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Problem

(i) set M={p(-|t): t € T} of probability density functions
(i) lower prevision of f:

E(1) = min [ (0p(x | )

(i) No closed form for [ f(x)p(x | t)dx, or expensive to evaluate directly
(i) 7~ highly dimensional

Estimate E(f). Key assumptions:
1. Continuous parameterisation: M = {p(- | t): t € T}
2. Can sample from p(- | t) for any fixed t
3. Can evaluate p(x | t) very fast up to a normalisation constant
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Importance Sampling: Basic Ideas

What is Importance Sampling?

Given an i.i.d. sample xy,..., X, ~ p(- | t) for a fixed value of 1,
we can estimate ff(x)p(x | t)dx for all t € 7~ simultaneously!

» By reweighting the sample:
_ pix11)
=C —
p(x | t)
» Caveat: the further p(x | t) is away from p(x | T), the worse the estimate!

w;(x)

» Diagnostic: effective sample size
n ’ 2
3 ( i=1 Wt(Xi))

- XL w; (xi)?



Importance Sampling: Formulas

Self-Normalised Importance Sampling Estimate

f f(x)p(x | t)dx = f + 1.966¢/ Vn
where
. S wO)f(x) sz 15 Xy wi00)(f00) - )

WX —1 (1)
=1 W) " (B wi)

=

Estimate is a simple non-linear but continuous function of t.
We can optimise /i; over t!

this is not a new idea: standard non-self-normalised importance sampling already studied by O’Neill,
Fetz, Oberguggenberger, Zhang, de Angelis, ... ; see literature discussion in paper
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Contribution 1: Imprecise Importance Sampling “Does Not Work”

» Find t* := arg minses 11
» Then E(f) = fiy + 1.966+/ Vn provided that t* ~ arg minser E(f | t)

Theoretical Guarantees?

» Normalised case: statistical error (O’Neill), but result is not coherent
» Self-normalised case: result is coherent, but statistical error is open problem

Practical Observations?

» Even in moderately small problems, n;- is only a very small fraction of n.
> In large models, n;- is often very close to 1 (i.e. utterly useless).
» Self-normalised imprecise importance sampling

» is much faster, and
» is coherent (not true for the non-self-normalised case).

» Sampling distribution does not have to be from p(x | t). 0



Contribution 2: lterative Importance Sampling Method

Basic Idea

Even though fi;- can be bad if n;- is low,
the new t* is likely still to be an improvement over the original t.

Iterative Importance Sampling

(i) Set fto some reasonable initial value in 7.

(ily Generate sample from p(x | 1).

)

)

(iii)y Find optimal t* through imprecise importance sampling: t* := arg min;cs ;.

(iv) If ny =~ n, stop. Estimate is E(f) ~ fi;+ + 1.966+/ v/n (under usual caveat).
)

(v) If not, set f = t*, and return to item (ii).
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Contribution 2: lterative Importance Sampling Method

Theoretical Guarantees

» Estimate is coherent.
» Convergence? Statistical error? Open problem.

Practical Observations

» Much faster.

» Much lower n required for identical .

» Convergences to correct t* in most (moderately sized) numerical experiments so far.
» Plenty of variations possible (scaling n, scaling 77, ...).
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Example & Simulation Results

» A = k-dimensional unit simplex, k = 5

p(x|t):= ]'["r(?ZSt) I St’ withs =2andt e A

2(t-1 ~
wi(x) = T, X0 o p(x | 1)/p(x 1)
T ={te A: t>0.1}
f(x) = x1 + 2x2 + 5x3 + 4x4 — 3x5 (note, analytically, E(f) = —0.6)

v

v

v

v



Example & Simulation Results

n 5 50 500 5000
1y 1.50 0.13 -0.85 | -0.29
O 0.11 3.18 10.83 | 10.74

G/ \n | 0.048 0.45 0.48 0.15
Ny 1.104 | 15.016 | 6.061 | 141.67

t; 0.1 01 | 017 | 0.1
t; 057 | 0.1 0.1 0.1
t; 0.1 0.1 0.1 0.1
t; 0.1 0.1 0.1 0.1
t; 013 | 06 | 053 | 06

For n = 5000, simulation takes about 200 seconds.

v

v

Very low n;-. The n = 500 case is particularly dreadful.

v

Estimate generally outside confidence interval esp. when n is low.

v

In all cases, 6+ is an extremely poor estimate of the actual standard deviation. ”



Example & Simulation Results

Iterative Importance Sampling With n = 141

iteration 1 2 3
e 0.062 -0.39 -0.63
Ty 4.28 2.00 1.76

&v/vn | 0.36 0.17 0.15
Ny 21.60 | 105.93 | 141.00

t 016 | 0.1 0.1
t 0.1 0.1 0.1
t; 0.1 0.1 0.1
t; 0.1 0.1 0.1
t; 054 | 06 06

» Total simulation takes about 6 seconds (non-self-normalised version: 86 seconds).
» lteration 2: correct t* identified; iteration 3: n; = n, optimisation immediate.

» Final estimate comfortably within confidence interval.

» Accurate estimate also for 6+ (analytical value is 1.792577).
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Conclusions

» importance sampling allows us to estimate lower expectations
around an entire neighbourhood of distributions

» self-normalised importance sampling: faster, required for coherence, but theoreti-
cally harder to work with; not much studied in imprecise probability setting

» naive imprecise importance sampling severely limited
» novel iterative importance sampling method extremely promising

Enticed? Come and speak to me
in the breaks over coffee/lunch!!

Thank you!
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