Efficient Computation of Upper Probabilities of Failure

Using Monte Carlo Simulation & Reweighting Techniques
Thomas Fetz, Unit for Engineering Mathematics, University of Innsbruck, Austria

Given:
Aim:

Expensive limit state function g : D C RY — R : x — g(x) and family {X; }, A of random variables.
Upper probability of failure 7, = sup; 5 p(A) with p(1) = P(g(X3) < 0) = [p, Le(<ofx; (x) dx.

Method: Efficient Monte-Carlo simulation using importance sampling and reweighting for approximating p(1).

(N\
0.1

— new samples

— reweighting

9. - .

s 0.05 Fooeveeeeiiomeee i)

=

Y

3 4 5 6
v (p=0.9,r=1, N =5000)

A J

Classical importance sampling

Given: X ~ N(u,X) and limit state function g.
Goal: py=P(g(X) <0) = [pLyw)<o fx (x) dx.
Problem: py is very small.

— Large sample size for ordinary MC simulation.
— High computational effort in case of expensive g.

Idea: Place sample points where it is “important” and
reweight!

1 Transformation from standard normal space

T-ECR! -DCRY: ET(E)=C-E+p.
C is the Cholesky factor of X.

(. J

2 Design point \

Find £° € E C R? such that
||€°|| = min subjectto g(7T(£°)) <O0.

£ is the point in the transformed failure domain
which is the closest to the origin.

(. J

3 Importance sample \

Generate sample &;,...,Ev ~ N(E°,1).
Sample points in original space: x; = T (&).
Xlyeooy XN N(T(éo),Z) R XO.

(. J

4 Evaluation of g \

Evaluate limit state function g at sample x,...,xy.

. J

5 Approximation of p; by reweighting

pr=P(e(0) <0) = [Lygco f(x) dx

_ Jx (x) 1
a /D]lg(x)So Sxo(x) Fro(x) dr ~ N kgl Lg()<0 Wk

S (xx)
Jxo ()

. J
J

with weights w;, =

A

Design point / importance sample

standard normal space

original space

B ' -~ . o P e S 60
G 0y } ----- 4 = g
SRR S L L — 40
N/ i)
b N : failure region 20
-5 0 5 20 40 60 80
& Ty

Importance sample and original sample.

A

Importance sample diagnostics (Owen)

2
(Z;cvﬂ Wk) _
):fcvzl W%

o Effective sample size: N, =
Best value for X0 = X ().
e Taking h:= 1)< into accoun|t:(Y
h Xk)| Wk
Nen=cy—=> “k=<y 7 -
VT Yo [h(x) wi

Only sample points in the failure domain involved.

5 [5 [

Values of N, and N, , at & for X° ~ N(&,1).

Simulation of a family of random variables

Goal: Approximation of p(1) = P(g(X;) <0).

Naive approach: Compute p(A) using Monte-Carlo
simulations with samples x7,...,x% ~ X; for each 4
occurring in the optimization process.

— High computational cost, non-smooth function.

Better: Reweighting and importance sampling.

1 Basic sample xq,...,xy

e Generate a sample xi,...,xy distributed as a
basic random variable X° with density fyo > 0.

e The sample xp,...,xy should be an importance
sample for all X, A € A, at least for optimal X «.

2 N function evaluations g(x)

e Evaluate the limit state function g at all sample
points xi,...,xy.

3 Approximation of p(A) by reweighting

The probability p(1) = P(g(X;) < 0) for A € A'is
approximated by reweighting the basic sample:

p(2) =P(g(%) <0) = [<o fi (9 d

~
~

1Y 0
N L Letyo weA) = Py (A),

with weights Wk ()L) = fx)L (xk)/fxo (xk).
The approximation p;(]o’“ﬂx]v(l) of p(1) depends on
XY and on the sample points x1, ..., xy.

Approximation of p(1) for different A € A without
additional function evaluations of g!

4 Approximation of p
0

e Solve optimization problem p¥ (A) = max
subject to A € A using standard optimization
procedures.

q 0 q
e Evaluation of p¥ s very cheap.
0 . q q o o
° pfflwa is continuous if fx, is continuous, too.

We present three algorithms with different strategies
for the choice of the basic sample x,...,xx.

(1) x1,...,xy ~ X3, A € A, no importance sampling.
(2) Design point based on single X;, A € A.

(8) Global design point among all X;, A € A.

Numerical example

Given: Beam of length 3 m bedded on two springs with uncertain spring con-
stants x; and x,. The beam rigidity E/ = 1kNm?, the elastic limit moment
Myieg = 12.3kNm, and the load f(&) = 100 kN/m are deterministic.

Limit state function: g(xi,x2) = Myield — maxgejo 31 [M(&,x1,%2)|. The beam
will fail in cases where the moment M exceeds the elastic limit moment Myieig.

