(|SvS) o 1 0 0 1 1 0 1
() (. |52 vs)|o o 1 1 1 3 1 1
() (.|Q) 0o 1 0 o0 1 1 0 1

that is determined by {Pg, P1} such that Po(-) = 7(>?)(:|Q) and
Pi(-) = 7(®)(:|S, v S3).
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Example

Consider a second system T not directly observable: T can assume
three possible states t1, to, t3, and if S is in state s; then T is not
in state t;, for i =1,2,3.

(B). =\/{Si€§ : S C B}, Bel(B)=Po((B):) and Beh(B)=Pi((B).),

we obtain a B-conditional belief function on Ag

Ao 0 T 7> T3 T1V Ty T1V T3 ToV T3 Q
Belg(:| T1) 0 1 0 0 1 1 0 1
Belg(:| T2) 0 0 1 0 1 0 1 1
Belg(+| T3) 0 0 0 1 0 1 1 1
Belg(:|T1V T2) | O 0 0 0 1 0 0 1
Be/B(~‘T1 Vv T3) 0 0 0 0 0 1 0 1
Belg(:| T2 V T3) 0 0 0 0 0 0 1 1

Be/3(~|Q) 0 0 0 0 0 0 1 1
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Example

The state of the unobservable system T can be verified through a
detector D taking three possible values di, d» and ds, with d;
corresponding to the state t;, for i = 1,2, 3, with a reliability of
90% and equal chances on failures.

The statistical model on Ap x ©

ADi|T;) = 90%, A(Dj|T;) = A(D«|T;) = 5%

P(Ty A D;
P(TiID) = ——DAD)
P(T1 A Dj)+ P(T{ A Dj)
and P(T{|Dj) =1, so, P(T1|D;) = P(T1|D;) = 0 i.e., the
observation of the detector D does not change our degree of belief
on Ty
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Example: Nuisance parameter elimination’

PROBLEM: Given a statistical model \(E|© =0, = v) where
© is the interest parameter, we want to eliminate the nuisance
parameter [.

e Integrated likelihood: for a conditional prior 7

ME|© = 0) = fA(E\@ = 0,7 = y)r(d(T =)0 = 0)

e Profile likelihood:

ME|© = 0) =supA(E|© = 6,T =~)
Y

"Berger et al. Stat. Science 1999
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Example: Nuisance parameter elimination (1)

Consider:
e (©,1), random vector ranging in @ x ' =N x (0,1)

X = (X1,...,Xk), random vector ranging in X = N§
Xi|(© =0, =~) ~Bin(0,7), for i =1,...,k, and
independent conditionally to (© = 6, = ~)
L={Hp,n)=(©=0,T=7):(0,7)€@®xT}
E={Ei=(X=x): xeX}

[,Ijl (i’i)} AP (L = )P, > ],

0 otherwise,

)\(X:x|@:9,F:7):{
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Example: Nuisance parameter elimination (2)
Take:
e Ay = (L) and As = (£)
® o, vacuous belief (¢(€2) = 1 and 0 otherwise) on A, giving rise to the
class
PP = {% : conditional prior on Az x A%}
whose upper envelope 7 = max PP is defined for F|K € Az x A% as

1 fKCF
—p _ = 7
m(FIK) = { 0 otherwise,

GOAL

Make inference on conditional events (X = x|(©,T) € {0} x T)

= The profile likelihood is a supremum of integrated likelihoods

AX=xl@=0) = PI(X=x|(O,r)e{6}xT)

}{/\(X =x|©@ =0, =4)7P(d(Fr =~)|© =0)

= supA(X=x|@ =06, =)
¥
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Conclusions

We consider Bayesian inference under a precise strategy o and
ambiguity in the prior information through a full B-conditional
belief function Belg: a characterization for the envelopes of the
class of full conditional probabilities dominating the assessment
{Belg,c} is provided.

Future research: to introduce ambiguity also in the strategy by
considering an imprecise strategy /3 such that 8(:|H;) is a belief
function, for every H; € L, possibly removing the finiteness
assumption. This would lead to a theory to compare with that of
Walley®.

8Miranda-Zaffalon 2013, 2017
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