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Problem
Notation

(i) setM = {p(· | t) : t ∈ T } of probability density functions

(ii) lower prevision of f :
E(f) B min

t∈T

∫
f(x)p(x | t)dx

Issues

(i) No closed form for
∫

f(x)p(x | t)dx, or expensive to evaluate directly

(ii) T highly dimensional

Aim
Estimate E(f). Key assumptions:

1. Continuous parameterisation: M = {p(· | t) : t ∈ T }

2. Can sample from p(· | t) for any fixed t

3. Can evaluate p(x | t) very fast up to a normalisation constant
4
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Importance Sampling: Basic Ideas

What is Importance Sampling?

Given an i.i.d. sample x1, . . . , xn ∼ p(· | t̃) for a fixed value of t̃ ,
we can estimate

∫
f(x)p(x | t)dx for all t ∈ T simultaneously!

How?
I By reweighting the sample:

w′t (x) = c
p(x | t)

p(x | t̃)

I Caveat: the further p(x | t) is away from p(x | t̃), the worse the estimate!
I Diagnostic: effective sample size

nt B

(∑n
i=1 w′t (xi)

)2∑n
i=1 w′t (xi)2
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Importance Sampling: Formulas
Self-Normalised Importance Sampling Estimate∫

f(x)p(x | t)dx ' µ̂t ± 1.96σ̂t/
√

n

where

µ̂t B

∑n
i=1 w′t (xi)f(xi)∑n

i=1 w′t (xi)
σ̂2

t B
1

n − 1

1
n
∑n

i=1 w′t (xi)
2(f(xi) − µ̂t )

2(
1
n
∑n

i=1 w′t (xi)
)2

Estimate is a simple non-linear but continuous function of t .
We can optimise µ̂t over t!

this is not a new idea: standard non-self-normalised importance sampling already studied by O’Neill,
Fetz, Oberguggenberger, Zhang, de Angelis, . . . ; see literature discussion in paper
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Contribution 1: Imprecise Importance Sampling “Does Not Work”
Imprecise Importance Sampling

I Find t∗ B arg mint∈T µ̂t

I Then E(f) ' µ̂t∗ ± 1.96σ̂t∗/
√

n provided that t∗ ' arg mint∈T E(f | t)

Theoretical Guarantees?
I Normalised case: statistical error (O’Neill), but result is not coherent
I Self-normalised case: result is coherent, but statistical error is open problem

Practical Observations?
I Even in moderately small problems, nt∗ is only a very small fraction of n.
I In large models, nt∗ is often very close to 1 (i.e. utterly useless).
I Self-normalised imprecise importance sampling

I is much faster, and
I is coherent (not true for the non-self-normalised case).

I Sampling distribution does not have to be from p(x | t). 9



Contribution 2: Iterative Importance Sampling Method

Basic Idea
Even though µ̂t∗ can be bad if nt∗ is low,

the new t∗ is likely still to be an improvement over the original t̃ .

Iterative Importance Sampling

(i) Set t̃ to some reasonable initial value in T .

(ii) Generate sample from p(x | t̃).

(iii) Find optimal t∗ through imprecise importance sampling: t∗ B arg mint∈T µ̂t .

(iv) If nt∗ ' n, stop. Estimate is E(f) ' µ̂t∗ ± 1.96σ̂t∗/
√

n (under usual caveat).

(v) If not, set t̃ = t∗, and return to item (ii).
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Contribution 2: Iterative Importance Sampling Method

Theoretical Guarantees
I Estimate is coherent.
I Convergence? Statistical error? Open problem.

Practical Observations
I Much faster.
I Much lower n required for identical σ̂t∗ .
I Convergences to correct t∗ in most (moderately sized) numerical experiments so far.
I Plenty of variations possible (scaling n, scaling T , . . . ).

11



Outline

Problem

Importance Sampling

Contributions
Imprecise Importance Sampling
Iterative Importance Sampling Method

Example & Simulation Results

Conclusions

12



Example & Simulation Results

Inputs
I ∆ = k -dimensional unit simplex, k = 5

I p(x | t) B Γ(s)∏k
j=1 Γ(stj)

∏k
j=1 xstj−1

j with s = 2 and t ∈ ∆

I w′t (x) =
∏k

j=1 x2(tj−t̃j)
j ∝ p(x | t)/p(x | t̃)

I T B {t ∈ ∆: tj ≥ 0.1}
I f(x) = x1 + 2x2 + 5x3 + 4x4 − 3x5 (note, analytically, E(f) = −0.6)
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Example & Simulation Results
Imprecise Importance Sampling

n 5 50 500 5000
µ̂t∗ 1.50 0.13 -0.85 -0.29
σ̂t∗ 0.11 3.18 10.83 10.74

σ̂t∗/
√

n 0.048 0.45 0.48 0.15
nt∗ 1.104 15.016 6.061 141.67
t∗1 0.1 0.1 0.17 0.1
t∗2 0.57 0.1 0.1 0.1
t∗3 0.1 0.1 0.1 0.1
t∗4 0.1 0.1 0.1 0.1
t∗5 0.13 0.6 0.53 0.6

Observations
I For n = 5000, simulation takes about 200 seconds.
I Very low nt∗ . The n = 500 case is particularly dreadful.
I Estimate generally outside confidence interval esp. when nt∗ is low.
I In all cases, σ̂t∗ is an extremely poor estimate of the actual standard deviation.
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Example & Simulation Results
Iterative Importance Sampling With n = 141

iteration 1 2 3
µ̂t∗ 0.062 -0.39 -0.63
σ̂t∗ 4.28 2.00 1.76

σ̂t∗/
√

n 0.36 0.17 0.15
nt∗ 21.60 105.93 141.00
t∗1 0.16 0.1 0.1
t∗2 0.1 0.1 0.1
t∗3 0.1 0.1 0.1
t∗4 0.1 0.1 0.1
t∗5 0.54 0.6 0.6

Observations
I Total simulation takes about 6 seconds (non-self-normalised version: 86 seconds).
I Iteration 2: correct t∗ identified; iteration 3: nt∗ = n, optimisation immediate.
I Final estimate comfortably within confidence interval.
I Accurate estimate also for σ̂t∗ (analytical value is 1.792577). 15
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Conclusions

Main Conclusions
I importance sampling allows us to estimate lower expectations

around an entire neighbourhood of distributions
I self-normalised importance sampling: faster, required for coherence, but theoreti-

cally harder to work with; not much studied in imprecise probability setting
I naive imprecise importance sampling severely limited
I novel iterative importance sampling method extremely promising

Enticed? Come and speak to me
in the breaks over coffee/lunch!!

Thank you!
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