(Irrelevant) natural extension of choice functions

Arthur Van Camp, Gert de Cooman and Enrique Miranda

IDLab, Ghent University, Belgium

Department of Statistics and Operations Research, University of Oviedo, Spain

Universidad de Oviedo

Rejection functions on gambles

Gambles The random variable X takes values in the finite possibility space \mathscr{X} . Any real-valued function on \mathscr{X} is called a gamble, and we collect all of them in $\mathscr{L}(\mathscr{X})$ (or \mathscr{L}). Given two gambles f and g in \mathscr{L} , we say that $f \leq g$ if $(\forall x \in \mathscr{X}) f(x) \leq g(x)$. Its strict variant < on \mathscr{L} is given by: $f < g \Leftrightarrow (f \le g \text{ and } f \ne g)$; we collect all f such that 0 < f in $\mathscr{L}_{>0}$. We define $\mathscr{Q} \subseteq \mathscr{P}(\mathscr{L})$ as the collection of **non-empty but finite subsets** of \mathscr{L} . **Rejection function** A rejection function *R* is a map

 $R: \mathscr{Q} \to \mathscr{Q} \cup \{\emptyset\}: A \mapsto R(A)$ such that $R(A) \subseteq A$.

Rationality axioms We call a rejection function R on \mathscr{Q} coherent if for all A, A₁ and A₂ in \mathscr{Q} , all f and g in \mathscr{L} , and all λ in $\mathbb{R}_{>0}$: $\mathsf{R}_1. R(A) \neq A;$ [avoiding complete rejection] R_2 if f < g then $f \in \mathbb{R}(\{f,g\})$; [dominance] R₃. a. if $A_1 \subseteq R(A_2)$ and $A_2 \subseteq A$ then $A_1 \subseteq R(A)$; [Sen's α] b. if $A_1 \subseteq R(A_2)$ and $A \subseteq A_1$ then $A_1 \setminus A \subseteq R(A_2 \setminus A)$; [Aizerman] R₄. a. if $A_1 \subseteq R(A_2)$ then $\lambda A_1 \subseteq R(\lambda A_2)$;

Binary choice

More-than-binary choice Rejection functions are more-than-binary comparisons of gambles. Given any rejection function R, we can summarise its binary behaviour in

 $D_R \coloneqq \{ f \in \mathscr{L} : 0 \in R(0, f) \};$

if R is coherent, then D_R is a coherent set of desirable gambles.

Binary choice There might be multiple rejection functions associated to D; the least informative one is

$R_D(A) \coloneqq \{ f \in A : (\exists g \in A)g - f \in D \}$

for all A in \mathcal{Q} . If D is coherent, then so is R_D . For any collection \mathscr{D}' of coherent sets of desirable gambles, we let $R_{\mathscr{D}'} := \inf\{R_D : D \in \mathscr{D}'\}$. Then

Example: infimum of binary choice

 $\mathscr{D}' \coloneqq \{D_1, D_2\}$ and $A \coloneqq \{0, f_1, f_2, f_3\}$, so clearly $0 \in R_{\mathscr{D}'}(A)$, since $f_1 \in D_1$ and $f_3 \in D_2$.

b. if $A_1 \subseteq R(A_2)$ then $A_1 + \{f\} \subseteq R(A_2 + \{f\})$. We collect all coherent rejection functions in the set \mathscr{R} . [scaling invariance] [independence]

for all A in \mathcal{Q} .

The natural extension of a desirability assessment $B \subseteq \mathscr{L}$ that avoids non-positivity, is

 $0 \in R_{\mathscr{D}'}(A \cup \{0\}) \Leftrightarrow (\forall D \in \mathscr{D}')D \cap A \neq \emptyset$

 $\mathscr{E}_{\mathscr{D}}(B) \coloneqq \operatorname{posi}(\mathscr{L}_{>0} \cup B).$

Proposition. Consider any collection \mathcal{D}' of coherent sets of desirable gambles, any f_1, \ldots, f_n f_n in \mathscr{L} , and any $\mu_1 > 0, \ldots, \mu_n > 0$. Then

 $0 \in R_{\mathscr{D}'}(\{0, f_1, \ldots, f_n\})$ $\Leftrightarrow 0 \in R_{\mathscr{D}'}(\{0, \mu_1 f_1, \dots, \mu_n f_n\}).$

Example: intrinsic non-binary choice

Assessment Consider the single assessment

$\mathscr{B} := \{B\}$ where $B := \{0, (-2, 2), (-3, 3)\}.$

It avoids complete rejection, by the Proposition in the frame Application: purely binary assessments. Therefore, $R_{\mathscr{B}}$ is a **coherent** rejection function. **Intrinsic non-binary choice** Note that $0 \in R_{\mathscr{B}}(0, (-2, 2), (-3, 3))$. We find that $0 \notin R_{\mathscr{B}}(\{0, (-1, 1)\}) = R_{\mathscr{B}}(\{0, 1/2(-2, 2), 1/3(-3, 3)\})!$

It is no infimum of purely binary rejection functions.