Uncertain spring constants:

Testing algorithms

Approximations of upper probabilities obtained from
100 runs of the three algorithms plotted as box plots.
e Sample size: N = 10000.
e Starting points: (0 =(0.9,2,1), (0 =(0.9,4,1).
o Number of iterations: n=1 orn = 3.

& N = 10000, A\ = (0.9,1.57,1),100 runs

> T [[

£ 009} T4

E 0.0854 |$| é % %

2 008 -+ L

= 0075} |

& 0.07 L—1

& 0.

= e, oy, Ue oy, Ue
O[vIl(/2 O]:Il(&b2 01-1'6& OI'IK/]O] O]:Il(&b2

NS]) 72 27 P72
S =y mp sy

& N = 10000, A\ = (0.9,4,1),100 runs

z I T

= 0.09} x .

%0.0854-|_£| |$| é % %

2 €L

g 008t | L .

= 0075}

& 007 s

& 0.

. Q](golytb go]?t& a]g'OI-]t& é’ohtb ajgbl‘jté

NI TN TN
Xy X9 Xy S0

[T wf

The spring constants x; and x; are Gaussian distributed.
The expectation p; of each spring constant x; is “approximately” SOkNm~!.
The values of x; and x; are strongly correlated, p € [0.8,0.9].

The uncertainty of x; and x, is modelled by a family {X;},ca of two-
dimensional Gaussian random variables X; ~ N(u(1),X(1)).

Expectation y and covariance X are parametrised by
A= (A1,A2,43) = (p,p,r) € A with set A =[0.8,0.9] x [0,27] x [0, 1].

wp,,r) (|1 —1[|45 0| |rcoso 50
l = = —=
K(2) [,uz(p,(p,r)] \/5[1 1110 15| |rsing| T |50
Transformation u maps the unit disc onto an ellipse around (50,50) kNm~".

X(A)=X(p,p,r) = 62 be with 62 = 28. e Exact p, = 0.0854.
p 1 4

Algorithms

Algorithm 1: Simple reweighting

Choose a starting point () € A, i=0.
Repeat

Generate N sample points xi,...,xy ~ N(u(A®),£(A0)).

Density function: f;, for distribution N(u (A1), £(A1))).

Weighting functions: w,ﬁw (A) = fr () / fr0 (xx) with density f; for N(u(4),X(4)).
Probability function: pA” | ()= 1 X0 Lop<o - Wi’ (A).

Find A* € A with pﬁ(j?__7xk(l*) =max. (A is starting point.)

AU — A% (New optimal A* is the starting point in the next step.)

i=i+1.

Until a stopping criterion is satisfied.
_ (i—1)
Then pp~ pl " (A).

Algorithm 2: Importance sampling using design points

Choose starting points (2 € Aand £(0 e E CRY, i =0.
Repeat

Transformation from standard normal space: Tj (&) = C(A!) & + (A1),

Find &£° such that || £°|| = min subject to g(Ty (£°)) <0. (£W is starting point.)
Generate N sample points x1,...,xy ~ N(Ty (£°),Z(A1)).

Density function: f; for distribution N(Tl(,-)(éo),E(l("))).

Weighting functions: w,?“) (A) = fa(xx)/ fro (xx) with density f; for N(u(4),Z(4)).
Probability function: pA” | (A) = L TN | To0)<0 Wi (A).

Find A* € A with Pfl(,i.)..,xk(}“*) =max. (A1) is starting point.)

AT — o* gli+]) — go - (£9 and A* are starting points in the next step.)
i=i+1.

Until a stopping criterion is satisfied.
_ (i—1)
Then py~ pﬁ,~~~7xk (A%).

Algorithm 3: Global design point

Choose starting points (%) € A and () € E C RY.
Find (§°,A°) € E x A such that ||£°|| = min subject to g(7)-(£°)) <O.

(Starting points A(?) and £(0),)

Generate N sample points xp,...,xy ~ N(T3-(£°)),Z(1°)).

Density function: f3. for distribution N(T+(£°),Z(1°)).

Weighting functions: w”" (1) = f; (x¢)/f1- (x¢) with density f; for N((1),Z(1)).
Probability function: p” . (A) = 4 TN, Ly<o - Wi (A).

Find A* € Awith p}° (A*) =max. (A°is also starting point!)

Upper probability of failure: 5, ~ pf”

(2%).

oy Xk

Algorithm 3 (global design point) is the best.
Effort: N (sample) + 20-40 (finding global design point) evaluations of g.
Not much more than for a single random variable X instead of a family.

Iterating: Has only an advantage for “bad” Algorithm 1. No convergence in
general because of different samples. High computational cost (factor n).

pﬁfka is a smooth function — use of fast (global) optimization procedures.

