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Given: X ∼N(µ ,Σ) and limit state function g.

Goal: p f = P(g(X)≤ 0) =
∫

D1g(x)≤0 fX (x) dx .

Problem: p f is very small.

→ Large sample size for ordinary MC simulation.

→ High computational effort in case of expensive g.

Idea: Place sample points where it is “important” and

reweight!

Classical importance sampling

T : E ⊆ R
d → D ⊆ R

d : ξ → T (ξ ) =C ·ξ + µ .

C is the Cholesky factor of Σ.

1 Transformation from standard normal space

Find ξ ⋄ ∈ E ⊆ R
d such that

‖ξ ⋄‖= min subject to g(T (ξ ⋄))≤ 0.

ξ ⋄ is the point in the transformed failure domain

which is the closest to the origin.

2 Design point

Generate sample ξ1, . . . ,ξN ∼N(ξ ⋄, I).

Sample points in original space: xk = T (ξk).

x1, . . . ,xN ∼N(T (ξ ⋄),Σ)∼ X0.

3 Importance sample

Evaluate limit state function g at sample x1, . . . ,xN .

4 Evaluation of g

p f = P(g(X)≤ 0) =

∫

D
1g(x)≤0 fX (x) dx

=

∫

D
1g(x)≤0

fX (x)

fX0(x)
fX0(x) dx ≈ 1

N

N

∑
k=1

1g(xk)≤0 wk

with weights wk =
fX (xk)

fX0(xk)
.

5 Approximation of p f by reweighting
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Design point / importance sample

• Effective sample size: Ne =

(

∑N
k=1 wk

)2

∑N
k=1 w2

k

.

Best value for X0 = X (!).

• Taking h := 1g(·)≤0 into account:

Ne,h =
1

∑N
k=1 w̃2

k

, w̃k =
|h(xk)|wk

∑N
k=1 |h(xk)|wk

.

Only sample points in the failure domain involved.
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Values of Ne and Ne,h at ξ for X0 ∼N(ξ , I).

Importance sample diagnostics (Owen)

Goal: Approximation of p(λ ) = P(g(Xλ )≤ 0).

Naive approach: Compute p(λ ) using Monte-Carlo

simulations with samples xλ
1 , . . . ,x

λ
N ∼ Xλ for each λ

occurring in the optimization process.

→ High computational cost, non-smooth function.

Better: Reweighting and importance sampling.

We present three algorithms with different strategies

for the choice of the basic sample x1, . . . ,xN .

(1) x1, . . . ,xN ∼ Xλ , λ ∈ Λ, no importance sampling.

(2) Design point based on single Xλ , λ ∈ Λ.

(3) Global design point among all Xλ , λ ∈ Λ.

Simulation of a family of random variables

• Generate a sample x1, . . . ,xN distributed as a

basic random variable X0 with density fX0 > 0.

• The sample x1, . . . ,xN should be an importance

sample for all Xλ , λ ∈Λ, at least for optimal Xλ ∗ .

1 Basic sample x1, . . . ,xN

• Evaluate the limit state function g at all sample

points x1, . . . ,xN .

2 N function evaluations g(xk)

The probability p(λ ) = P(g(Xλ ) ≤ 0) for λ ∈ Λ is

approximated by reweighting the basic sample:

p(λ ) = P(g(Xλ )≤ 0) =

∫

D
1g(x)≤0 fXλ

(x) dx

≈ 1

N

N

∑
k=1

1g(xk)≤0 wk(λ ) =: pX0

x1,...,xN
(λ ),

with weights wk(λ ) = fXλ
(xk)/ fX0(xk).

The approximation pX0

x1,...,xN
(λ ) of p(λ ) depends on

X0 and on the sample points x1, . . . ,xN .

Approximation of p(λ ) for different λ ∈ Λ without

additional function evaluations of g!

3 Approximation of p(λ ) by reweighting

• Solve optimization problem pX0

x1,...,xN
(λ ) = max

subject to λ ∈ Λ using standard optimization

procedures.

• Evaluation of pX0

x1,...,xN
is very cheap.

• pX0

x1,...,xN
is continuous if fXλ

is continuous, too.

4 Approximation of p f

Given: Beam of length 3 m bedded on two springs with uncertain spring con-

stants x1 and x2. The beam rigidity EI = 1 kNm2, the elastic limit moment

Myield = 12.3 kNm, and the load f (ξ ) = 100 kN/m are deterministic.

Limit state function: g(x1,x2) = Myield −maxξ∈[0,3] |M(ξ ,x1,x2)|. The beam

will fail in cases where the moment M exceeds the elastic limit moment Myield.
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Uncertain spring constants:

• The spring constants x1 and x2 are Gaussian distributed.

• The expectation µi of each spring constant xi is “approximately” 50 kNm−1.

• The values of x1 and x2 are strongly correlated, ρ ∈ [0.8,0.9].

• The uncertainty of x1 and x2 is modelled by a family {Xλ}λ∈Λ of two-

dimensional Gaussian random variables Xλ ∼N(µ(λ ),Σ(λ )).

• Expectation µ and covariance Σ are parametrised by

λ = (λ1,λ2,λ3) = (ρ ,ϕ ,r) ∈ Λ with set Λ = [0.8,0.9]× [0,2π ]× [0,1].

