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Desirability axioms

m A possibility space {2
m A gamble f: Q) — R

Q: How should we reason with desirable gambles?

Suppose we are offered:

Desirability axioms
Outcomes A B C

7, 51 =2 (D1) Do not accept sure loss.

fa 30 20 0 (D2) Accept sure gain.

f3 -1 2 -1 (D3) Accept positive scaled invariance.

f -50 100 -50 (D4) Accept positive combination of desirable
fo+ fa -20 120 -50

gambles. [2]
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Avoiding sure loss

Definition 1

A set of desirable gambles D is said to awvoid sure loss if for all n € N,
A, ,Ap > 0 and fl,"’ ,fn eD [5]

sup Z/\ filw) | >0. (1)

UJGQ i=1
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Linear programs

A set of desirable gambles D avoids sure loss if and only if the optimal value of (P1) is zero, or if
the dual problem has feasible solutions [7].

(D1) max 0
subject to  Vf; : Z fi(w)p(w)>0

weN

(P1) min «

subject to Vw € Q: Z)\ifi(w) —a<0

i=1 Zp(w) =1
where A; >0 (« free). weQ
where  p(w) > 0.
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Size reduction

An alternative linear program is slightly smaller in size and has only non-negative variables:

Choose any w™ € Q. A set D avoids sure loss if and only if the optimal value of (P2) is zero, or if
(D2) has feasible solutions [3].

n (D2) max 0
(P2) min ;Aifi(w )ta subject to Vf; € D : Z (fi(@™) = fi(w))p(w) < fi(w™)
n wHw*
subject to Vw # w* : Z)\i(fi(w*) —filw)) +a=0 Z pw) <1
i=1 wHwW*

where A;,a > 0. where p(w) > 0.
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Algorithms for solving linear programs

m Simplex
m Affine scaling
m Primal-dual

Optimal
solution
-

Starting

vertex _4
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m Simplex
- Cycling: infinite iterations and no convergence.
- Stalling: finite iterations, but in exponential time [1].

m Affine scaling
- A restriction on a step-size [4].
m Primal-dual
- Affecting numerical performance [1].
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Early stopping

Lemma 4

(Adapted from [6]) The linear programming problem

min  c'x (2)
subject to Az >0 (3)

either has an optimal value that is zero, or is unbounded.

m Can stop when a current value is negative.

m Extra stopping for affine scaling and primal-dual.
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Starting points

m To start those methods, we need an initial point.
m Simplex and Affine scaling

- Closed form for both primal and dual problems.
m Primal-dual

- Closed form for primal problem.
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Overall comparison among improved methods

Comparison simplex | affine scaling | primal-dual
Stalling — + +
Stop early — + +
Starting points + + +
Convergence speed - + ++
Complexity per step ++ - —
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Conclusion

m Simplex is not normally efficient for checking avoiding sure loss due to
degeneracy.

m Because of early stopping rules, affine scaling and primal-dual are much more
efficient, especially when sets of desirable gambles do not avoid sure loss.

m Overall performance for checking avoiding sure loss:
primal-dual > affine scaling > simplex.
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