AGREEING TO DISAGREE AND DILATION

JIJI ZHANG, HAILIN LIU AND TEDDY SEIDENFELD jijizhang@ln.edu.hk liuhlin3@mail.sysu.edu.cn

1. Introduction & Take-home Message

Aumann (1976) gives sufficient conditions when two (precise) Bayesian agents with the same prior over a measurable space cannot agree to disagree on posteriors of a hypothesis H: Their posteriors for H must be equal if they are commonly known, along with their personal information sets leading to these posteriors.

- Geanakoplos and Polemarchakis (1982) extend Aumman's result to a setting where the agents make their credences common knowledge by communication.
- Kajii and Ui (2005) and Carvajal and Correia-da-Silva (2010) generalize Aumman's result to a setting of imprecise priors.
- We investigate Aumann's result in a combination of these two more general settings, and show that the interesting and anomalous phenomenon known as *dilation* is the key obstacle to reaching agreements via communicating posteriors by Bayesian agents with imprecise priors.

2. Aumann's Agreement Theorem

- Suppose two agents have the same (precise) prior, p, over a measurable space (Ω, \mathcal{A}) .
- Agent *i* learns (privately) the value of a partition of Ω , \mathcal{P}_i , and updates by Bayesian conditioning.
- All these are *commonly* known: each agent knows them, knows that each knows them, knows that each knows that each knows them, ... ad infinitum.
- Then, if it is common knowledge that agent 1's posterior of an event H is p_1 and agent 2's posterior of *H* is p_2 , then $p_1 = p_2$. That is, the agents cannot agree to disagree!

Example of Agreement

	\mathcal{P}^2		$\mathcal{P}^1 = \{ \{w_1, w_2\}, \{w_3, w_4\} \}$
\mathcal{D}^1	w_1	w_2	$\mathcal{P}^2 = \{ \{w_1, w_3\}, \{w_2, w_4\} \}$
<i>J</i> ²	w_3	w_4	$H = \{w_1, w_4\}$

- Suppose $p = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$, and suppose agent 1 learns $\{w_1, w_2\}$ while agent 2 learns $\{w_1, w_3\}$.
- So, $p_1(H) = p(H|\{w_1, w_2\}) = \frac{1}{2}$. Similarly, $p_2(H) = p(H|\{w_1, w_3\}) = \frac{1}{2}.$
- Note: it is common knowledge that $p_1(H) = \frac{1}{2}$ and that $p_2(H) = \frac{1}{2}$.

3. Example of Disagreement with IP

\mathcal{D}^1	w_1	w_2	$\mathcal{P}^1 = \{ \{w_1, w_2\}, \{w_3, w_4\} \}$
J ²	w_3	w_4	$\mathcal{P}^2 = \{ \mathbf{\Omega} \}; \boldsymbol{H} = \{ w_1, w_4 \}$

- Common imprecise prior (an ϵ -contaminated class): $\mathbf{Q} = \{0.8p + 0.2q \mid q \in \Lambda\}$, where Λ is the set of all distributions over \mathcal{A} .
- $\mathbf{Q}_1(H) = \mathbf{Q}(H|\{w_1, w_2\}) = [\frac{1}{3}, \frac{2}{3}]$, whereas $\mathbf{Q}_{2}(H) = \mathbf{Q}(H|\Omega) = [\frac{2}{5}, \frac{3}{5}].$
- In this case $\mathbf{Q}_1(H)$ and $\mathbf{Q}_2(H)$ are common knowledge: the agents agree to disagree!

teddy@stat.cmu.edu

Example of Disagreement

	${\cal P}$) 2	$\mathcal{P}^1 = \{ \{w_1, w_2\}, \{w_3, w_4\} \}$
\mathcal{D}^1	w_1	w_2	$\mathcal{P}^2 = \{\{w_1, w_3\}, \{w_2, w_4\}\}$
J ²	w_3	w_4	$H' = \{w_4\}$

- Suppose $p = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$, and suppose agent 1 learns $\{w_1, w_2\}$ while agent 2 learns $\{w_2, w_4\}$.
- Then, $p_1(H') = p(H'|\{w_1, w_2\}) = 0 \neq \frac{1}{2} =$ $p(H'|\{w_2, w_4\}) = p_2(H').$
- This is *not* agreeing to disagree, for they will reach an agreement if they share posteriors.

Dilation of IP

- Observe that *H* is *dilated* by \mathcal{P}^1 , in the sense that for every $E \in \mathcal{P}^1$, $[\mathbf{Q}(H|E), \overline{\mathbf{Q}}(H|E)] = [\frac{1}{3}, \frac{2}{3}]$ strictly contains $[\mathbf{Q}(H), \overline{\mathbf{Q}}(H)] = [\frac{2}{5}, \frac{3}{5}].$
- In general, a set of mutually disjoint events \mathcal{E} *dilates* an event *A* with respect to **Q** if for every $E \in \mathcal{E}$, the interval $[\mathbf{Q}(A|E), \overline{\mathbf{Q}}(A|E)]$ strictly contains the interval $[\mathbf{Q}(A | \bigcup \mathcal{E}), \overline{\mathbf{Q}}(A | \bigcup \mathcal{E})].$
- It is no accident that dilation occurs when the agents can agree to disagree!

