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Gambles The random variable X takes values in the finite possibility space X . Any real-valued
function on X is called a gamble, and we collect all of them in L (X ) (or L ). Given two gambles
f and g in L , we say that f ≤ g if (∀x ∈X ) f (x) ≤ g(x). Its strict variant < on L is given by:
f < g⇔ ( f ≤ g and f 6= g); we collect all f such that 0 < f in L>0.
We define Q ⊆P(L ) as the collection of non-empty but finite subsets of L .
Rejection function A rejection function R is a map

R : Q→Q∪{ /0} : A 7→ R(A) such that R(A) ⊆ A.

Rationality axioms We call a rejection function R on Q coherent if for all A, A1 and A2 in Q, all f
and g in L , and all λ in R>0:
R1. R(A) 6= A; [avoiding complete rejection]
R2. if f < g then f ∈ R({ f ,g}); [dominance]
R3. a. if A1 ⊆ R(A2) and A2 ⊆ A then A1 ⊆ R(A); [Sen’s α ]

b. if A1 ⊆ R(A2) and A ⊆ A1 then A1 \A ⊆ R(A2 \A); [Aizerman]
R4. a. if A1 ⊆ R(A2) then λA1 ⊆ R(λA2); [scaling invariance]

b. if A1 ⊆ R(A2) then A1+ { f} ⊆ R(A2+ { f}). [independence]
We collect all coherent rejection functions in the set R.

The ‘is not more informative than’ relation Given two rejection functions R1 and R2:

R1 is not more informative than R2⇔ (∀A ∈Q)(R1(A) ⊆ R2(A)).

For any collection R of rejection functions, its infimum is the rejection function given by

(infR)(A) :=
⋂

R(A) for all A in Q.

If R consists of coherent rejection functions, then infR is coherent itself.

Assessment Mostly, if a subject assesses his rejection functions, he will only provide an incom-
plete specification. He will state

“I assess f ∈ R(B) for some B in Q and f in B.”

or, if we assume that this assessment satisfies Axiom R4b, equivalently:

“I assess 0 ∈ R(B) for some B in Q0 := {A ∈Q : 0 ∈ A}.”
Formally, his assessment B is a subset of Q0:

Assessing B ⊆Q0 means: “my rejection function satisfies (∀B ∈B)0 ∈ R(B)”.

Extending an assessment Given any assessment B ⊆Q0 and any rejection function R on Q,
we say that R extends the assessment B if B ∈B⇒ 0 ∈ R(B) for every B in Q.

Rejection functions on gambles

Definition Given any assessment B ⊆Q0, the natural extension of B is the rejection function

E (B) := inf{R ∈R : (∀B ∈B)0 ∈ R(B)},
where we let inf /0 be equal to idQ, the identity rejection function that maps every option set to itself.
A special rejection function The definition above is not so useful: it provides no explicit expres-
sion. To remedy this, consider the special rejection function RB defined as:

RB(A) :=
{

f ∈ A : (∃A′ ∈Q)
(

A′ ⊇ A and (∀g ∈ { f}∪A′ \A)

(A′−{g}∩L>0 6= /0 or (∃B ∈B,∃µ ∈R>0){g}+ µB 4 A′)
)}

for all A in Q, where we define 4 on Q as:

A1 4 A2⇔ (∀ f1 ∈ A1)(∃ f2 ∈ A2) f1 ≤ f2 for all A1 and A2 in Q.

Assessments avoiding complete rejection We say that B ⊆Q0 avoids complete rejection
when RB satisfies Axiom R1.
Theorem 1. Consider any assessment B ⊆Q0. Then the following statements are equivalent:

(i) B avoids complete rejection;
(ii) There is a coherent extension of B: (∃R ∈R)(∀B ∈B)0 ∈ R(B);
(iii) E (B) 6= idQ;
(iv) E (B) ∈R;
(v) E (B) is the least informative rejection function that is coherent and extends B.

When any (and hence all) of these equivalent statements hold, then E (B) = RB.

Natural extension

Assume that the assessment B⊆Q0 consist of only binary sets: B⊆ {{0, f} : f ∈L }. Therefore,
B :=

⋂
B \{0} ⊆L is its corresponding desirability assessment.

Avoiding non-positivity Given any desirability assessment B ⊆L , we say that B avoids non-
positivity when posi(B)∩L≤0 = /0.

The inference mechanism for choice functions has the inference mechanism for desirability as
a special case:

Theorem 2. Consider any purely binary assessment B⊆Q0. Then B :=
⋂

B\{0}⊆L avoids non-
positivity if and only if B avoids complete rejection, and if this is the case, then E (B) = Rposi(L>0∪B).

