Empirical Interpretation of Imprecise Probabilities

Marco Cattaneo

School of Mathematics and Physical Sciences University of Hull

ISIPTA '17 – ECSQARU 2017, Lugano, Switzerland 10 July 2017

introduction

- imprecise probabilities can have a clear empirical/frequentist meaning only if they can be estimated from data
- consider for example a (potentially infinite) sequence of bags containing only white and black marbles: we draw one marble at random from each bag, where the proportion of black marbles in the *i*-th bag is

$$p_i \in [\underline{p}, \overline{p}] \subseteq [0, 1]$$

- ▶ if <u>p</u> = <u>p</u>, then [<u>p</u>, <u>p</u>] represents a precise probability (P), which can be estimated from data without problems (Bernoulli, 1713)
- ▶ if <u>p</u> < <u>p</u>, then [<u>p</u>, <u>p</u>] represents an imprecise probability (IP): can it still be estimated from data?

interpretations of $[p, \overline{p}]$

- which sequences of proportions p_i are compatible with the IP $[p, \overline{p}]$?
- epistemological indeterminacy interpretation (Walley and Fine, 1982), used e.g. in the theory of Markov chains with IPs (Kozine and Utkin, 2002):

$$p_i = p \in [\underline{p}, \overline{p}]$$

 ontological indeterminacy interpretation (Walley and Fine, 1982), used e.g. in the theories of Markov chains with IPs (Hartfiel, 1998) and probabilistic graphical models with IPs (Cozman, 2005):

$$p_i \in [\underline{p}, \overline{p}]$$

id-ontological (identifiable ontological indeterminacy interpretation), making
[p, p] identifiable:

$$p_i \in [\underline{p}, \overline{p}] = \begin{bmatrix} \liminf_{i \to \infty} p_i, \limsup_{i \to \infty} p_i \end{bmatrix}$$

levels of estimability of $[p, \overline{p}]$

- assuming that we have a sufficiently large number n of drawings
- ► ideal: uniformly consistent estimability, meaning that we can construct arbitrarily short confidence intervals for <u>p</u> and <u>p</u> with arbitrarily high confidence levels
- ▶ minimal: IP-consistent estimability (i.e. consistent in terms of IPs), called strong estimability by Walley and Fine (1982), and almost equivalent to the testability of [<u>p</u>, <u>p</u>] with arbitrarily low significance level and arbitrarily high power for a fixed alternative
- inadequate: P-consistent estimability (i.e. consistent in terms of Ps), meaning that \underline{p} and \overline{p} can be estimated arbitrarily well under each compatible sequence p_i , but the level of precision of the estimator can depend on the particular sequence p_i

estimability of $[\underline{p}, \overline{p}]$

interpretation of $[\underline{p}, \overline{p}]$:

necessary and sufficient conditions on possible $[\underline{p}, \overline{p}]$:	epistemological: $p_i = p \in [\underline{p}, \overline{p}]$	ontological: $p_i \in [\underline{p}, \overline{p}]$	id-ontological: $p_i \in [\underline{p}, \overline{p}] \text{ s.t.}$ $\underline{p} = \liminf_{i \to \infty} p_i,$ $\overline{p} = \limsup_{i \to \infty} p_i$
ideal: uniformly consistent	pairwise disjoint and IPs isolated	pairwise disjoint and IPs isolated	pairwise disjoint and IPs isolated
<mark>minimal:</mark> IP-consistent	pairwise disjoint	pairwise disjoint	pairwise disjoint
<mark>inadequate:</mark> P-consistent	pairwise disjoint	pairwise disjoint	?

estimability of $[\min\{p_1,\ldots,p_n\}, \max\{p_1,\ldots,p_n\}]$

interpretation of $[p, \overline{p}]$:

	_			
, $\max\{p_1,, p_n\}$	necessary and sufficient conditions on possible $[\underline{p}, \overline{p}]$:	epistemological: $p_i = p \in [\underline{p}, \overline{p}]$	ontological: $p_i \in [\underline{p}, \overline{p}]$	
\dots, p_n	ideal: uniformly consistent		no IPs	no IPs
$\min\{p_1,$	<mark>minimal:</mark> IP-consistent		no IPs	no IPs
ability of	<mark>inadequate:</mark> P-consistent		no IPs	?
estima				<u> </u>

conclusion

- ▶ IPs $[p, \overline{p}]$ can be empirically distinguished only if they are disjoint
- ▶ finite-sample IPs [min{p₁,..., p_n}, max{p₁,..., p_n}] cannot be estimated from data
- the paper summarizes several results that are not surprising, but important to clarify the limited empirical/frequentist meaning of IPs
- > examples of estimators with the required properties are given in the paper

references

- J. Bernoulli. Ars Conjectandi. Thurneysen Brothers, 1713.
- F. G. Cozman. Graphical models for imprecise probabilities. *International Journal* of Approximate Reasoning, 39:167–184, 2005.
- D. J. Hartfiel. Markov Set-Chains. Springer, 1998.
- I. O. Kozine and L. V. Utkin. Interval-valued finite Markov chains. *Reliable Computing*, 8:97–113, 2002.
- P. Walley and T. L. Fine. Towards a frequentist theory of upper and lower probability. *The Annals of Statistics*, 10:741–761, 1982.