Efficient Computation of Upper Probabilities of Failure Using Monte Carlo Simulation and Reweighting Techniques

Thomas Fetz

THOMAS.FETZ@UIBK.AC.AT

Unit for Engineering Mathematics Institute of Basic Sciences in Engineering Science Technikerstraße 13, 6020 Innsbruck, Austria

Poster Abstract

Let $(X_{\lambda})_{\lambda \in \Lambda}$ be a family of random variables. The upper probability \overline{p}_f of failure is the solution of the optimization problem

$$\overline{p}_f = \max_{\lambda \in \Lambda} \int_D \mathbb{1}_{g(x) \le 0} f_{X_\lambda}(x) \, \mathrm{d}x$$

where $f_{X_{\lambda}}$ is the corresponding probability density of the random variable $X_{\lambda}, g : D \to \mathbb{R}$ a limit state function and 1 the indicator function. A value $g(x) \leq 0$ means failure of the underlying engineering structure and a value g(x) > 0 means that the engineering structure is safe. As an example, $f_{X_{\lambda}}$ is the density function of a Gaussian random variable $X_{\lambda} \sim \mathcal{N}(\mu(\lambda), \Sigma(\lambda))$ with expectation μ and covariance matrix Σ parametrized by $\lambda = (\lambda_1, \ldots, \lambda_n) \in \Lambda$.

The objective function $p(\lambda) = \int_D \mathbb{1}_{g(x) \le 0} f_{X_\lambda}(x) dx$ of the above optimization problem can be approximated using Monte Carlo simulation together with reweighting or importance sampling techniques using only one single sample x_1, \ldots, x_N distributed according to a "basic" random variable X^0 with $f_{X^0} > 0$:

$$p(\lambda) = \int_{D} \mathbb{1}_{g(x) \le 0} f_{X_{\lambda}}(x) \, \mathrm{d}x = \int_{D} \mathbb{1}_{g(x) \le 0} \frac{f_{X_{\lambda}}(x)}{f_{X^{0}}(x)} f_{X^{0}}(x) \, \mathrm{d}x$$
$$\approx \frac{1}{N} \sum_{k=1}^{N} \mathbb{1}_{g(x_{k}) \le 0} \frac{f_{X_{\lambda}}(x_{k})}{f_{X^{0}}(x_{k})} =: p_{x_{1},\dots,x_{N}}^{X^{0}}(\lambda),$$

cf. Fetz and Oberguggenberger (2016). Then an approximation of the upper probability \overline{p}_f of failure is obtained by $\overline{p}_f \approx \max_{\lambda \in \Lambda} p_{x_1,\dots,x_N}^{X^0}(\lambda)$. This method needs only N function evaluations $g(x_1), \dots, g(x_N)$ of the limit state function which is an advantage in cases where the evaluation of g is time consuming, e.g. finite element computations. Further, $p_{x_1,\dots,x_N}^{X^0}$ depends continuously on λ (if f_{X_λ} is continuous, too) which makes maximization easier. We also note that we get different functions $p_{x_1,\dots,x_N}^{X^0}$ for different samples x_1,\dots,x_N and basic random variables X^0 .

The purpose of the poster presentation is to discuss and compare variants of the above approach such as iterating and strategies for choosing the random variable X^0 , and to exemplify these methods by an engineering example.

References

T. Fetz and M. Oberguggenberger. Imprecise random variables, random sets, and Monte Carlo simulation. *International Journal of Approximate Reasoning*, 78:252–264, 2016.