Proposition. Consider B ⊆ Q0. If there is a coherent set of desirable gambles D such that
(∀B ∈B)B∩D 6= /0, then B avoids complete rejection.

Therefore, this is a sufficient condition for avoiding complete rejection that is easy to check.

Application: purely binary assessments

More-than-binary choice Rejection functions are
more-than-binary comparisons of gambles. Given
any rejection function R, we can summarise its binary
behaviour in

DR := { f ∈L : 0 ∈ R(0, f )};
if R is coherent, then DR is a coherent set of desirable
gambles.

Binary choice There might be multiple rejection
functions associated to D; the least informative one is

RD(A) := { f ∈ A : (∃g ∈ A)g− f ∈ D}
for all A in Q. If D is coherent, then so is RD. For any
collection D ′ of coherent sets of desirable gambles,
we let RD ′ := inf{RD : D ∈D ′}. Then

0 ∈ RD ′(A∪{0})⇔ (∀D ∈D ′)D∩A 6= /0

for all A in Q.
The natural extension of a desirability assessment
B ⊆L that avoids non-positivity, is

ED(B) := posi(L>0∪B).

Example: infimum of binary choice
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D ′ := {D1,D2} and A := {0, f1, f2, f3}, so
clearly 0 ∈ RD ′(A), since f1 ∈ D1 and f3 ∈ D2.

Proposition. Consider any collection D ′ of co-
herent sets of desirable gambles, any f1, . . . ,
fn in L , and any µ1 > 0, . . . , µn > 0. Then

0 ∈ RD ′({0, f1, . . . , fn})
⇔ 0 ∈ RD ′({0, µ1 f1, . . . , µn fn}).

Binary choice
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{Assessment

Does it reject 0?

Assessment Consider the single assessment

B := {B} where B := {0, (−2,2), (−3,3)}.
It avoids complete rejection, by the Proposition in the
frame Application: purely binary assessments. There-
fore, RB is a coherent rejection function.
Intrinsic non-binary choice
Note that 0 ∈ RB(0, (−2,2), (−3,3)). We find that

0 /∈ RB({0, (−1,1)}) = RB({0, 1/2(−2,2), 1/3(−3,3)})!

It is no infimum of purely binary rejection functions.

Example: intrinsic non-binary choice

Setting We have two random variables X and Y , taking values in the finite possibility spaces X and
Y respectively. From here on, the set of all gambles on X ×Y is denoted by L . This is heavily
inspired on [Gert de Cooman & Enrique Miranda, Irrelevant and independent natural extension for sets
of desirable gambles].
Gambles: cylindrical extension Let f be a gamble on X . Define its cylindrical extension f ∗:

f ∗(x,y) := f (x) for all (x,y) in X ×Y .

f ∗ belongs to L . Similarly, for any set A of gambles on X , we let A∗ := { f ∗ : f ∈ A}.
Marginalisation Consider any rejection function R on X ×Y . Define its X -marginal margX(R) as

(margX(R))(A) := R(A∗) for all A in Q(X ).

If R is coherent, then so is margX(R).
Rejection function: weak extension Let R be a coherent rejection function on X .

What is the least informative coherent rejection function on X ×Y that marginalises to R?

Proposition. The least informative coherent rejection function on X ×Y that marginalises to R is RA ,
where

A := {A∗ : A ∈Q0(L (X )),0 ∈ R(A)}.
RA is called the weak extension of R.

Weak extension

Conditioning Consider any rejection function R on X ×Y . For every y in Y , define its conditioned
rejection function Rcy on X as

Rcy(A) := { f ∈ A : I{y} f ∈ R(I{y}A)} for all A in Q(X ),

where we let I{y} := {I{y} f : f ∈ A} be a set of gambles on X ×Y . If R is coherent, then so is Rcy.
Epistemic irrelevance We say that X is epistemic irrelevant to Y when learning the value of X does
not influence our beliefs about Y . A rejection function R on X ×Y satisfies epistemic irrelevance of
X to Y when margY(Rcx) = margY(R) for all x in X
Proposition. Consider any coherent rejection function R on X ×Y . Then R satisfies epistemic
irrelevance of X to Y if and only if

(∀A ∈Q(X ))(∀y ∈ Y )0 ∈ R(A)⇔ 0 ∈ R(I{y}A).

Let R be a coherent rejection function on X .

What is the least informative coherent rejection function on X ×Y that marginalises to R and
satisfies epistemic irrelevance from X to Y ?

Theorem 3. The least informative rejection function on X ×Y that marginalises to R and satisfies
epistemic irrelevance of X to Y is RAX→Y , where

AX→Y := {I{y}A : A ∈Q(X ),0 ∈ R(A),y ∈ Y }∪{A∗ : A ∈Q(X ),0 ∈ R(A)}.

Irrelevant natural extension


