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Introduction

Modeling lower and upper subjective probability
judgment data

This is an investigation of a new approach to modeling lower and
upper probability judgments. We will cover the following topics:

Conjugate lower and upper probability distributions on the unit
interval
The “CDF-Quantile” distribution family and its extension for
providing lower-upper distributions
An example application to modeling data
Advantages and drawbacks of this approach
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Introduction

Traditional methods

The most commonly employed methods for modeling lower-upper
probability assignments are:

A "repeated-measures" subject-effect parameter or a covariance
parameter
A regression-style model with a dummy variable to distinguish
between lower and upper probabilities
A regression-style model with a dummy variable and
exponentiated coefficient to respect the order

None of these test specific models– e.g., none of them test a model
incorporating “coherence” in any sense of the term.
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Conjugate probability distribution pairs

Basics

Let pL (A) = W (p (A) , θ), be a lower probability with respect to
probability p(A) so that 0 ≤W (p (A) , θ) ≤ p(A), for real-valued θ. The
conjugate upper probability is pU (A) = 1− pL (∼ A) , so that
pU (A) = 1−W (1− p (A) , θ) .

Consider a CDF, G(x , θ), for 0 ≤ x ≤ 1, with a location parameter, θ, so
that G(0, θ) = 0, G(1, θ) = 1, and G is monotonically increasing in x .
Define GD(x , θ) = 1−G(1− x , θ), which clearly also is a CDF. GD is
the conjugate dual of G, which follows by observing that

1−GD (1− x , θ) = 1− [1−G (1− (1− x) , θ)] = G (x , θ) (1)
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Conjugate probability distribution pairs

Basics

One- and two-parameter distributions of the kinds illustrated here have
very limited flexibility regarding the location of G and GD; typically the
corresponding PDFs are mirror-images of one another reflected
around 1/2.
Nevertheless, while these pairs of distributions may not be very useful
for modeling real data, the concepts involved turn out to have such
applications when applied to the family of distributions introduced in
the next section.
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CDF-Quantile distribution family

CDF-Quantile family

Let G(x , µ, σ) denote a CDF for random variable X with support (0, 1),
a real-valued location parameter µ and positive scale parameter σ. We
define G as follows:

G(x , µ, σ) = F [U(H−1(x), µ, σ)] (2)

where F is a CDF with support denoted by D1, H is an invertible CDF
with support denoted by D2, and U : D2 → D1 is an appropriate
transform for incorporating parameters µ and σ. We limit the domains
to D1 = (−∞,∞) and D2 = (−∞,∞) and put

U(y , µ, σ) = (y − µ)/σ. (3)
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CDF-Quantile distribution family

Quantile function

If F is invertible, then for every γ such that G(x , µ, σ) = γ, the quantile
function is: For D1 = (−∞,∞) and D2 = (−∞,∞) we put

G−1 (γ, µ, σ) = H
[
σF−1 (γ) + µ

]
. (4)

The resulting pairs of distributions are"quantile-duals" of one another
in the sense that one’s CDF is the other’s quantile, with the appropriate
parameterization. This duality is due to the fact that (0, 1) is both the
domain and range of these functions.
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CDF-Quantile distribution family

Properties

Smithson and Shou (2017) show that the CDF-Quantile family
members share the following properties:

1 The family can model a wide variety of distribution shapes, with
different skew and kurtosis coverage from the beta or the
Kumaraswamy.

2 Members are self-dual in the sense that
g (x , µ, σ) = g (1− x ,−µ, σ). Moreover, G = GD, so the
conjugate-CDF duals in this family consists of identical
distributions.

3 The median is solely a function of µ, so that µ is genuinely a
location parameter.

4 The parameter σ is a dispersion parameter.
5 Members of this family fall into four subfamilies distinguished by

behavior at the boundaries of the [0, 1] interval, including a
subfamily whose density is finite in the limits at 0 and at 1.
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Conjugate CDF-Quantile distribution pairs

Introducing a third parameter to the CDF-Quantile
Family

Marshall and Olkin (2007) state that the class G of CDFs G whose
support is (0,1) form an algebraic group, which is closed under
composition. This is true of continuous CDFs. Applying an invertible
(0,1)→ (0,1) transformation W to the innermost level of the CDF, for
instance, we have

G (x , µ, σ, θ) = F
[
U
(

H−1 (W (x , θ)) , µ, σ
)]

(5)

and
G−1 (γ, µ, σ, θ) = W−1

[
H
(

U−1
(

F−1 (γ) , µ, σ
))

, θ
]

(6)
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Conjugate CDF-Quantile distribution pairs

Introducing a third parameter to the CDF-Quantile
Family

If we additionally require that W (0, θ) = 0, W (1, θ) = 1 and W
monotonically increasing in x , then W behaves as a CDF. The
conjugate dual CDF therefore is

GD (x , µ, σ, θ) = F
[
U
(

H−1 (1−W (1− x , θ)) , µ, σ
)]
. (7)
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Conjugate CDF-Quantile distribution pairs

Conjugate lower-upper distributions

Proposition 5.1: Let W (x , θ) be defined as earlier, so that it behaves as
a CDF. Let

G (x , µ, σ, θ) = F
[
U
(

H−1 (W (x , θ)) , µ, σ
)]
.

