A Note on Imprecise Monte Carlo over Credal Sets via Importance Sampling

Matthias C. M. Troffaes

Durham University, United Kingdom

12 July, 2017

Problem

Importance Sampling

Contributions Imprecise Importance Sampling Iterative Importance Sampling Method

Example & Simulation Results

Problem

Importance Sampling

Contributions Imprecise Importance Sampling Iterative Importance Sampling Method

Example & Simulation Results

Problem

Notation

(i) set $\mathcal{M} = \{p(\cdot \mid t) \colon t \in \mathcal{T}\}$ of probability density functions

(ii) lower prevision of *f*:

$$\underline{\underline{E}}(f) \coloneqq \min_{t \in \mathcal{T}} \int f(x) p(x \mid t) dx$$

Issues

- (i) No closed form for $\int f(x)p(x \mid t)dx$, or expensive to evaluate directly
- (ii) \mathcal{T} highly dimensional

Aim

Estimate $\underline{E}(f)$. Key assumptions:

- 1. Continuous parameterisation: $\mathcal{M} = \{p(\cdot \mid t) : t \in \mathcal{T}\}$
- 2. Can sample from $p(\cdot | t)$ for any fixed t
- 3. Can evaluate p(x | t) very fast up to a normalisation constant

Problem

Importance Sampling

Contributions Imprecise Importance Sampling Iterative Importance Sampling Method

Example & Simulation Results

Importance Sampling: Basic Ideas

What is Importance Sampling?

Given an i.i.d. sample $x_1, \ldots, x_n \sim p(\cdot | \tilde{t})$ for a fixed value of \tilde{t} , we can estimate $\int f(x)p(x | t)dx$ for all $t \in \mathcal{T}$ simultaneously!

How?

By reweighting the sample:

$$w_t'(x) = c rac{p(x \mid t)}{p(x \mid ilde{t})}$$

- Caveat: the further p(x | t) is away from $p(x | \tilde{t})$, the worse the estimate!
- Diagnostic: effective sample size

$$n_t := \frac{\left(\sum_{i=1}^n w'_t(x_i)\right)^2}{\sum_{i=1}^n w'_t(x_i)^2}$$

Importance Sampling: Formulas

Self-Normalised Importance Sampling Estimate

$$\int f(x)p(x\mid t)dx \simeq \hat{\mu}_t \pm 1.96\hat{\sigma}_t/\sqrt{n}$$

where

$$\hat{\mu}_t := \frac{\sum_{i=1}^n w_t'(x_i) f(x_i)}{\sum_{i=1}^n w_t'(x_i)} \qquad \qquad \hat{\sigma}_t^2 := \frac{1}{n-1} \frac{\frac{1}{n} \sum_{i=1}^n w_t'(x_i)^2 (f(x_i) - \hat{\mu}_t)^2}{\left(\frac{1}{n} \sum_{i=1}^n w_t'(x_i)\right)^2}$$

Estimate is a simple non-linear but continuous function of *t*. We can optimise $\hat{\mu}_t$ over *t*!

this is not a new idea: standard non-self-normalised importance sampling already studied by O'Neill, Fetz, Oberguggenberger, Zhang, de Angelis, ...; see literature discussion in paper

Problem

Importance Sampling

Contributions Imprecise Importance Sampling Iterative Importance Sampling Method

Example & Simulation Results

Contribution 1: Imprecise Importance Sampling "Does Not Work" Imprecise Importance Sampling

Find $t^* := \arg \min_{t \in \mathcal{T}} \hat{\mu}_t$

► Then $\underline{E}(f) \simeq \hat{\mu}_{t^*} \pm 1.96 \hat{\sigma}_{t^*} / \sqrt{n}$ provided that $t^* \simeq \arg \min_{t \in \mathcal{T}} E(f \mid t)$

Theoretical Guarantees?

- Normalised case: statistical error (O'Neill), but result is not coherent
- Self-normalised case: result is coherent, but statistical error is open problem

Practical Observations?

- Even in moderately small problems, n_{t^*} is only a very small fraction of n.
- ▶ In large models, n_{t^*} is often very close to 1 (i.e. utterly useless).
- Self-normalised imprecise importance sampling
 - is much faster, and
 - ► is coherent (not true for the non-self-normalised case).
- Sampling distribution does not have to be from p(x | t).

Contribution 2: Iterative Importance Sampling Method

Basic Idea

Even though $\hat{\mu}_{t^*}$ can be bad if n_{t^*} is low, the new t^* is likely still to be an improvement over the original \tilde{t} .

Iterative Importance Sampling

- (i) Set \tilde{t} to some reasonable initial value in \mathcal{T} .
- (ii) Generate sample from $p(x | \tilde{t})$.
- (iii) Find optimal t^* through imprecise importance sampling: $t^* := \arg \min_{t \in \mathcal{T}} \hat{\mu}_t$.
- (iv) If $n_{t^*} \simeq n$, stop. Estimate is $\underline{E}(f) \simeq \hat{\mu}_{t^*} \pm 1.96 \hat{\sigma}_{t^*} / \sqrt{n}$ (under usual caveat).
- (v) If not, set $\tilde{t} = t^*$, and return to item (ii).

Contribution 2: Iterative Importance Sampling Method

Theoretical Guarantees

- Estimate is coherent.
- Convergence? Statistical error? Open problem.