The 'is not more informative than' relation Given two rejection functions R_1 and R_2 :

 R_1 is not more informative than $R_2 \Leftrightarrow (\forall A \in \mathscr{Q})(R_1(A) \subseteq R_2(A))$.

For any collection **R** of rejection functions, its infimum is the rejection function given by

 $(\inf \mathbf{R})(A) \coloneqq \bigcap \mathbf{R}(A)$ for all A in \mathscr{Q} .

If **R** consists of coherent rejection functions, then $\inf \mathbf{R}$ is coherent itself.

Assessment Mostly, if a subject assesses his rejection functions, he will only provide an **incom**plete specification. He will state

"I assess $f \in R(B)$ for some B in \mathcal{Q} and f in B."

or, if we assume that this assessment satisfies Axiom R₄b, equivalently:

"I assess $0 \in R(B)$ for some B in $\mathcal{Q}^0 := \{A \in \mathcal{Q} : 0 \in A\}$."

Formally, his assessment \mathscr{B} is a subset of \mathscr{Q}^0 :

Assessing $\mathscr{B} \subseteq \mathscr{Q}^0$ means: "my rejection function satisfies $(\forall B \in \mathscr{B}) 0 \in R(B)$ ".

Extending an assessment Given any assessment $\mathscr{B} \subseteq \mathscr{Q}^0$ and any rejection function R on \mathscr{Q} , we say that *R* extends the assessment \mathscr{B} if $B \in \mathscr{B} \Rightarrow 0 \in R(B)$ for every *B* in \mathscr{Q} .

Natural extension

Definition Given any assessment $\mathscr{B} \subseteq \mathscr{Q}^0$, the **natural extension** of \mathscr{B} is the rejection function $\mathscr{E}(\mathscr{B}) := \inf\{R \in \overline{\mathscr{R}} : (\forall B \in \mathscr{B}) 0 \in R(B)\},\$

Weak extension

Setting We have two random variables X and Y, taking values in the finite possibility spaces \mathscr{X} and \mathscr{Y} respectively. From here on, the set of all gambles on $\mathscr{X} \times \mathscr{Y}$ is denoted by \mathscr{L} . This is heavily inspired on [Gert de Cooman & Enrique Miranda, Irrelevant and independent natural extension for sets

where we let $\inf \emptyset$ be equal to $\operatorname{id}_{\mathcal{Q}}$, the identity rejection function that maps every option set to itself. **A special rejection function** The definition above is not so useful: it provides no explicit expression. To remedy this, consider the **special rejection function** $R_{\mathscr{B}}$ defined as:

$R_{\mathscr{B}}(A) \coloneqq \left\{ f \in A : (\exists A' \in \mathscr{Q}) \left(A' \supseteq A \text{ and } (\forall g \in \{f\} \cup A' \setminus A) \right) \right\}$

 $(A' - \{g\} \cap \mathscr{L}_{>0} \neq \emptyset \text{ or } (\exists B \in \mathscr{B}, \exists \mu \in \mathbb{R}_{>0}) \{g\} + \mu B \preccurlyeq A') \Big) \Big\}$

for all A in \mathcal{Q} , where we define \preccurlyeq on \mathcal{Q} as:

 $A_1 \preccurlyeq A_2 \Leftrightarrow (\forall f_1 \in A_1) (\exists f_2 \in A_2) f_1 \leq f_2 \text{ for all } A_1 \text{ and } A_2 \text{ in } \mathscr{Q}.$

Assessments avoiding complete rejection We say that $\mathscr{B} \subseteq \mathscr{Q}^0$ avoids complete rejection when $R_{\mathscr{B}}$ satisfies Axiom R₁.

Theorem 1. Consider any assessment $\mathscr{B} \subseteq \mathscr{Q}^0$. Then the following statements are equivalent: (i) \mathscr{B} avoids complete rejection;

```
(ii) There is a coherent extension of \mathscr{B}: (\exists R \in \overline{\mathscr{R}}) (\forall B \in \mathscr{B}) 0 \in R(B);
```

(iii) $\mathscr{E}(\mathscr{B}) \neq \mathrm{id}_{\mathscr{Q}};$

(iv) $\mathscr{E}(\mathscr{B}) \in \overline{\mathscr{R}};$

(v) $\mathscr{E}(\mathscr{B})$ is the least informative rejection function that is coherent and extends \mathscr{B} . When any (and hence all) of these equivalent statements hold, then $\mathscr{E}(\mathscr{B}) = R_{\mathscr{B}}$.

Application: purely binary assessments

Assume that the assessment $\mathscr{B} \subseteq \mathscr{Q}^0$ consist of only binary sets: $\mathscr{B} \subseteq \{\{0, f\} : f \in \mathscr{L}\}$. Therefore, $B := \bigcap \mathscr{B} \setminus \{0\} \subseteq \mathscr{L}$ is its corresponding desirability assessment.

