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Brachistochrone problem
(formulated by Johan Bernoulli in 1696)

• Given two points in space

• find a curve connecting
them such that:

• a mass point moving
along the curve under
the gravity

• reaches the second point
in the shortest time.

See the video of the experiment.
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Cycloid - the optimal solution



Influence diagram for the Brachistochrone problem

Yi Yi+1

ti+1

Ui Ui+1

• Discretize the x-coordinate to
segments of length ∆x.

• State variable Yi – the vertical
position of the mass point.

• Decision variable Ui – the
vertical shift.

• Utility node ti+1(yi,ui) – the
utility function is the time :

ti+1 =


∆x√

−2 · g · yi
if ui = 0

−

√
2

g
·

√
(∆x)2 + u2i

ui
·
( √

−yi
−
√
−ui − yi

)
otherwise.

The goal is to minimize total time
∑n

i=0 ti+1.
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Comparison of the optimal solution
with the influence diagram solution
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The Goddard problem
Robert H. Goddard, 1919

Establish the optimal engine thrust
profile for a rocket ascending vertically
from the Earth’s surface such that:

• a given altitude is achieved with a
given speed and a given payload,

• the fuel expenditure is minimized,

• aerodynamic drag and the varying
gravitation is considered, and

• the engine thrust is bounded.
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The rocket dynamics

• m ... rocket mass

• v ... rocket speed

• u ... the engine thrust

• h ... the distance to Earth’s center

• the system of two ordinary differential equations (ODEs) with
respect to height h in the normalized form:

dm

dh
= g(h, v) =

u

v(h)
“burning the fuel”

dv

dh
= f(h,m, v) “equlibrium of forces”

= −
1

m
·
(
c · u
v

+
1

2
· s · cD · ρ0 · exp (β · (1 − h)) · v

)
−
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v
· 1

h2
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Optimal solution

It is known (Miele, 1963) that the optimal solution consists of
three subarcs:

(a) maximum-thrust subarcs,

(b) variable-thurst subarc, and

(c) coasting subarcs (i.e. subarcs with the zero thrust).
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Optimal solution
(found by Bocop, using a NLP solver IPOPT)
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Influence diagram for the Goddard Problem

Ui

fi+1

Ui+1

Mi Mi+1

Vi Vi+1

• State variables:
Mi – the rocket mass
(payload + fuel),
Vi – the rocket speed.

• Decision variable:
Ui – the engine thrust.

• Utility node:
fi+1 – the mass of the burnt
fuel, i.e., Mi −Mi+1.

• State transitions are defined by the Euler approximation of the
system of two ordinary differential equations (ODEs).

• In CPTs a stochastic approximation of the state transitions by
a probability mixture of two nearest states is used.
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Comparison of the optimal solution
with the influence diagram solution
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General guidelines

1. Specify the state and the control variables, the utility function.

2. Describe the system using differential equations.

3. Discretize the trajectory to short segments.

4. Find an analytical formula for the state.

5. If no analytical solution is available use an approximation
method (Euler, Runge-Kutta, Gauss-Legendre, etc.)

6. Construct the ID having in each segment:
- a chance node for each state variable,
- a decision node for each control variable, and
- a utility node.
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General guidelines - II

7. If necessary, discretize the state and control variables.

8. Use conditional probability tables to specify the state
transitions.

9. If states are discretized and the state transitions lead to states
that are not in the set of state values then use the stochastic
approximation by a mixture of two nearest states.

10. Find and store the optimal policy for each segment of the
trajectory by solving the ID.

11. During the application the optimal policy for the actual
observed values of state variables at each point of the
trajectory is used.

12. If the controlled object deviates from the optimal solution use
the stored optimal policy for the observed state.
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Conclusions and future work

• In the two benchmark problems the influence diagrams
solutions were comparable with the analytic solutions.

• Thanks to the decomposability of the optimization criteria
computations are performed locally in the cliques.

• In influence diagrams it is easy to modify the optimality
criteria – as long as it decomposes additively along the path.

• Future work: influence diagrams with continuous variables.
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