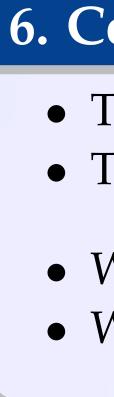
Suppose the true state is w. The initial common knowledge is $C_0 = \mathcal{P}(w)$, where \mathcal{P} is the finest common coarsening of \mathcal{P}^1 and \mathcal{P}^2 .

5. A Generalization of Aumann's Agreement Theorem • In the absence of dilation, two agents are guaranteed to reach consensus on lower and upper probabilities by communicating posteriors. More formally:

• It is easy to show that the above result still holds if at each step the agents communicate only lower and upper probabilities, instead of the whole sets of probablities.

• Under some common assumptions, lower and upper probabilities are sufficient to identify the full set. For example,

Corollary 1: Suppose Q is closed and connected and the procedure of communicating posteriors stops at step m+1. If for both $i = 1, 2, \{E \cap C_m \mid E \in$ \mathcal{P}_m^i does not dilate H, then $\mathbf{Q}(H|\mathcal{P}^1(w) \cap \mathcal{C}_m) =$ $\mathbf{Q}(H|\mathcal{P}^2(w)\cap\mathcal{C}_m).$



4. A Procedure of Communicating Imprecise Posteriors

• Step 0: Agent *i* updates her credence of *H* to $\mathbf{Q}_0^i(H) = \mathbf{Q}(H|\mathcal{P}^i(w))$. Let $\mathcal{P}_0^i = \{E \in \mathcal{P}^i \mid E \cap \mathcal{C}_0 \neq \emptyset\}$. • Step n + 1: They announce $\mathbf{Q}_n^1(H)$ and $\mathbf{Q}_n^2(H)$, respectively. Let

$$\mathcal{N}_{n+1}^{i} = \{ E \in \mathcal{P}_{n}^{i} \mid \mathbf{Q}(H|E \cap \mathcal{C}_{n}) = \mathbf{Q}_{n}^{i}(H) \}$$
$$\mathcal{C}_{n+1} = \bigcup \mathcal{N}_{n+1}^{1} \cap \bigcup \mathcal{N}_{n+1}^{2}, \& \mathcal{P}_{n+1}^{i} = \{ E \in \mathcal{P}_{n}^{i} \}$$

If $\mathcal{P}_{n+1}^i = \mathcal{P}_n^i$ (or $\mathcal{C}_{n+1} = \mathcal{C}_n$), neither agent learns new information and the procedure stops; otherwise, agent *i* updates credence of *H* to $\mathbf{Q}_{n+1}^{i}(H) = \mathbf{Q}(H|\mathcal{P}^{i}(w) \cap \mathcal{C}_{n+1})$, and enters the next step.

Theorem: Suppose the above procedure stops at step m + 1. If for both i = 1, 2, $\{E \cap C_m \mid E \in \mathcal{P}_m^i\}$ does not dilate *H*, then $\mathbf{Q}(H|\mathcal{P}^1(w) \cap \mathcal{C}_m) = \mathbf{Q}(H|\mathcal{P}^2(w) \cap \mathcal{C}_m)$ and $\overline{\mathbf{Q}}(H|\mathcal{P}^1(w) \cap \mathcal{C}_m) = \overline{\mathbf{Q}}(H|\mathcal{P}^2(w) \cap \mathcal{C}_m)$.

A Result on Full Agreement

A Corollary for Density Ratio Priors

• Seidenfeld and Wasserman (1993, Theorem 4.1) showed that the density ratio priors are dilation-immune. Thus we have:

Corollary 2: Suppose two agents start with a common density ratio prior **Q** and carry out the procedure of communicating posteriors. Suppose the procedure stops at step m + 1. Then $\mathbf{Q}(H|\mathcal{P}^1(w) \cap$ $\mathcal{C}_m) = \mathbf{Q}(H|\mathcal{P}^2(w) \cap \mathcal{C}_m).$

Partial Agreement with IP

• If we just consider partial agreement in the sense of a non-empty intersection of sets of posteriors, we can drop the assumption of connectedness.

Corollary 3: Suppose Q is closed and the procedure of communicating posteriors stops at step m + 1. If for both $i = 1, 2, \{\overline{E} \cap \mathcal{C}_m \mid E \in \mathcal{P}_m^i\}$ does not dilate H, then $\mathbf{Q}(H|\mathcal{P}^1(w) \cap \mathcal{C}_m) \cap \mathbf{Q}(H|\mathcal{P}^2(w) \cap \mathcal{C}_m) \neq \emptyset$.

6. Concluding Remarks and Further Questions

• The presence of dilation is necessary for agreeing to disagree on the lower or upper posterior. • To put it differently, *dilation-averse* agents cannot agree to disagree on the lower or upper posterior.

• What about agents whose priors agree only *partially*? • What about other updating rules, e.g., the Dempster-Shafer rule?

 $\in \mathcal{N}_{n+1}^i \mid E \cap \mathcal{C}_{n+1} \neq \emptyset \}.$