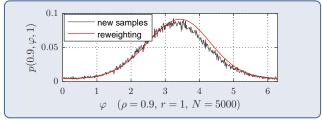
Efficient Computation of Upper Probabilities of Failure Using Monte Carlo Simulation & Reweighting Techniques

Thomas Fetz, Unit for Engineering Mathematics, University of Innsbruck, Austria

Problem statement

Given: Expensive limit state function $g: D \subseteq \mathbb{R}^d \to \mathbb{R}: x \to g(x)$ and family $\{X_{\lambda}\}_{\lambda \in \Lambda}$ of random variables. **Aim:** Upper probability of failure $\overline{p}_f = \sup_{\lambda \in \Lambda} p(\lambda)$ with $p(\lambda) = P(g(X_{\lambda}) \leq 0) = \int_D \mathbb{1}_{g(x) \leq 0} f_{X_{\lambda}}(x) dx$. **Method:** Efficient Monte-Carlo simulation using importance sampling and reweighting for approximating $p(\lambda)$.



Classical importance sampling

Given: $X \sim \mathcal{N}(\mu, \Sigma)$ and limit state function *g*.

Goal: $p_f = P(g(X) \le 0) = \int_D \mathbb{1}_{g(x) \le 0} f_X(x) \, \mathrm{d}x.$

Problem: p_f is very small.

 \rightarrow Large sample size for ordinary MC simulation. \rightarrow High computational effort in case of expensive *g*.

Idea: Place sample points where it is "important" and reweight!

1 Transformation from standard normal space

 $T: E \subseteq \mathbb{R}^d \to D \subseteq \mathbb{R}^d: \xi \to T(\xi) = C \cdot \xi + \mu.$ *C* is the Cholesky factor of Σ .

2 Design point

Find $\xi^{\diamond} \in E \subseteq \mathbb{R}^d$ such that

 $\|\xi^{\diamond}\| = \min \text{ subject to } g(T(\xi^{\diamond})) \leq 0.$

 ξ^\diamond is the point in the transformed failure domain which is the closest to the origin.

3 Importance sample

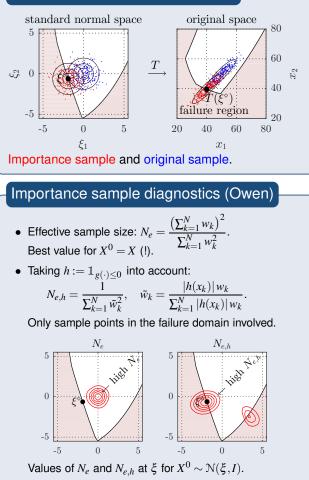
Generate sample $\xi_1, \ldots, \xi_N \sim \mathcal{N}(\xi^\diamond, I)$. Sample points in original space: $x_k = T(\xi_k)$. $x_1, \ldots, x_N \sim \mathcal{N}(T(\xi^\diamond), \Sigma) \sim X^0$.

4 Evaluation of g

Evaluate limit state function g at sample x_1, \ldots, x_N .

5 Approximation of p_f by reweighting $p_f = P(g(X) \le 0) = \int_D \mathbb{1}_{g(x) \le 0} f_X(x) dx$ $= \int_D \mathbb{1}_{g(x) \le 0} \frac{f_X(x)}{f_{X^0}(x)} f_{X^0}(x) dx \approx \frac{1}{N} \sum_{k=1}^N \mathbb{1}_{g(x_k) \le 0} w_k$ with weights $w_k = \frac{f_X(x_k)}{f_{X^0}(x_k)}$.

Design point / importance sample



Simulation of a family of random variables

Goal: Approximation of $p(\lambda) = P(g(X_{\lambda}) \le 0)$. **Naive approach:** Compute $p(\lambda)$ using Monte-Carlo simulations with samples $x_1^{\lambda}, \ldots, x_N^{\lambda} \sim X_{\lambda}$ for each λ occurring in the optimization process.

