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Desirability axioms

A possibility space Ω
A gamble f : Ω→ R

Q: How should we reason with desirable gambles?
Suppose we are offered:
Outcomes A B C
f1 -5 -1 -2
f2 30 20 0
f3 -1 2 -1
f4 -50 100 -50
f2 + f4 -20 120 -50

Desirability axioms
(D1) Do not accept sure loss.
(D2) Accept sure gain.
(D3) Accept positive scaled invariance.
(D4) Accept positive combination of desirable

gambles. [2]
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Avoiding sure loss

Definition 1

A set of desirable gambles D is said to avoid sure loss if for all n ∈ N,
λ1, · · · , λn ≥ 0 and f1, · · · , fn ∈ D [5]:

sup
ω∈Ω

(
n∑
i=1

λifi(ω)
)
≥ 0. (1)
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Linear programs

Theorem 2
A set of desirable gambles D avoids sure loss if and only if the optimal value of (P1) is zero, or if
the dual problem has feasible solutions [7].

(P1) min α

subject to ∀ω ∈ Ω :
n∑

i=1

λifi(ω)− α ≤ 0

where λi ≥ 0 (α free).

(D1) max 0

subject to ∀fi :
∑
ω∈Ω

fi(ω)p(ω)≥ 0∑
ω∈Ω

p(ω) = 1

where p(ω) ≥ 0.
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Size reduction

An alternative linear program is slightly smaller in size and has only non-negative variables:

Theorem 3

Choose any ω∗ ∈ Ω. A set D avoids sure loss if and only if the optimal value of (P2) is zero, or if
(D2) has feasible solutions [3].

(P2) min
n∑

i=1

λifi(ω∗) + α

subject to ∀ω 6= ω∗ :
n∑

i=1

λi(fi(ω∗)− fi(ω)) + α ≥ 0

where λi, α ≥ 0.

(D2) max 0

subject to ∀fi ∈ D :
∑

ω 6=ω∗

(fi(ω∗)− fi(ω))p(ω) ≤ fi(ω∗)∑
ω 6=ω∗

p(ω) ≤ 1

where p(ω) ≥ 0.
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Algorithms for solving linear programs
Simplex
Affine scaling
Primal-dual

N.Nakharutai (Durham) Efficient algorithms July 12, 2017 7 / 15



Introduction Results and Contributions Improved methods Conclusion Benchmarking

Degeneracy

Simplex
- Cycling: infinite iterations and no convergence.
- Stalling: finite iterations, but in exponential time [1].

Affine scaling
- A restriction on a step-size [4].

Primal-dual
- Affecting numerical performance [1].
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Early stopping

Lemma 4

(Adapted from [6]) The linear programming problem

min cᵀx (2)
subject to Ax ≥ 0 (3)

either has an optimal value that is zero, or is unbounded.

Can stop when a current value is negative.
Extra stopping for affine scaling and primal-dual.
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Starting points

To start those methods, we need an initial point.
Simplex and Affine scaling

- Closed form for both primal and dual problems.
Primal-dual

- Closed form for primal problem.
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Overall comparison among improved methods

Comparison simplex affine scaling primal-dual
Stalling − + +
Stop early − + +
Starting points + + ±
Convergence speed − + ++
Complexity per step ++ − −
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Conclusion

Simplex is not normally efficient for checking avoiding sure loss due to
degeneracy.
Because of early stopping rules, affine scaling and primal-dual are much more
efficient, especially when sets of desirable gambles do not avoid sure loss.
Overall performance for checking avoiding sure loss:
primal-dual > affine scaling > simplex.
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Benchmarking improved methods
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Different improved primal-dual methods
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