Practical Observations

- Much faster.
- Much lower *n* required for identical $\hat{\sigma}_{t^*}$.
- Convergences to correct t* in most (moderately sized) numerical experiments so far.
- ▶ Plenty of variations possible (scaling n, scaling \mathcal{T} , ...).

Problem

Importance Sampling

Contributions Imprecise Importance Sampling Iterative Importance Sampling Method

Example & Simulation Results

Example & Simulation Results

Inputs

- $\Delta = k$ -dimensional unit simplex, k = 5
- $p(x \mid t) \coloneqq \frac{\Gamma(s)}{\prod_{j=1}^{k} \Gamma(st_j)} \prod_{j=1}^{k} x_j^{st_j-1}$ with s = 2 and $t \in \Delta$
- $w'_t(x) = \prod_{j=1}^k x_j^{2(t_j \tilde{t}_j)} \propto p(x \mid t) / p(x \mid \tilde{t})$
- $\mathcal{T} := \{t \in \Delta : t_j \ge 0.1\}$
- $f(x) = x_1 + 2x_2 + 5x_3 + 4x_4 3x_5$ (note, analytically, $\underline{E}(f) = -0.6$)

Example & Simulation Results

Imprecise Importance Sampling

п	5	50	500	5000
$\hat{\mu}_{t^*}$	1.50	0.13	-0.85	-0.29
$\hat{\sigma}_{t^*}$	0.11	3.18	10.83	10.74
$\hat{\sigma}_{t^*}/\sqrt{n}$	0.048	0.45	0.48	0.15
n_{t^*}	1.104	15.016	6.061	141.67
t_1^*	0.1	0.1	0.17	0.1
t_2^*	0.57	0.1	0.1	0.1
$\bar{t_3^*}$	0.1	0.1	0.1	0.1
t_4^*	0.1	0.1	0.1	0.1
t_5^*	0.13	0.6	0.53	0.6

Observations

- For n = 5000, simulation takes about 200 seconds.
- Very low n_{t^*} . The n = 500 case is particularly dreadful.
- Estimate generally outside confidence interval esp. when n_t is low.
- ▶ In all cases, $\hat{\sigma}_{t^*}$ is an extremely poor estimate of the actual standard deviation.

Example & Simulation Results

Iterative Importance Sampling With *n* = 141

iteration	1	2	3
$\hat{\mu}_{t^*}$	0.062	-0.39	-0.63
$\hat{\sigma}_{t^*}$	4.28	2.00	1.76
$\hat{\sigma}_{t^*}/\sqrt{n}$	0.36	0.17	0.15
n_{t^*}	21.60	105.93	141.00
t_1^*	0.16	0.1	0.1
t_2^*	0.1	0.1	0.1
t_3^*	0.1	0.1	0.1
t_4^*	0.1	0.1	0.1
t_5^*	0.54	0.6	0.6

Observations

- Total simulation takes about 6 seconds (non-self-normalised version: 86 seconds).
- ▶ Iteration 2: correct t^* identified; iteration 3: $n_{t^*} = n$, optimisation immediate.
- Final estimate comfortably within confidence interval.
- Accurate estimate also for $\hat{\sigma}_{t^*}$ (analytical value is 1.792577).

Problem

Importance Sampling

Contributions Imprecise Importance Sampling Iterative Importance Sampling Method

Example & Simulation Results

Conclusions

Main Conclusions

- importance sampling allows us to estimate lower expectations around an entire neighbourhood of distributions
- self-normalised importance sampling: faster, required for coherence, but theoretically harder to work with; not much studied in imprecise probability setting
- naive imprecise importance sampling severely limited
- novel iterative importance sampling method extremely promising

Enticed? Come and speak to me in the breaks over coffee/lunch!! Thank you!

References I

[1] J. E. Cano, L. D. Hernández, and S. Moral.

Importance sampling algorithms for the propagation of probabilities in belief networks. International Journal of Approximate Reasoning, 15(1):77–92, 1996.

- Marco de Angelis, Edoardo Patelli, and Michael Beer.
 Advanced line sampling for efficient robust reliability analysis. Structural Safety, 52, Part B:170–182, 2015.
- [3] Thomas Fetz and Michael Oberguggenberger.
 Imprecise random variables, random sets, and Monte Carlo simulation.
 In Thomas Augustin, Serena Doria, Enrique Miranda, and Erik Quaeghebeur, editors, ISIPTA '15: Proceedings of the Ninth International Symposium on Imprecise Probability: Theories and Applications, pages 137–146, 2015.
- [4] Luis D. Hernández and Seraf'in Moral.

Mixing exact and importance sampling propagation algorithms in dependence graphs. *International Journal of Intelligent Systems*, 12(8):553–576, August 1997.

[5] S. Moral and N. Wilson.

Importance sampling algorithms for the calculation of Dempster-Shafer belief. In *Proceedings of IPMU-96 Conference*, volume 3, pages 1337–1344, 1996.

[6] Michael Oberguggenberger, Julian King, and Bernhard Schmelzer. Classical and imprecise probability methods for sensitivity analysis in engineering: A case study. International Journal of Approximate Reasoning, 50(4):680–693, 2009.

References II

[7] B. O'Neill.

Importance sampling for Bayesian sensitivity analysis.

International Journal of Approximate Reasoning, 50(2):270–278, 2009.

[8] Art B. Owen.

Monte Carlo theory, methods and examples. 2013.

[9] Jiaxin Zhang and Michael D. Shields.
 Efficient propagation of imprecise probabilities.
 In 7th International Workshop on Reliable Engineering Computing, pages 197–209, 2016.