 \rightarrow High computational cost, non-smooth function.

Better: Reweighting and importance sampling.

Basic sample x_1, \ldots, x_N

- Generate a sample x₁,...,x_N distributed as a basic random variable X⁰ with density f_{X⁰} > 0.
- The sample x₁,...,x_N should be an importance sample for all X_λ, λ ∈ Λ, at least for optimal X_{λ*}.

2 *N* function evaluations $g(x_k)$

• Evaluate the limit state function *g* at all sample points *x*₁,...,*x*_N.

3 Approximation of $p(\lambda)$ by reweighting

The probability $p(\lambda) = P(g(X_{\lambda}) \le 0)$ for $\lambda \in \Lambda$ is approximated by **reweighting** the basic sample:

$$p(\lambda) = P(g(X_{\lambda}) \le 0) = \int_{D} \mathbb{1}_{g(x) \le 0} f_{X_{\lambda}}(x) dx$$
$$\approx \frac{1}{N} \sum_{k=1}^{N} \mathbb{1}_{g(x_{k}) \le 0} w_{k}(\lambda) =: p_{x_{1},\dots,x_{N}}^{X^{0}}(\lambda),$$

with weights $w_k(\lambda) = f_{X_\lambda}(x_k)/f_{X^0}(x_k)$.

The approximation $p_{x_1,...,x_N}^{X^0}(\lambda)$ of $p(\lambda)$ depends on X^0 and on the sample points $x_1,...,x_N$.

Approximation of $p(\lambda)$ for different $\lambda \in \Lambda$ without additional function evaluations of g!

4 Approximation of \overline{p}_f

- Solve optimization problem $p_{x_1,...,x_N}^{X^0}(\lambda) = \max$ subject to $\lambda \in \Lambda$ using standard optimization procedures.
- Evaluation of $p_{x_1,...,x_N}^{X^0}$ is very cheap.
- $p_{x_1,...,x_N}^{X^0}$ is continuous if $f_{X_{\lambda}}$ is continuous, too.

We present three algorithms with different strategies for the choice of the basic sample x_1, \ldots, x_N .

- (1) $x_1, \ldots, x_N \sim X_{\lambda}, \lambda \in \Lambda$, no importance sampling.
- (2) Design point based on single X_{λ} , $\lambda \in \Lambda$.
- (3) Global design point among all X_{λ} , $\lambda \in \Lambda$.

Testing algorithms

Approximations of upper probabilities obtained from 100 runs of the three algorithms plotted as box plots.

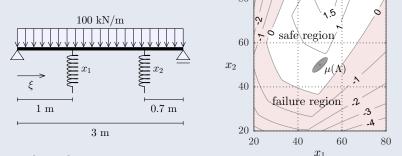
- Sample size: N = 10000.
- Starting points: $\lambda^{(0)} = (0.9, \frac{\pi}{2}, 1), \, \lambda^{(0)} = (0.9, 4, 1).$
- Number of iterations: n = 1 or n = 3.

t_math

Numerical example

Given: Beam of length 3 m bedded on two springs with uncertain spring constants x_1 and x_2 . The beam rigidity $EI = 1 \text{ kNm}^2$, the elastic limit moment $M_{\text{yield}} = 12.3 \text{ kNm}$, and the load $f(\xi) = 100 \text{ kN/m}$ are deterministic.

Limit state function: $g(x_1, x_2) = M_{\text{yield}} - \max_{\xi \in [0,3]} |M(\xi, x_1, x_2)|$. The beam will fail in cases where the moment *M* exceeds the elastic limit moment M_{yield} .



