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1. Introduction & Take-home Message
Aumann (1976) gives sufficient conditions when two (precise) Bayesian agents with the same prior over a
measurable space cannot agree to disagree on posteriors of a hypothesis H: Their posteriors for H must be
equal if they are commonly known, along with their personal information sets leading to these posteriors.
• Geanakoplos and Polemarchakis (1982) extend Aumman’s result to a setting where the agents make

their credences common knowledge by communication.
• Kajii and Ui (2005) and Carvajal and Correia-da-Silva (2010) generalize Aumman’s result to a setting of

imprecise priors.
• We investigate Aumann’s result in a combination of these two more general settings, and show

that the interesting and anomalous phenomenon known as dilation is the key obstacle to reaching
agreements via communicating posteriors by Bayesian agents with imprecise priors.

2. Aumann’s Agreement Theorem
• Suppose two agents have the same (precise) prior, p, over a measurable space (Ω,A).
• Agent i learns (privately) the value of a partition of Ω, Pi, and updates by Bayesian conditioning.
• All these are commonly known: each agent knows them, knows that each knows them, knows that each

knows that each knows them, . . . ad infinitum.
• Then, if it is common knowledge that agent 1’s posterior of an event H is p1 and agent 2’s posterior of
H is p2, then p1 = p2. That is, the agents cannot agree to disagree!

Example of Agreement

P2 P1 = {{w1, w2}, {w3, w4}}

P1 w1 w2 P2 = {{w1, w3}, {w2, w4}}
w3 w4 H = {w1, w4}

• Suppose p = (1
4 ,

1
4 ,

1
4 ,

1
4 ), and suppose agent 1

learns {w1, w2}while agent 2 learns {w1, w3}.
• So, p1(H) = p(H|{w1, w2}) = 1

2 . Similarly,
p2(H) = p(H|{w1, w3}) = 1

2 .
• Note: it is common knowledge that p1(H) = 1

2
and that p2(H) = 1

2 .

Example of Disagreement

P2 P1 = {{w1, w2}, {w3, w4}}

P1 w1 w2 P2 = {{w1, w3}, {w2, w4}}
w3 w4 H ′ = {w4}

• Suppose p = (1
4 ,

1
4 ,

1
4 ,

1
4 ), and suppose agent 1

learns {w1, w2}while agent 2 learns {w2, w4}.
• Then, p1(H ′) = p(H ′|{w1, w2}) = 0 6= 1

2 =
p(H ′|{w2, w4}) = p2(H ′).
• This is not agreeing to disagree, for they will

reach an agreement if they share posteriors.

3. Example of Disagreement with IP

P1 w1 w2 P1 = {{w1, w2}, {w3, w4}}
w3 w4 P2 = {Ω}; H = {w1, w4}

• Common imprecise prior (an ε-contaminated
class): Q = {0.8p + 0.2q | q ∈ Λ}, where Λ is
the set of all distributions over A.

• Q1(H) = Q(H|{w1, w2}) = [ 13 ,
2
3 ], whereas

Q2(H) = Q(H|Ω) = [25 ,
3
5 ].

• In this case Q1(H) and Q2(H) are common
knowledge: the agents agree to disagree!

Dilation of IP

• Observe thatH is dilated byP1, in the sense that
for every E ∈ P1, [Q(H|E),Q(H|E)] = [ 13 ,

2
3 ]

strictly contains [Q(H),Q(H)] = [ 25 ,
3
5 ].

• In general, a set of mutually disjoint events E
dilates an event A with respect to Q if for every
E ∈ E , the interval [Q(A|E),Q(A|E)] strictly
contains the interval [Q(A|

⋃
E),Q(A|

⋃
E)].

• It is no accident that dilation occurs when the
agents can agree to disagree!

4. A Procedure of Communicating Imprecise Posteriors
Suppose the true state is w. The initial common knowledge is C0 = P(w), where P is the finest common
coarsening of P1 and P2.

• Step 0: Agent i updates her credence of H to Qi
0(H) = Q(H|Pi(w)). Let Pi

0 = {E ∈ Pi | E ∩ C0 6= ∅}.
• Step n+ 1: They announce Q1

n(H) and Q2
n(H), respectively. Let

N i
n+1 = {E ∈ Pi

n | Q(H|E ∩ Cn) = Qi
n(H)}

Cn+1 =
⋃
N 1

n+1 ∩
⋃
N 2

n+1, & Pi
n+1 = {E ∈ N i

n+1 | E ∩ Cn+1 6= ∅}.

If Pi
n+1 = Pi

n (or Cn+1 = Cn), neither agent learns new information and the procedure stops; otherwise,
agent i updates credence of H to Qi

n+1(H) = Q(H|Pi(w) ∩ Cn+1), and enters the next step.

5. A Generalization of Aumann’s Agreement Theorem
• In the absence of dilation, two agents are guaranteed to reach consensus on lower and upper probabil-

ities by communicating posteriors. More formally:
Theorem: Suppose the above procedure stops at step m + 1. If for both i = 1, 2, {E ∩ Cm | E ∈ Pi

m} does
not dilate H , then Q(H|P1(w) ∩ Cm) = Q(H|P2(w) ∩ Cm) and Q(H|P1(w) ∩ Cm) = Q(H|P2(w) ∩ Cm).

• It is easy to show that the above result still holds if at each step the agents communicate only lower and
upper probabilities, instead of the whole sets of probablities.

A Result on Full Agreement
• Under some common assumptions, lower and

upper probabilities are sufficient to identify the
full set. For example,

Corollary 1: Suppose Q is closed and connected
and the procedure of communicating posteriors
stops at stepm+1. If for both i = 1, 2, {E∩Cm | E ∈
Pi
m} does not dilate H , then Q(H|P1(w) ∩ Cm) =

Q(H|P2(w) ∩ Cm).

A Corollary for Density Ratio Priors
• Seidenfeld and Wasserman (1993, Theorem

4.1) showed that the density ratio priors are
dilation-immune. Thus we have:

Corollary 2: Suppose two agents start with a com-
mon density ratio prior Q and carry out the pro-
cedure of communicating posteriors. Suppose the
procedure stops at step m + 1. Then Q(H|P1(w) ∩
Cm) = Q(H|P2(w) ∩ Cm).

Partial Agreement with IP
• If we just consider partial agreement in the sense of a non-empty intersection of sets of posteriors, we

can drop the assumption of connectedness.
Corollary 3: Suppose Q is closed and the procedure of communicating posteriors stops at step m+ 1. If for
both i = 1, 2, {E ∩ Cm | E ∈ Pi

m} does not dilate H , then Q(H|P1(w) ∩ Cm) ∩Q(H|P2(w) ∩ Cm) 6= ∅.

6. Concluding Remarks and Further Questions
• The presence of dilation is necessary for agreeing to disagree on the lower or upper posterior.
• To put it differently, dilation-averse agents cannot agree to disagree on the lower or upper posterior.

• What about agents whose priors agree only partially?
• What about other updating rules, e.g., the Dempster-Shafer rule?