Avoiding non-positivity Given any desirability assessment $B \subseteq \mathscr{L}$, we say that B avoids nonpositivity when $posi(B) \cap \mathscr{L}_{<0} = \emptyset$.

of desirable gambles].

Gambles: cylindrical extension Let f be a gamble on \mathscr{X} . Define its cylindrical extension f^* :

 $f^*(x,y) \coloneqq f(x)$ for all (x,y) in $\mathscr{X} \times \mathscr{Y}$.

 f^* belongs to \mathscr{L} . Similarly, for any set A of gambles on \mathscr{X} , we let $A^* := \{f^* : f \in A\}$. **Marginalisation** Consider any rejection function R on $\mathscr{X} \times \mathscr{Y}$. Define its X-marginal marg_X(R) as

 $(\operatorname{marg}_X(R))(A) := R(A^*)$ for all A in $\mathscr{Q}(\mathscr{X})$.

If R is coherent, then so is $marg_X(R)$.

Rejection function: weak extension Let R be a coherent rejection function on \mathcal{X} .

What is the least informative coherent rejection function on $\mathscr{X} \times \mathscr{Y}$ that marginalises to R?

Proposition. The least informative coherent rejection function on $\mathscr{X} \times \mathscr{Y}$ that marginalises to R is $R_{\mathscr{A}}$, where

 $\mathscr{A} := \{A^* : A \in \mathscr{Q}^0(\mathscr{L}(\mathscr{X})), 0 \in R(A)\}.$

 $R_{\mathscr{A}}$ is called the weak extension of R.

Irrelevant natural extension

Conditioning Consider any rejection function R on $\mathscr{X} \times \mathscr{Y}$. For every y in \mathscr{Y} , define its **conditioned rejection function** R | y on \mathscr{X} as

$R \rfloor y(A) \coloneqq \{ f \in A : \mathbb{I}_{\{y\}} f \in R(\mathbb{I}_{\{y\}}A) \} \text{ for all } A \text{ in } \mathscr{Q}(\mathscr{X}),$

where we let $\mathbb{I}_{\{y\}} := \{\mathbb{I}_{\{y\}}f : f \in A\}$ be a set of gambles on $\mathscr{X} \times \mathscr{Y}$. If *R* is coherent, then so is $R \rfloor y$. **Epistemic irrelevance** We say that X is **epistemic irrelevant** to Y when learning the value of X does not influence our beliefs about Y. A rejection function R on $\mathscr{X} \times \mathscr{Y}$ satisfies epistemic irrelevance of X to Y when $\operatorname{marg}_{Y}(R|x) = \operatorname{marg}_{Y}(R)$ for all x in \mathscr{X}

Proposition. Consider any coherent rejection function R on $\mathscr{X} \times \mathscr{Y}$. Then R satisfies epistemic irrelevance of X to Y if and only if

The inference mechanism for choice functions has the inference mechanism for desirability as a special case:

Theorem 2. Consider any purely binary assessment $\mathscr{B} \subseteq \mathscr{Q}^0$. Then $B := \bigcap \mathscr{B} \setminus \{0\} \subseteq \mathscr{L}$ avoids nonpositivity if and only if \mathscr{B} avoids complete rejection, and if this is the case, then $\mathscr{E}(\mathscr{B}) = R_{\text{posi}(\mathscr{L}_{>0}\cup B)}$. **Proposition.** Consider $\mathscr{B} \subseteq \mathscr{Q}^0$. If there is a coherent set of desirable gambles D such that $(\forall B \in \mathscr{B})B \cap D \neq \emptyset$, then \mathscr{B} avoids complete rejection.

Therefore, this is a sufficient condition for avoiding complete rejection that is easy to check.

$(\forall A \in \mathscr{Q}(\mathscr{X}))(\forall y \in \mathscr{Y}) 0 \in R(A) \Leftrightarrow 0 \in R(\mathbb{I}_{\{y\}}A).$

Let R be a coherent rejection function on \mathscr{X} .

What is the least informative coherent rejection function on $\mathscr{X} \times \mathscr{Y}$ that marginalises to R and satisfies epistemic irrelevance from *X* to *Y*?

Theorem 3. The least informative rejection function on $\mathscr{X} \times \mathscr{Y}$ that marginalises to R and satisfies epistemic irrelevance of X to Y is $R_{\mathscr{A}_{X \to Y}}$, where

 $\mathscr{A}_{X \to Y} \coloneqq \{ \mathbb{I}_{\{y\}} A : A \in \mathscr{Q}(\mathscr{X}), 0 \in R(A), y \in \mathscr{Y} \} \cup \{ A^* : A \in \mathscr{Q}(\mathscr{X}), 0 \in R(A) \}.$