Uncertain spring constants:

- The spring constants x₁ and x₂ are Gaussian distributed.
- The expectation μ_i of each spring constant x_i is "approximately" 50 kNm⁻¹.
- The values of x_1 and x_2 are strongly correlated, $\rho \in [0.8, 0.9]$.
- The uncertainty of x_1 and x_2 is modelled by a family $\{X_{\lambda}\}_{\lambda \in \Lambda}$ of twodimensional Gaussian random variables $X_{\lambda} \sim \mathcal{N}(\mu(\lambda), \Sigma(\lambda))$.

• Expectation
$$\mu$$
 and covariance Σ are parametrised by

$$\lambda = (\lambda_1, \lambda_2, \lambda_3) = (\rho, \phi, r) \in \Lambda$$
 with set $\Lambda = [0.8, 0.9] \times [0, 2\pi] \times [0, 1]$.

•
$$\mu(\lambda) = \begin{bmatrix} \mu_1(\rho, \varphi, r) \\ \mu_2(\rho, \varphi, r) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4.5 & 0 \\ 0 & 1.5 \end{bmatrix} \begin{bmatrix} r\cos\varphi \\ r\sin\varphi \end{bmatrix} + \begin{bmatrix} 50 \\ 50 \end{bmatrix}$$

Transformation μ maps the unit disc onto an ellipse around (50,50) kNm⁻¹.

•
$$\Sigma(\lambda) = \Sigma(\rho, \varphi, r) = \sigma^2 \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$$
 with $\sigma^2 = 28$. • Exact $\overline{p}_f = 0.0854$.

Algorithms

Algorithm 1: Simple reweighting

Choose a starting point $\lambda^{(0)} \in \Lambda$, i = 0.

Repeat

Generate *N* sample points $x_1, ..., x_N \sim \mathcal{N}(\mu(\lambda^{(i)}), \Sigma(\lambda^{(i)}))$. Density function: $f_{\lambda^{(i)}}$ for distribution $\mathcal{N}(\mu(\lambda^{(i)}), \Sigma(\lambda^{(i)}))$. Weighting functions: $w_k^{\lambda^{(i)}}(\lambda) = f_\lambda(x_k)/f_{\lambda^{(i)}}(x_k)$ with density f_λ for $\mathcal{N}(\mu(\lambda), \Sigma(\lambda))$. Probability function: $p_{x_1,...,x_k}^{\lambda^{(i)}}(\lambda) = \frac{1}{N} \sum_{k=1}^N \mathbb{1}_{g(x_k) \leq 0} \cdot w_k^{\lambda^{(i)}}(\lambda)$.

- Find $\lambda^* \in \Lambda$ with $p_{x_1,...,x_k}^{\lambda^{(i)}}(\lambda^*) = \max$. ($\lambda^{(i)}$ is starting point.)
- $\lambda^{(i+1)} = \lambda^*$. (New optimal λ^* is the starting point in the next step.) i = i+1.

l = l + 1. Until a stopping criterion is satisfied.

Then $\overline{p}_f \approx p_{x_1,...,x_k}^{\lambda^{(i-1)}}(\lambda^*).$

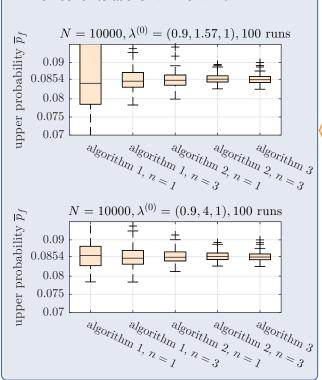
Algorithm 2: Importance sampling using design points

Choose starting points $\lambda^{(0)} \in \Lambda$ and $\xi^{(0)} \in E \subseteq \mathbb{R}^d$, i = 0.