• µ(λ ) =

[

µ1(ρ ,ϕ ,r)

µ2(ρ ,ϕ ,r)

]

= 1√
2

[

1 −1

1 1

][

4.5 0

0 1.5

][

r cosϕ

r sin ϕ

]

+

[

50

50

]

Transformation µ maps the unit disc onto an ellipse around (50,50) kNm−1.

• Σ(λ ) = Σ(ρ ,ϕ ,r) = σ2

[

1 ρ

ρ 1

]

with σ2 = 28. • Exact p f = 0.0854.

Numerical example

Algorithms

Choose a starting point λ(0) ∈ Λ, i = 0.

Repeat

Generate N sample points x1, . . . ,xN ∼N(µ(λ(i)),Σ(λ(i))).

Density function: fλ(i) for distribution N(µ(λ(i)),Σ(λ(i))).

Weighting functions: wλ(i)

k
(λ )= fλ (xk)/ fλ(i)(xk) with density fλ for N(µ(λ ),Σ(λ )).

Probability function: pλ(i)

x1,...,xk
(λ ) = 1

N ∑N
k=11g(xk)≤0 ·wλ(i)

k (λ ).

Find λ ∗ ∈ Λ with pλ(i)

x1,...,xk
(λ ∗) = max. (λ(i) is starting point.)

λ (i+1) = λ ∗. (New optimal λ ∗ is the starting point in the next step.)

i = i+1.

Until a stopping criterion is satisfied.

Then p f ≈ pλ (i−1)

x1,...,xk
(λ ∗).

Algorithm 1: Simple reweighting

Choose starting points λ(0) ∈ Λ and ξ (0) ∈ E ⊆ R
d , i = 0.

Repeat

Transformation from standard normal space: Tλ(i)(ξ ) =C(λ(i))ξ +µ(λ(i)).

Find ξ ⋄ such that ‖ξ ⋄‖= min subject to g(Tλ(i)(ξ ⋄))≤ 0. (ξ (i) is starting point.)

Generate N sample points x1, . . . ,xN ∼N(Tλ(i)(ξ ⋄),Σ(λ(i))).

Density function: fλ(i) for distribution N(Tλ(i)(ξ ⋄),Σ(λ(i))).

Weighting functions: wλ(i)

k (λ )= fλ (xk)/ fλ(i)(xk) with density fλ for N(µ(λ ),Σ(λ )).

Probability function: pλ(i)

x1,...,xk
(λ ) = 1

N ∑N
k=11g(xk)≤0 ·wλ(i)

k
(λ ).

Find λ ∗ ∈ Λ with pλ(i)

x1,...,xk
(λ ∗) = max. (λ(i) is starting point.)

λ (i+1) = λ ∗, ξ (i+1) = ξ ⋄. (ξ ⋄ and λ ∗ are starting points in the next step.)

i = i+1.

Until a stopping criterion is satisfied.

Then p f ≈ pλ (i−1)

x1,...,xk
(λ ∗).

Algorithm 2: Importance sampling using design points

Choose starting points λ(0) ∈ Λ and ξ (0) ∈ E ⊆ R
d .

Find (ξ ⋄,λ ⋄) ∈ E ×Λ such that ‖ξ ⋄‖= min subject to g(Tλ ⋄ (ξ ⋄))≤ 0.

(Starting points λ(0) and ξ (0).)

Generate N sample points x1, . . . ,xN ∼N(Tλ ⋄(ξ ⋄)),Σ(λ ⋄)).
Density function: fλ ⋄ for distribution N(Tλ ⋄(ξ ⋄),Σ(λ ⋄)).
Weighting functions: wλ ⋄

k
(λ ) = fλ (xk)/ fλ ⋄ (xk) with density fλ for N(µ(λ ),Σ(λ )).

Probability function: pλ ⋄
x1,...,xk

(λ ) = 1
N ∑N

k=11g(xk)≤0 ·w λ ⋄
k

(λ ).

Find λ ∗ ∈ Λ with pλ ⋄
x1,...,xk

(λ ∗) = max. (λ ⋄ is also starting point!)

Upper probability of failure: p f ≈ pλ ⋄
x1,...,xk

(λ ∗).

Algorithm 3: Global design point

• Algorithm 3 (global design point) is the best.

Effort: N (sample) + 20–40 (finding global design point) evaluations of g.

Not much more than for a single random variable X instead of a family.

• Iterating: Has only an advantage for “bad” Algorithm 1. No convergence in

general because of different samples. High computational cost (factor n).

• pλ ⋄
x1,...,xk

is a smooth function → use of fast (global) optimization procedures.

Conclusion

Approximations of upper probabilities obtained from

100 runs of the three algorithms plotted as box plots.

• Sample size: N = 10000.

• Starting points: λ (0)=(0.9, π
2
,1), λ (0)=(0.9,4,1).

• Number of iterations: n = 1 or n = 3.
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Testing algorithms

Given: Expensive limit state function g : D ⊆ R
d →R : x → g(x) and family {Xλ}λ∈Λ of random variables.

Aim: Upper probability of failure p f = supλ∈Λ p(λ ) with p(λ ) = P(g(Xλ )≤ 0) =
∫

D1g(x)≤0 fXλ
(x) dx .

Method: Efficient Monte-Carlo simulation using importance sampling and reweighting for approximating p(λ ).

Problem statement
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