Then if the CDFs F and H satisfy certain symmetry conditions,

1−G (1− x ,−µ, σ, θ) = GD (x , µ, σ, θ) , (8)

and the quantiles G−1 (γ, µ, σ, θ) and G−1
D (γ, µ, σ, θ) behave as

conjugate lower-upper probabilities.
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Conjugate CDF-Quantile distribution pairs

Properties of the conjugate pairs

The conjugate dual CDFs straddle the CDF G (x , µ, σ) and the
resultant lower and upper quantile functions straddle the quantile
function G−1 (γ, µ, σ) .
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Example and applications

Data-set

The fourth Intergovernmental Panel on Climate Change (IPCC) report
utilizes verbal phrases such as “likely” and “unlikely” to describe the
uncertainties in climate science. Budescu et al. (2009) conducted an
experimental study of lay interpretations of these phrases, using 13
sentences from the IPCC report, in which they asked 223 participants
to provide lower, “best”, and upper numerical estimates of the
probabilities to which they believed each sentence referred.

Example: “The Greenland ice sheet and other Arctic ice fields likely
contributed no more than 4 m of the observed sea level rise.” What
probability did the authors mean by “likely”?
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Example and applications

Model comparisons

I fitted 11 models to the lower and upper probability estimates in the
Budescu et al. data. The first three models are based on the
two-parameter CDF-Quantile distribution.

1 Model 1 is just the two-parameter distribution, as defined in
equation (3): µ̂ = β0 and σ̂ = exp (δ0).

2 Model 2: µ̂ = β0 + β1x and σ̂ = exp (δ0 + δ1x), where x = 0 for
lower probabilities and x = 1 for upper probabilities.

3 Model 3 estimates the dependency between the lower and upper
estimates via a t-copula with Model 2 margins.
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Example and applications

Model comparisons

The remaining models are based on the three-parameter
CDF-Quantile distribution.

4 Model 4 has intercept-only submodels µ̂ = β0, σ̂ = exp (δ0), and
θ̂ = exp (γ0).

5 Model 5 is the conjugate-dual model, as defined in equations (5)
and (7), with Model 4 parameters plus a 0,1 mixture parameter
applying G to the upper and GD to the lower probabilities.

6 Model 6 has µ̂ = β0 + β1x and σ̂ = exp (δ0 + δ1x) with x = 0 and 1
for lower and upper probabilities, but θ̂ = exp (γ0).

7 Model 7 has Model 6 µ and σ plus θ̂ = exp (γ0 + γ1x).
8 Models 8-11 are based on a “tilt-parameter” version of the

three-parameter CDF-Quantile distribution (omitted due to space
limitations).
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Example and applications

Results

The best fitting distribution is the Cauchit-Cauchy, so all 11 models are
based on this distribution.

Table : Cauchit-Cauchy Models and Fits

Model Description Params. 2LL AIC
1 2-parameter 2 595 -591
2 2-parameter condit. µ, σ 4 1378 -1370
3 2-parameter condit. t-copula 6 1584 -1572
4 exponentiated 3-param. 3 616 -609
5 conjugate-dual exponentiated 4 2378 -2372
6 exponentiated condit. µ, σ 5 1392 -1382
7 exponentiated condit. µ, σ, θ 6 1967 -1955
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Example and applications

Results

The figure below shows histograms of the lower and upper probabilities
with the fitted distributions from Model 5 (the conjugate-dual model)
and Model 7 (the 6-parameter conditional exponentiated model).
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Conclusions and future directions

Prospects and problems

1 The 2-parameter CDF-Quantile family is available for generalized
linear modeling via the cdfquantreg package in R and a SAS
macro, and Smithson and Shgou (2017) also have shown that
these distributions can model data better than other
two-parameter distributions such as the beta.

2 The 3-parameter conjugate-dual CDF-Quantile family may be of
theoretical interest, has potential for applications, and can test
specific models of lower-upper probability judgments.

3 High correlations between parameter estimates may be a
pervasive problem for three-parameter distributions on the unit
interval, but the conjugate-dual model does not seem to suffer
from this.

4 Much remains to be developed and explored regarding parameter
estimation methods and model diagnostics, even for the
two-parameter CDF-Quantile family.
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Conclusions and future directions

The End

Thanks!
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