Repeat

- Transformation from standard normal space: $T_{\lambda^{(i)}}(\xi) = C(\lambda^{(i)})\xi + \mu(\lambda^{(i)})$. Find ξ^{\diamond} such that $||\xi^{\diamond}|| = \min$ subject to $g(T_{\lambda^{(i)}}(\xi^{\diamond})) \leq 0$. $(\xi^{(i)})$ is starting point.) Generate *N* sample points $x_1, \ldots, x_N \sim \mathcal{N}(T_{\lambda^{(i)}}(\xi^{\diamond}), \Sigma(\lambda^{(i)}))$. Density function: $f_{\lambda^{(i)}}$ for distribution $\mathcal{N}(T_{\lambda^{(i)}}(\xi^{\diamond}), \Sigma(\lambda^{(i)}))$. Weighting functions: $w_k^{\lambda^{(i)}}(\lambda) = f_{\lambda}(x_k)/f_{\lambda^{(i)}}(x_k)$ with density f_{λ} for $\mathcal{N}(\mu(\lambda), \Sigma(\lambda))$. Probability function: $p_{x_1,\ldots,x_k}^{\lambda^{(i)}}(\lambda) = \frac{1}{N}\sum_{k=1}^N \mathbb{1}_{g(x_k) \leq 0} \cdot w_k^{\lambda^{(i)}}(\lambda)$. Find $\lambda^* \in \Lambda$ with $p_{x_1,\ldots,x_k}^{\lambda^{(i)}}(\lambda^*) = \max$. $(\lambda^{(i)}$ is starting point.) $\lambda^{(i+1)} = \lambda^*, \xi^{(i+1)} = \xi^{\diamond}$. $(\xi^{\diamond}$ and λ^* are starting points in the next step.)
- i = i + 1.

Until a stopping criterion is satisfied.



Then $\overline{p}_f \approx p_{x_1,...,x_k}^{\lambda^{(t-1)}}(\lambda^*)$. Algorithm 3: Global design point Choose starting points $\lambda^{(0)} \in \Lambda$ and $\xi^{(0)} \in E \subseteq \mathbb{R}^d$. Find $(\xi^{\diamond}, \lambda^{\diamond}) \in E \times \Lambda$ such that $\|\xi^{\diamond}\| = \min$ subject to $g(T_{\lambda^{\diamond}}(\xi^{\diamond})) \leq 0$. (Starting points $\lambda^{(0)}$ and $\xi^{(0)}$.) Generate *N* sample points $x_1, ..., x_N \sim \mathcal{N}(T_{\lambda^{\diamond}}(\xi^{\diamond})), \Sigma(\lambda^{\diamond}))$. Density function: $f_{\lambda^{\diamond}}$ for distribution $\mathcal{N}(T_{\lambda^{\diamond}}(\xi^{\diamond}), \Sigma(\lambda^{\diamond}))$. Weighting functions: $w_{\lambda^{\diamond}}^{\lambda^{\diamond}}(\lambda) = f_{\lambda}(x_k)/f_{\lambda^{\diamond}}(x_k)$ with density f_{λ} for $\mathcal{N}(\mu(\lambda), \Sigma(\lambda))$. Probability function: $p_{x_1,...,x_k}^{\lambda^{\diamond}}(\lambda) = \frac{1}{N}\sum_{k=1}^N \mathbb{1}_{g(x_k)\leq 0} \cdot w_k^{\lambda^{\diamond}}(\lambda)$. Find $\lambda^* \in \Lambda$ with $p_{x_1,...,x_k}^{\lambda^{\diamond}}(\lambda^*) = \max$. (λ^{\diamond} is also starting point!) Upper probability of failure: $\overline{p}_f \approx p_{\lambda^{\diamond}}^{\lambda^{\diamond}}(\lambda^*)$.

Conclusion

- Algorithm 3 (global design point) is the best.
 - **Effort:** N (sample) + 20–40 (finding global design point) evaluations of g. Not much more than for a single random variable X instead of a family.
- **Iterating:** Has only an advantage for "bad" Algorithm 1. No convergence in general because of different samples. High computational cost (factor *n*).
- $p_{x_1,...,x_k}^{\lambda^{\diamond}}$ is a smooth function \rightarrow use of fast (global) optimization procedures.